2- Ctr 11119 - Notes - Structural Steelwork - Lattice Girder Design I - EC3
Short Description
Eurocode3. Lattice girder Design part 1...
Description
M Sc Advanced Structural Engineering M.Sc. Lecture 2 Lattice Girder Design I
Dr. W.M.C. McKenzie
1
Lattice Girders Lattice girders are plane frames with an open-web construction usually having parallel chords and internal web bracing members. They are very useful in long-span long span construction with typical depth:span ratios of about 1/10 to 1/14. The framing of lattice girders should be triangulated with panel lengths equal and positioned to correspond to applied load positions where possible. When loading occurs between panel points secondary framing can be introduced to prevent bending effects in the chord members.
Dr. W.M.C. McKenzie
2
Typical Lattice Girder with Fire-proofing
Figure 2.1 Dr. W.M.C. McKenzie
3
Principal Types and Components of a Lattice Girder Point load between the nodes compression chord
N-Type Girder Figure 2.2 diagonal bracing
tension chord
Uniformly Distributed Load between the nodes compression chord diagonal bracing t i chord h d tension
Warren Girder Figure 2.3
Dr. W.M.C. McKenzie
4
Lattice Girders: Principal Types and Components If there are no applied loads between the nodes, the members of the girder are designed as simple ties or struts as for a typical pin-jointed frame. When applied loads do occur between the nodes there are two techniques which can be used to allow for the additional secondary effects, effects they are: ¡
design for additional secondary axial forces, or
¡
design for additional secondary bending forces.
Dr. W.M.C. McKenzie
5
Lattice Girders: Analysis Consider the two-bay lattice girder supporting a series of purlins as shown.
Figure 2.4 For analysis purposes the lattice girder is considered to be a pin-jointed, plane-frame with a series of point loads. Dr. W.M.C. McKenzie
6
Lattice Girders: Analysis (cont.) P/2
P
P
A
P
B
P/2 C
Secondary Bracing Members AB and BC are subjected to a combined effect caused by the f frame action ti i d i inducing b th primary both i
D
E
F
and secondary axial loads
Figure 2.5 25 P/2
P
P
A
P
B
P/2 C
Secondary Bending M b Members AB and d BC are subjected bj t d to t a combined effect caused by the primary axial loads and a secondary
D
E
Figure 2.6 Dr. W.M.C. McKenzie
F
bending moment due to the mid-span point loads. 7
Lattice Girders: Analysis: Secondary bracing P/2
P P/2
P P/2
A
Figure 2.7
P P/2
P/2 P/2
B
D
C
E
F
1st Stage: Determine the Primary axial loads 2P
P
FBC
FAB FAD
Figure g 2.8 Dr. W.M.C. McKenzie
FAE FDE
P
FBE
FEC
FCF
FEF 8
Lattice Girders: Analysis: Secondary bracing (cont.) P/2 A
P
P
P
P/2 C
B
2nd Stage: Determine the Secondary axial loads Secondary y bracing g to
D
E
transfer the mid-span point
F
loads to the nodes
Figure 2.9 Consider panel length AB P F'AB A
F'AB
B
Forces induced in the members by the
F'AE
F'1
F'2
Figure 2.10 Dr. W.M.C. McKenzie
secondary bracing F'AB , F'AE , F'1 etc. 9
Lattice Girders: Secondary bracing (cont.) 3nd Stage: Combine the results from stages 1 and 2 to obtain the final axial loads in the members A
