2010 Mathematics HSC Solutions
Short Description
Download 2010 Mathematics HSC Solutions...
Description
http://www.maths.net.au/
2010 Mathematics HSC Solutions
2010 Mathematics HSC Solutions Question 1
(a)
(b)
(b)
( x 4)( x 3) 0
x2 4x 0 x( x 4) 0 x 0 or x 4 0 x4
y
x
3 x 4
2 5
(c) y ln 3x dy 3 dx 3x 1 x
and b 1
(c) ( x 1) 2 ( y 2) 2 25 (d) 2 x 3 9
2x 3 9 2x 6 x3
at x 2, m
or
(2 x 3) 9
d 2 x tan x tan x (2 x) x 2 (sec 2 x) dx x(2 tan x x sec2 x)
x 1 2x dx dx (ii) 2 4 x 2 4 x2 1 ln 4 x 2 c 2
a 1 r 1 1 13
1 2
1 2 3 (d) (i) 5 5 x 1 2 dx 5 x 1 dx 3 5 2 2 3 5 x 1 c 15
2 x 3 9 2 x 12 x 6
(f) s
(e)
6
x k dx 30 0
6
x2 2 kx 30 0
3 2
62 6k 30 2 6k 12 k 2
(g) x 8 Question 2
(a)
4
–3
1 52 52 54 52 52
a 2
(e)
x 2 x 12 0
Question 3
d cos x x( sin x) cos x(1) dx x x2 x sin x cos x x2
2 12 4 6 , (a) (i) M 2 2 5, 1
1
http://www.maths.net.au/
2010 Mathematics HSC Solutions
86 6 12 1 3
(ii) mBC
3
1
1 0 2 ln 2 ln 3 2 1.24 (2 d.p.)
ln x dx
(iii) The approximation using the trapezoidal rule is less than the actual value of the integral, because the shaded area of the trapeziums, is less than the actual area below the curve.
2 1 (iii) mMN 25 1 3 since mBC mMN , BC || MN
y 2
Corresponding angles on parallel lines are equal, so ACB ANM ABC AMN ABC ||| AMN (equiangular)
(iv)
1
1
1 y 2 x 2 3 3y 6 x 2
(v) BC
12 6 6 8
(a) (i) Forms an AP, a 1 , d 0.75 Tn 1 (n 1) 0.75
2
Tn 0.25 0.75n T9 0.25 0.75 9 T9 7 km Susannah runs 7 km in the 9th week
1 (vi) Area bh 2 1 44 2 10h 2 22 10 h 5
(ii) Tn 0.25 0.75n 10 0.25 0.75n n 13 In the 13th week.
(iii) S 26
y
(ii)
x f(x)
26 2
2 1 26 1 0.75
269.75 km
3 2 1 -1 -2 -3 -4 -5
2
1
2
1 0
4 x
Question 4
2 10
(b) (i)
3
-1
x 3y 8 0 2
2
3
2 ln(2)
4
(b) Area e 2 x e x dx 0
5 x
2
e2 x e x 2 0
e4 e0 e 2 e0 2 2 4 2 e 2e 3 2
3 ln(3)
2
http://www.maths.net.au/
2010 Mathematics HSC Solutions
4 r 3 20 0
4 3 12 11 1 11
(c) (i) P (2 mint)
r3 5 0 r
1 1 1 11 11 11 3 11
(ii) P (2same)
(iii) P (2 different) 1
3
5
d2A 60 4 3 2 dr r 5 when r 3 ,
3 11
2
d A 16 0, c.c.up, dr 2
8 11
local minimum at r
3
5
(d) f x f x 1 e x 1 e x 1 e x e x 1
1 1 sin x cos 2 x cos x cos x 1 sin x cos 2 x
(b) (i) sec2 x sec x tan x
x
2e e f x f x 1 e x 1 e x x
2 e x e x
1 sin x cos 2 x 1 sin x 1 sin 2 x 1 sin x 1 sin x 1 sin x
(ii) sec2 x sec x tan x
Question 5
(a) (i)
V r 2h 10 r 2 h 10 h 2 r
A 2 r 2 2 rh 10 2 r 2 2 r 2 r 20 2 r 2 r
1 1 sin x
4 1 dx (iii) I 0 1 sin x
4 sec 2 x sec x tan x dx 0 tan x sec x 04
(ii) dA 20 4 r 2 dr r dA let 0 to find stationary points dr
tan sec tan 0 sec 0 4 4 1 2 1 2
3
http://www.maths.net.au/
2010 Mathematics HSC Solutions
(iii)
1
1 A1 dx a x
(c)
y
1 ln x a 1
8
1 ln 1 ln a
–2
ln a 1 a
x
1 e
(b) (i) l r 9 5
b 1 A2 dx 1 x
1.8 (ii) In OPT and OQT OP = OQ (equal radii of 5 cm) OPT = OQT (both right angles) OT is a common line OPT OQT (RHS)
1 ln x 1
b
1 ln b ln 1 ln b 1 be
(iii) POT 12 POQ
Question 6
(a) (i)
0.9 PT tan(0.9) 5 PT 5 tan(0.9)
f ( x) ( x 2)( x 4) 2
f ( x) x3 2 x 2 4 x 8
PT 6.3 cm (1 d.p.) (iv) PTQ 1.8 2 2 2 (angle sum of a quadrilateral is 2 )
f ( x) 3 x 2 4 x 4 Consider the discriminate, 42 4(3)(4) 32
PTQ 1.34 1 Area (6.3) 2 sin(1.34) 2 1 (5) 2 (1.8 sin(1.8)) 2
Therefore there are no zeros, and hence, no stationary points. (the derivative function is positive definite)
9 cm 2
(ii) f ( x ) 6 x 4 Question 7
The graph is concave down when 6x 4 0
(a) (i) x 4 cos 2t dt
2 x 3 The graph is concave up when 2 x 3
2sin 2t c when t = 0, x 1 , 1 2sin 2(0) c
c 1
x 2sin 2t 1 4
http://www.maths.net.au/
2010 Mathematics HSC Solutions
(ii) at x 0 0 2sin 2t 1 1 sin 2t 2 2t t
1 T is the point , 2 . 2 mBT 4 Eqn BT: y 4 4( x 2) y 4x 4
6
13
Since this line is not vertical, if there is one simultaneous solution between this line and the parabola, it is a tangent. So, sub y 4 x 4 into
,
12 12
Therefore, the first time it will be at 13 rest is at t = 3.4 s 12
y x2 4 x 4 x2 x2 4 x 4 0
(iii) x 2sin 2t 1 dt
x 2
cos 2t t c
0
x2 BT is a tangent to the parabola
at t = 0, x = 0 0 cos 2(0) 0 c
c 1 x cos 2t t 1 dy 2x (b) (i) dx at x = –1, m = –2
Question 8
(a) P Ae kt P 102e kt when t = 75, P = 200 000 000 200000000 102e 75 k k 0.22
y 1 2( x 1) 2x y 1 0 1 5 (ii) M , 2 2 mAB 1 so, to find the x-value on the curve, where the tangent is 1, let 2x = 1. 1 1 Therefore the point C is , . 2 4 Since the x-values of M and C are the same, then the line MC will be vertical.
