EGR is Stress Dependent The greater the confining stress, the greater is EGR
ε
2
Implication of Stress Dependency EGR varies with location in the pavement Chipseal E = 500 MPa Unbound Granular
Asphaltic Concrete E = 200 MPa
E = 100 MPa
E = 70 MPa
Subgrade
Subgrade
Modelling for stress dependancy Sublayering EBT = 467 500 MPa
Check EBT achievability: EBT(max) = ESGx2hgr/125 = 60 x 2370/125
370
= 467 MPa Calculate modular ratio: R = (EBT/ESG)1/5
ESG= 60 MPa
= (467/60)1/5 = 1.507
3
370
Sublayering (cont.) EBT = 1.507 x 309 = 467
74mm
E4 = 1.507 x 205 = 309
74mm
E3 = 1.507 x 136 = 205
74mm
E2 = 1.507 x 90 = 136
74mm
E2 = 1.507 x 60 = 90
74mm
ESG= 60 MPa
APPENDIX C: Circly output for Example 2.1 Note: Sign convention for strains output: Positive output ==> Compressive strain Negative output ==> Tensile strain L TYPE ELASTIC CONSTANTS 1 CROSS-ANISOTROPIC EH=0.2334E+03 EV=0.4669E+03 F=0.3459E+03 VVH= 0.3500E+00 VH = 0.3500E+00 2 CROSS-ANISOTROPIC EH=0.1549E+03 EV=0.3097E+03 F=0.2295E+03 VVH= 0.3500E+00 VH = 0.3500E+00 3 CROSS-ANISOTROPIC EH=0.1027E+03 EV=0.2055E+03 F=0.1522E+03 VVH= 0.3500E+00 VH = 0.3500E+00 4 CROSS-ANISOTROPIC EH=0.6816E+02 EV=0.1363E+03 F=0.1010E+03 VVH= 0.3500E+00 VH = 0.3500E+00 5 CROSS-ANISOTROPIC EH=0.4522E+02 EV=0.9044E+02 F=0.6700E+02 VVH= 0.3500E+00 VH = 0.3500E+00 6 CROSS-ANISOTROPIC EH=0.3000E+02 EV=0.6000E+02 F=0.4140E+02 VVH= 0.4500E+00 VH = 0.4500E+00 ESA750-Full POINT C O O R D I N A T E S --------------------------------X Y Z 1 0.0000E+00 0.0000E+00 0.3700E+03 2 0.3300E+02 0.0000E+00 0.3700E+03 3 0.6600E+02 0.0000E+00 0.3700E+03 4 0.9900E+02 0.0000E+00 0.3700E+03 5 0.1320E+03 0.0000E+00 0.3700E+03 6 0.1650E+03 0.0000E+00 0.3700E+03 7 0.1980E+03 0.0000E+00 0.3700E+03 8 0.2310E+03 0.0000E+00 0.3700E+03 9 0.2640E+03 0.0000E+00 0.3700E+03 10 0.2970E+03 0.0000E+00 0.3700E+03 11 0.3300E+03 0.0000E+00 0.3700E+03
D I S P L A C E M E N T S ---------------------------------L UX UY UZ 6 -0.3619E-03 0.4935E-08 -0.7868E+00 6 -0.1287E-01 0.4308E-08 -0.7876E+00 6 -0.2543E-01 0.3487E-08 -0.7855E+00 6 -0.3805E-01 0.2498E-08 -0.7806E+00 6 -0.5058E-01 0.1383E-08 -0.7730E+00 6 -0.6267E-01 0.2043E-09 -0.7627E+00 6 -0.7389E-01 0.2628E-09 -0.7499E+00 6 -0.8371E-01 0.3259E-09 -0.7347E+00 6 -0.9166E-01 0.3939E-09 -0.7176E+00 6 -0.9740E-01 0.4672E-09 -0.6989E+00 6 -0.1008E+00 0.5464E-09 -0.6792E+00
POINT C O O R D I N A T E S ---------------------------------X Y Z 1 0.0000E+00 0.0000E+00 0.3700E+03 2 0.3300E+02 0.0000E+00 0.3700E+03 3 0.6600E+02 0.0000E+00 0.3700E+03 4 0.9900E+02 0.0000E+00 0.3700E+03 5 0.1320E+03 0.0000E+00 0.3700E+03 6 0.1650E+03 0.0000E+00 0.3700E+03 7 0.1980E+03 0.0000E+00 0.3700E+03
N O R M A L S T R A I N S ---------------------------------L XX YY ZZ 6 -0.3789E-03 -0.6886E-03 0.1129E-02 6 -0.3795E-03 -0.6866E-03 0.1126E-02 6 -0.3820E-03 -0.6801E-03 0.1118E-02 6 -0.3822E-03 -0.6688E-03 0.1101E-02 6 -0.3751E-03 -0.6522E-03 0.1074E-02 6 -0.3557E-03 -0.6302E-03 0.1032E-02 6 -0.3213E-03 -0.6025E-03 0.9761E-03
Repeated Load Triaxial (RLT) test apparatus - obtain resilient moduli for design but later discuss a more important use to ensure materials will resist rutting
RLT Outputs Current draft TNZ T/15 test - 6 stage permanent deformation test Permanent strain [%]
1 0.8 0.6
F
0.4
E
0.2
B
A
C
D
0 0
50,000
100,000 150,000 200,000
250,000 300,000
Number of load cycles [-]
8
RLT Outputs – Resilient Modulus Show outputs in spreadsheet Exercise 1 – Determine Relationship between resilient modulus and bulk stress
Concepts (cont.) σ3
εR
Deviator Stress
εT
Vert. Stress
Deviator Stress
σ3 εR εT
Resilient Modulus =
Long. Strain
Deviator Stress Resilient Strain
9
Pass 2
Pass 3
Pass 4
Stress
Pass 1
Pass 5
Pass 6
Wheel load
Element
Overburden radial
Axial deformation
Time (t)
axial
Compressive Resilient deformation Permanent deformation Time (t)
Radial deformation
Time (t) Permanent deformation Resilient deformation Expansive
RLT Outputs – Resilient Modulus Show outputs in spreadsheet Exercise 1 – Determine Relationship between resilient modulus and bulk stress
Determination of EGR (cont.) 3. Back-calculation from FWD test Measure actual deflection bowl under applied load
AC
1500 2135 1840
Model pavement in CIRCLY with ‘seed’ moduli
GR
215 300 273
CIRCLY calculates theoretical deflection bowl