B
FAB + F'AB F'1 FAE + F'AE
F'1 FCE + F'CE
FBE
FAD
D
F'2
F'2
FAE FDE
C
FBC + F'BC
FCE E
FEF
FCF
F
Figure 2.11
Design Forces = (Primary Axial Loads + Secondary Axial Loads) Dr. W.M.C. McKenzie
10
Lattice Girders: Secondary bracing – Example 2.1
2,0 m
The lattice girder shown supports a series of joists as indicated. Using the data given design suitable section for: (i) the th ttop and db bottom tt chords h d (ii) the main diagonals and uprights, (iii) the secondary bracing. Figure 2.12 2 12
4 Bays @ 55,0 0 m each
Figure 2.13
Design Data: Characteristic permanent load (including self-weight) gk Characteristic variable load qk Spacing of lattice girders Dr. W.M.C. McKenzie
= = =
0,6 kN/m2 0,75 kN/m2 3,5 m 11
Lattice Girders: Example 2.1 - Solution The lattice girder has secondary bracing and the top chord members will be subject j to both primary p y and secondary y axial loads. P
A
F
P
P
B K
P
P
P
C
G
L
P
P/2
D H
M
I
E N
J
2,0 m
P/2
4 Bays @ 5,0 m each VF
VJ
Figure 2.14 Spacing of lattice girders
=
3,5 m
Spacing of joists
=
2,5 m
Dr. W.M.C. McKenzie
12
Lattice Girders: Example 2.1 - Solution (cont.) Determined combination factors: EC 0
UK National Annex Tables NA.A1 and NA.A.1.2(B)
ψ0,imposed = 0,7
(EC: 0,7)
γG,1 = 1,35
(EC: 1,35)
γQ,1 = 1,5
(EC: 1,5)
EC 0
UK National Annex Clause NA.2.2.3.2
ξG,1 = 0,925 0 925 Dr. W.M.C. McKenzie
(EC: 0,85) 0 85) 13
Lattice Girders: Example 2.1 - Solution (cont.) Ultimate limit state: Fundamental Combination - Clause 6.4.3.2 (i.e. excluding accidental and seismic effects) Use the less favourable of Equations (6.10a) & (6.10b) EC 0
UK National Annex
Equation (6.10a)
∑γ j ≥1
G,jGk,j
+ γ Q,1ψ 0,1Qk,1 +
∑γ
Q,iψ 0,iQk,i
i >1
Self-weight of girder Fd = (1,35 × 0,6) = 0,81 kN/m2 Variable action
Fd = (1,5 × 0,7 × 0,75) = 0,79 kN/m2
Total Design load
Fd = (0,81 + 0,79) = 1,6 kN/m2
Dr. W.M.C. McKenzie
14
Lattice Girders: Example 2.1 - Solution (cont.) Equation (6.10b)
∑ξ
G , j γ G,jGk,j
+ γ Q,1Qk,1 +
j ≥1
∑γ
Q,iψ 0,iQk,i
i >1
Self-weight g of ggirder Fd = ((0,925 , × x 1,35 , × 0,6) , ) = 0,75 , kN/m2 Variable action
Fd = (1,5 × 0,75) = 1,13 kN/m2
Total design load
Fd = (0,75 + 1,13) = 1,88 kN/m2 Adopt Equation (6.10b) value: 1,88 kN/m2
Area supported/joist
= (2,5 × 3,5)
Design Load/joist P = (1,88 × 8,75) Total load/girder Dr. W.M.C. McKenzie
= (8 × 16,45) 16 45) = 131,6 131 6 kN
VF = VJ
=
8,75 m2
=
16,45 kN
=
65 8 kN 65,8 15
Lattice Girders: Example 2.1 - Solution (cont.) Distribute the internal point loads to the adjacent nodes using simple statics. 16,45 kN
P/2
P/2
A
F
16,45 kN
16,45 kN
P/2
P/2
B K
16,45 kN
16,45 kN
P/2
16,45 kN
P/2
P/2
C
G
L
16,45 kN
P/2
D H
M
E N
I
8.23 kN
J
2,0 m
8.23 kN
4 Bays @ 5,0 m each
Figure 2.15
16,45 kN
32.9 kN
A
F
32.9 kN
B K
68,5 kN 32.9 kN
C
G
L
16,45 kN
D H
M
I
E N
J
2,00 m
65,8 kN
4 Bays @ 5,0 m each 65,8 kN Dr. W.M.C. McKenzie
Figure 2.16
65,8 kN 16
Lattice Girders: Example 2.1 - Solution (cont.) Determine the Primary Axial Loads in the members – use Method of Sections.
2
A
32 9 kN 32,9
3
B
F
C
2
3
I
Section 1-1
Dr. W.M.C.
