2º Matemáticas 2020-2021 Curso Remedial
August 31, 2022 | Author: Anonymous | Category: N/A
Short Description
Download 2º Matemáticas 2020-2021 Curso Remedial...
Description
@]UHIGNS@CH\ JXIG@DHIW@BH\ LXU\F UHDHGN@B
D@WHDÀWNL@\ D@WHDÀ WNL@\ NN
]UNDHU@ \HD@I@ JHLA@ Buihs
GNUHLLNÜI GH L@BNG@G @]UHIGNS@CH\ @L@GÎDNL@JXIG@DHIW@BH\3 GH \HLXIG@UN@ KU@GF3
@\NKI@WXU@3 D`thdàtnl`s NN
Lnlbf Hslfb`r 5=5=-5=50
5gf.
\nsthd` ghlnd`b y jr`llnfihs hi b` rhlt` iudîrnl`
WNHD]F3 Afr` lb`sh
NUHLLNÜI H L@BN @
@L@ ÎDNL@ H \HLXI @UN@
]rfpüsntf Bfs `budifs `prhighrài b`s prfpnhg`ghs ghb snsthd` gh iudhr`lnüi ghlnd`b y b` rhprhshit`lnüi gh jr`llnfihs hi b` rhlt` iudîrnl`.
D`ifs ` b` fer` Hb shr aud`if snhdprh a` thingf b` ihlhsng`g gh lfit`r y, lfdf lfishluhiln`, sh vnf hi b` ihlhsng`g gh lrh`r ui snsthd` gh iudhr`lnüi. Hi b` `ltu`bng`g sh ubnz` hb snsthd` ghlnd`b. Hb snsthd` gh iudhr`lnüi ghlnd`b ubnz` lfdf e`sh gnhz gäkntfs gnjhrhiths3 =, 0,5, . Hi hsth snsthd`, lu`bqunhr iódhrf sh hslrneh lfdf ui` sulhsnüi gh hstfs gnhz gäkntfs, gfigh b` pfsnlnüi gh l`g` gäkntf hih ndpfrt`iln`. ]fr hsth dfvf, hs ui snsthd` gh iudhr`lnüi pfsnlnfi`b. pfsnlnfi`b. ]fr hchdpbf hi hb iódhrf 87, hb 8 flup` hb ghlhi` hi`ss (8 x 0=) y hb 7 hb buk`r uing`ghs `ghs (7 x 0). Lnilf ghl ghlhi` hi`ss dàs lu`trf uing`ghs, hs ghlnr, buk`r buk `r gh b`s ghl buk`r gh b`s uing lniluhit` y lu`trf. Hi b` lnjr` 1:; hb 1 flup` b` lhithi` (1==), hb : b` ghlhi` (:=) y hb ; b` uing`g. \h bhh flaflnhitfs shshit` y snhth .
Hchrlnlnf3 Gh `luhrgf lfi b` t`eb` hslrneh lfdf sh bhhi b`s snkunhiths l`ig`ghs. 0 0= 0== 0 === 0= === 0== === 0 === ===
Xing`g Ghlhi` Lhithi` Dnbb`r Ghlhi` gh dnbb`r Lhithi` gh dnbb`r dnbbüi
78: VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV > 5 8;: 58< VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
B`s lnjr`s sh puhghi hslrnenr hi ui` jfrd` dàs lfdp`lt`3 bf quh sh lfiflh lfdf ift`lnüi hxpfihiln`b . B`s uing`ghs, ghlhi`s, lhithi`s, htlîthr`, sh rhprhshit`i hslrnenhigf hb gnhz y hbhvàigfbf ` ui` pfthiln` shkói b`s vhlhs quh sh dubtnpbnquh hb gnhz.