(iii)
2
P 102e0.22t P 102e0.22(100) P 539 311 817 787 P 539 billion (b) P ( HH ) 0.36 P ( H ) 0.6 P (T ) 0.4 P (TT ) 0.16 (c) (i) A 4 (amplitude)
x–coordinate of T is 0.5.
2 b 2 b b2
2x y 1 0
(ii) T
1 2 y 1 0 2 y 2
5
http://www.maths.net.au/
(iii)
2010 Mathematics HSC Solutions
(ii)1
y
A1 P (1 0.005)1 2000 P (1.005)1 2000
4 3 2 1
A2 A1 (1.005)1 2000 P (1.005)1 2000 (1.005)1 2000 P (1.005) 2 2000(1 1.005)
2
-1 -2 -3 -4
x
A3 A2 (1.005)1 2000 P (1.005) 2 2000(1 1.005) (1.005)1 2000 P (1.005)3 2000(1 1.005 1.0052 )
(d) f x x3 3 x 2 kx 8
An P (1.005) n 2000(1 1.005 1.005n 1 )
f x 3x 2 6 x k
1(1.005n 1) 1.005 1 P (1.005n ) 400 000 (1.005n 1) P (1.005n ) 2000
For an increasing function f x 0 ,
P (1.005n ) 400 000 1.005n 400 000 ( P 400 000) 1.005n 400 000
i.e. 3 x 2 6 x k 0
2
Consider the graph of y 3 x 2 6 x with x-intercepts at 0 and 2. Vertex at x = 1, y = –3. if k 3 , f x is positive
An ( P 400 000) 1.005n 400 000 0 (232 175.55 400 000) 1.005n 400 000 400 000 1.005n 167824.45 n log1.005 (2.38)
definite and hence f x is an
n
increasing function.
log10 2.38 log10 1.005
n 174.1
Question 9
Thus there will be money in the account for the next 175 months
(a) (i) A1 500(1 0.005) 240 A2 500(1 0.005) 239 . . . A240 500(1 0.005)1
(b) (i)
0 x2
(ii) The maximum occurs at x = 2,
2
0
f x dx 4
f 2 f 0 4
A A1 A2 A240
f 2 4
500(1.005 1.0052
The maximum value is f x 4
1.005239 1.005240 ) 1.005(1.005240 1) 1.005 1 $232 175.55
(iii) f 6 f 4
500
4
2
f x dx 4
f 4 f 2 4 f 4 4 4 f 4 0
The gradient is –3, so f 6 6
6
http://www.maths.net.au/
(iv)
2010 Mathematics HSC Solutions
4
y a (1 2 cos )
2
4
y a (1 2(1)) y 3a OA (b) (i) sin r OA r sin
6
–6
V
r
r
r sin
Question 10
r sin
(a) (i)In ACD, DAC and DCA = 90 12 ( sum of )
y 2 dx
r
2
x 2 dx r
x3 r 2 x 3 r sin r3 r 3 sin 3 r 3 r 3 sin 3 3 3 r 2 3sin sin 3 3
CDB = 180 (suppl. angles) DBC = 90 12 (ABC is isosc.) DCB = 90 32 ( sum of ) ACB = DCB + DCA =
(ii) 1 Initial depth = r. So, find , to give depth 12 r. From the diagram, r OA r sin 2 1 sin 2 30
In ABC and ACD, ACB = ADC (both ) DAC = DBC (both 90 12 ) ABC ||| ACD (equiangular) AD DC a AC CB x (ii)Corresponding sides of similar triangles are in the same proportion. AD AC AC AB a x x a y
also note
r3
3 1 2 3 2 8 2 Fraction 2 r 3 3 5 16
a (a y ) x 2 x 2 a 2 ay
(iiiIn ACD, by the cosine rule x 2 a 2 a 2 2a 2 cos a 2 ay a 2 a 2 2a 2 cos ay a 2 2a 2 cos y a 2a cos y a (1 2 cos ) (ivTo get the maximum value of y, cos must take its minimum value, of –1.
7
View more...
Comments