SG
60 50 68
Compares theoreticalwith actual bowl Ajust E and Repeat until satisfactory agreement is achieved
12
Eiso vs Eaniso When using back-calculated moduli from FWD results FWD ⇒ ELMOD ⇒ Isotropic moduli (Eiso) CIRCLY ⇒ requires Anisotropic moduli (Eaniso) Single relationship not possible. Depends on materials and stress environment Tonkin & Taylor suggest: For SG materials (ν=0.45): Eiso = 0.67 Eaniso(V) For GR materials (ν=0.35): Eiso = 0.75 Eaniso(V)
FWD Outputs Refer to spreadsheet Determine an appropriate model for CIRCLY from FWD data
13
Performance Relationship No Performance Relationship for UB currently in Austroads
K N= ε
exp
Current approach is to control deformation by means of: - good quality materials and - sound construction specs
Summary: Austroads Characterisation of UB Gr. E-range Poisson’ Poisson’s Ratio Anisotropic Performance Rel: Rel: Stress Dependent:
Subgrade Modification (1½-3%) Stiffer than UB, flexible Behaves like UB
15
Determination of ECT 1. Presumptive Values Base Quality crushed rock 4-5% cement Typical ECT (MPa) MPa)
Crushed Rock 2-4% cement
5000
3500
Subbase quality natural gravel 4-5% cement
2000
Performance Relationship NL (CT )
K = RF CT με
exp 12
N = Number of load repetitions to failure ε = critical horizontal tensile strain in the bottom of the layer
K CT =
113000 + 191 E0.804
exp =12
RF = Reliability Factor
16
Reliability Factor Allows for different project reliabilities Project reliability is the probability that the constructed pavement will perform as predicted Possible reasons for nonnon-compliance: compliance: Material characterisation Design model vs. constructed reality Limitation of performance prediction models
APPENDIX B : PROJECT RELIABILITY Table 6.7 Suggested Reliability Factors (RF) for Cemented Materials Fatigue
Desired Project Reliability 80% 4.7
85% 3.3
90% 2.0
95%
97.5%
1.0
0.5
Table 6.13 Suggested Reliability Factors (RF) for Asphalt Fatigue
Determination of Modulus (ESG) 1. RLT test 2. Presumptive value based on CBR • E = 10CBR • This is at best a crude approximation • Evidence indicates for many NZ subgrade soils the factor 10 ranges from about 4 to 13, with most on the lower end of the range
• Upper limit for ESG is 150 MPa
22
Determination of Modulus (ESG) ESG can be improved by stabilisation Restrict binder application rates to “modification” Modification can achieve an improvement factor of up to 3
Design Modulus Use 10-%tile value EDESIGN = EMEAN - 1.28(std. dev.)
23
Self Evaluation Exercise 3
SE Exercise 3 (solution) Mean CBR = 6.26 Design CBR = 6.26 – 1.28(1.72) = 4.06 say 4 Edesign = 10(CBR) = 40 MPa
24
Performance Relationship NL ( SG )
exp 9300 K SG 7 = με
N = Number of load repetitions to failure ε = critical vertical compressive strain in the top of the subgrade
KSG = 9300
exp= 7
Comparison with “old” old” TNZ strain criterion NL( SG)
9300 = με
7
NL ( SG)
21000 = με
4.348
25
Subgrade Improvement (CBR5000 MPa
• Isotropic (E V=EH) • Poisson’s ratio ν=0.2 • No sublayering
Asphaltic Concrete
Stiffness affected by: • Temperature • Volume of bitumen & air voids • Aggregate content & properties • Bitumen properties • Age of mix • Rate of loading • Important input parameter • Design Moisture Content • Determine representative SG modulus statistically: ESG = Emean – 1.3(std. dev)
• Isotropic (E V=EH) • Poisson’s ratio ν=0.4 • No sublayering
Subgrade
Elastic Characterisation • Anisotropic (E V=2E H) • Poisson’s ratio ν=0.35 • Sublayered E Shear modulus: f = v 1+ ν (h/125) E BT ≤ E SG x 2
Performance Criterion
Modulus: Values & Determination • Currently no performance Presumptive Values: • Basecourse: 400-500MPa criterion. • Subbase: 150-350MPa • Rely on sound material Determination: and construction • Lab.: RLT test specifications. • Back-analysis • Loadman • E=10CBR 12 Presumptive values: K N = RF CT • Base quality (4-5%): 5000MPa µε • Subbase “ (4-5%): 2000MPa 113000 Determination: K CT = 0.804 + 191 • Lab.: Flexural test E • Back-analysis • UCS⇒E correlation 5 Presumptive values: K N = RF AC • 1500 MPa ⇒ µε Determination: 6918(0.856VB + 1.08) • Lab: Flexural test K AC = 0 .36 • Back-analysis Smix • Shell nomographs V expressed as a % B
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.