0 4 0== 0= 4 0=0 0== 4 0= Û 0= 4 0= 5 0 === 4 0= Û 0= Û 0= 40= < 0
:
NUHLLNÜI H L@BN @
@L@ ÎDNL@ H \HLXI @UN@
0= === 4 0= Û 0= Û 0= Û 0= 40= 7 0== === 4 0= Û 0= Û 0= Û 0= Û 0= 40= 8 0 === === 4 0= Û 0= Û 0= Û 0= Û 0= Û 0= 40= : Gh `luhrgf lfi b` t`eb` `ithrnfr hslrneh hi jfrd` hxpfihiln`b b`s snkunhiths l`itng`ghs. === VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV ;= === VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 8== === VVVVVVVVVVVVVVVVVVVVVVVVVVVVV > === === VVVVVVVVVVVVVVVVVVVVVVVVVVVV 5= === === VVVVVVVVVVVVVVVVVVVVVVVVVVVV
JHLA@ D`rths
@\NKI@WXU@3 D`thdàtnl`s NN
KU@GF3 5gf.
@]UHIGNS@CH\ JXIG@DHIW@BH\3 \nsthd` ghlnd`b y jr`llnfihs hi b` rhlt` iudîrnl`
WNHD]F3 Afr` lb`sh
]`r` hxprhs`r iódhrfs if hithrfs, sh us`i gäkntfs ` b` ghrhla` ghb puitf. L`g` gnkntf ` b` ghrhla` ghb puitf rhprhshit` hb lflnhith gh îsh gäkntf y gh ui` pfthiln` gh 0=3
=.: 4
: 0=
\h bhh3 ‒shns gîlnd`s— 78
=.78 4
0==
\h bhh3 lu`trf gîlnd`s y lnilf lhitîsnd`s f, gnrhlt`dhith, lu`rhit` y lnilf lhitîsnd`s.
4
=.=:5
:5 0===
\h bhh3 shns lhitîsnd`s y gfs dnbîsnd`s f, gnrhlt`dhith, shshit` y gfs dnbîsnd`s ;< =.==;<
4 0====
\h bhh3 snhth dnbîsnd`s y trhs gnhz dnbîsnd`s f, gnrhlt`dhith, shthit` y trhs gnhz dnbîsnd`s. 0
:
NUHLLNÜI H L@BN @
@L@ ÎDNL@ H \HLXI @UN@
Hchrlnlnf3 gh `luhrgf lfi b` t`eb` =.0 =.=0 =.==0 =.===0
Gîlnd` Lhitîsnd` Dnbîsnd` Gnhzdnbîsnd`
=.====0 Lnhidnbîsnd` =.=====0 Dnbbfiîsnd` Hslrneh lfdf sh bhhi b`s snkunhiths l`itng`ghs. l`itng`ghs. =.=: VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V =.=7 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V =.=81 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V =.==78 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V =.===>8 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V =.====:< VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V @ift` bfs snkunhiths iódhrfs hi b` t`eb` gh `e`cf lfbfl`igf l`g` gäkntf hi hb buk`r quh bh lfrrhspfigh. 8 1=:.5 >:.==8 ; =80.=1 0 ===.==; 7 :==.0 8=5.= Dnbb`rhs 0 ===
Lhithi`s 0==
Ghlhi`s 0=
Xing`g 0
.
Ghlnd`s .=0
lhitîsnd`s .=0
Dnbîsnd`s .==0
Uhluhrg` quh b` pfsnlnüi hi gfigh sh hiluhitr` hb puitf ghphigh gh güigh sh hslrnenrài b`s l`itng`ghs. @afr` hslrneh lfdf sh bhhi hst`s l`itng`ghs. 8 1=:.5 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV >:.==8 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV ; =80.=1 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 0 ===.==; VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 7 :==.0 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
0
:
NUHLLNÜI H L@BN @
@L@ ÎDNL@ H \HLXI @UN@
8=5.= VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
JHLA@ Dnîrlfbhs
@\NKI@WXU@3 D`thdàtnl`s NN
KU@GF3 5gf.
@]UHIGNS@CH\ JXIG@DHIW@BH\ JXIG@DHIW@BH\33 \nsthd` ghlnd`b y jr`llnfihs hi b` rhlt` iudîrnl`
WNHD]F3 Afr` lb`sh
Bfs iódhrfs ghlnd`bhs sh puhghi rhprhshit`r hi b` rhlt` iudîrnl` y sh puhghi hslrnenr y` sh` gh jfrd` ghlnd`b f hi jfrd` gh jr`llnüi.
Hi ui` rhlt` iudîrnl` bfs iódhrfs jr`llnfi`rnfs sh pfsnlnfi`i gh `luhrgf lfi hb iudhr`gfr y hb ghifdni`gfr. Hb ghifdni`gfr nignl` hi luàitfs shkdhitfs a`y quh gnvngnr hb shkdhitf uint`rnf. Hb iudhr`gfr nignl` b` pfsnlnüi quh flup` hb iódhrf jr`llnfi`rnf. ]fr hchdpbf, sn quhrhdfs hxprhs`r 58, hi b` rhlt`, thihdfs quh gnvngnr `b shkdhitf quh rhprhshit` b` uing`g hi 8 p`rths nku`bhs y bfl`bnz`r b` shkuig` gnvnsnüi gh b` uing`g.
Hchrlnlnf3 Hi b`s snkunhiths rhlt`s iudîrnl`s bfl`bnz` bfs puitfs quh sh dhilnfi`i.
`)
5
7 ,
: ,
0= 0= 0=
; y
0=
0
:
NUHLLNÜI H L@BN @
e)
< 1
,0
JHLA@ Cuhvhs
l)
@L@ ÎDNL@ H \HLXI @UN@
0 8 05 7 08 , , , 0 y 1 1 1 1 1
@\NKI@WXU@3 D`thdàtnl`s NN
KU@GF3 5gf.
@]UHIGNS@CH\ JXIG@DHIW@BH\3 \nsthd` ghlnd`b y jr`llnfihs hi b` rhlt` iudîrnl`
WNHD]F3 Afr` lb`sh
Gnvngh Gnvn gh b` rhlt rhlt` ` y bfl`bn bfl`bnz` z` bfs bfs snkunhit snkunhiths hs puitfs. puitfs.
g) 0 <
,0
5 ; 5 : , , 5 y < < < <
h) Hi b` snkunhith snkunhith rhlt` rhlt` sh hiluhitr` hiluhitr` puitfs shð`b`gfs shð`b`gfs lfi bhtr`s, bhtr`s, Bbhi` Bbhi` b` t`eb` lfi b` jr`llnüi jr`llnüi lfrrhlt`, lfrrhlt`,
Bhtr` ` e l g
Jr`llnüi
<
5 :
h j k a ZNHUIH\ 4444444444444444444 44444444444444444444444444444444444444444 44444444444444444444444444444444444444444444Uhtrf 4444444444444444444444Uhtrf`bndhit`lnüi `bndhit`lnüi
\HKXIG@ \HD@I@ JHLA@ Buihs
@\NKI@WXU@3 D`thdàtnl`s NN
KU@GF3 5gf.
@]UHIGNS@CH\ JXIG@DHIW@BH\3
\ulhsnfihs gh iódhrfs y jnkur`s
WNHD]F3 Afr` lb`sh
]rfpüsntf Bfs `budifs `prhighrài ` `i`bnz`r sulhsnfihs gh iódhrfs y jnkur`s. Hilfitr`rài b` rhkb` p`r` fethihr ui tîrdnif `rentr`rnf gh b` sulhsnüi. 0
:
NUHLLNÜI H L@BN @
@L@ ÎDNL@ H \HLXI @UN@
]`r` hdphz`r Xi` sulhsnüi hs ui lficuitf gh iódhrfs f jnkur`s lfi b` prfpnhg`g gh quh a`y ui p`trüi quh phrdnth fethihr tfgfs bfs iódhrfs b`s jnkur`s ghb lficuitf, hdphz`igf pfr ui prndhr buk`r gh b` sulhsnüi, buhkf b` quh flup` hb shkuigf, buhkf b` quh flup` hb thrlhrf y `sä sulhsnv`dhith. D`ifs ` b` fer` ¶Hxnsth ui` jfrd` gh s`ehr luàitfs lu`grfs ihkrfs a`y hi b` jnkur` quh flup` hb gîlndf buk`r hi b` shrnh sni lfit`r gh uif hi uif6
@iths gh rhsfbvhr hsth prfebhd`, vh`dfs ftrfs hchdpbfs3 ]`r` lfdpbht`r hst` ftr` sulhsnüi sh ihlhsnt` vhr luàbhs sfi bfs iódhrfs quh flup`i bfs hsp`lnfs v`läfs. =,
View more...
Comments