32 9 kN 32,9
Section 2-2 2,0 m 65 8 kN 65,8
McKenzie
65,8 kN
16 45 kN 16,45
A
65 8 kN 65,8
J
4 Bays @ 5,0 m each
16 45 kN 16,45
F
E
Figure 2.17
65,8 kN
FFA
16 45 kN 16,45
D H
G 1
32 9 kN 32,9
F
2,0 m
1
32 9 kN 32,9
Section 3-3 A
FAG 65 8 kN 65,8
Figure 2.18
B
F
FBC G
2,0 m
16 45 kN 16,45
FGH
50m 5,0 17
Lattice Girders: Example 2.1 - Solution (cont.) Consider the vertical equilibrium at joint F Σ Fy = 0 F FA
Section 1-1
+ 65,8 + FFA = 0
F
FFA = − 65,8 kN
65 8 kN 65,8
Length of diagonal = 5,385 m Sinθ = (2,0/5,385) = 0,371 Cosθ = (5,0/5,385) = 0,929
Figure 2.19
Section 2-2
16,45 kN
2,,0 m
A
F
65,8 kN
Strut
Use the three equations of statics Σ Fx = 0
θ FAG
Σ Fy = 0
ΣM=0
Σ Fy = 0 + 65,8 – 16,45 – FAG Sinθ = 0 FAG = + (49,35/0,371)
= + 133,0 kN
Tie
Figure 2.20 Dr. W.M.C. McKenzie
18
Lattice Girders: Example 2.1 - Solution (cont.) 32,9 kN
A
B
FBC
Section 3-3 F
Figure 2.21
65,8 kN
H
G
2,0 m
16,45 kN
FGH 5,0 m
5,0 m
Σ M about node B = 0 [+ (65,8 × 5,0) – (16,45 × 5,0) – (FGH × 2,0)] = 0 Σ M about node H = 0
FGH = + 123,4 kN
Tie
[+ (65,8 × 10,0) – (16,45 × 10,0) – (32,9 × 5,0) + (FBC × 2,0)] = 0 FBC = − 164,5 , kN Dr. W.M.C. McKenzie
Strut 19
Lattice Girders: Example 2.1 - Solution (cont.) Determine the Secondary Axial Loads in the members – use Joint Resolution. 16,45 kN B 8 23 kN 8,23
F'BC
F'BH
F'BC F''1
F'2
C 8 23 kN 8,23
Forces induced in the members by the secondary bracing
Figure 2.22 Consider the vertical equilibrium at joint B Σ Fy = 0 + 8,23 − F'BH Sinθ = 0 Σ Fx = 0 − F 'BC + F'BH Cosθ = 0
F'BH = + (8,23/0,371) = 22,2 kN F '2 = 22,2 22 2 kN Tension F'BC = (22,2 0,929) = 20,6 kN F '1 = 16,45 kN
Dr. W.M.C. McKenzie
Tension
Compression
Compression 20
Lattice Girders: Example 2.1 - Solution (cont.) Maximum Primary Axial Loads 16,45 kN
A 65 8 kN 65,8
32,9 kN
32,9 kN
164,5 kN
B
32,9 kN
C
16,45 kN
D
E
133,0 kN F
G
123,4 kN
65,8 kN
H
65,8 kN
16,45 kN
B
Dr. W.M.C. McKenzie
J
Figure 2.23
Secondary Axial Loads
Figure g 2.24
I
20,6 kN
22,2 kN
16,45kN
20,6 kN
C
22,2 kN
21
Lattice Girders: Example 2.1 - Solution (cont.) Design Forces Total Design Force = Primary Force + Secondary Force Top Chord: Total design force = − (164,5 + 20,6) = − 185,1 kN
Compression
Bottom Chord: Total design force = + (123,4 + 0)
= + 123,4 kN
Tension
Diagonal: Total design force = + (133,0 + 22,2) = + 155,2 kN
Tension
Upright: U i h Total design force = − (65,8 + 0)
= − 65,8 kN
Compression
Secondary Strut: Total design force = − (16,45)
= − 16,45 kN
Compression
Secondary Tie: Total design force = + (22,2)
= + 22,2 kN
Tension
Dr. W.M.C. McKenzie
22
Lattice Girders: Example 2.1 - Solution (cont.) Design the members in accordance with EC3 (All S 275 steel) Top Chord: Effective buckling lengths lzz = lyy = 2,5 m 2/80 x 60 x 7 unequal angles, long legs back-to-back to both sides of a gusset plate with an 8 mm space. Two or more bolts in line at each end. Bottom otto C Chord: o d: 2/50 x 50 x 6 equal angles back-to-back to both sides of a gusset plate with an 8 mm space. One 14 mm diameter hole deducted each angle. Diagonal: 1/75 x 75 x 8 equal angle connected to a gusset plate. 18 mm diameter holes with at least three bolts in line. Upright: Effecti e buckling Effective b ckling lengths lzz = lyy = 2,0 20m 1/80 x 60 x 7 unequal angle, long leg connected to a gusset plate with two or more bolts in line at each end. Secondary Strut: Effective ff i buckling b kli lengths l h lzz = lyy = 1,0 m 50 x 50 x 6 equal angle. Two or more bolts in line at each end. Secondary y Tie: 50 x 50 x 6 equal angle. One 14 mm diameter hole deducted from each angle. Dr. W.M.C. McKenzie
23
Lattice Girders: Example 2.1 - Solution (cont.) Material properties and partial factors γM Assume all material to be non-alloy y structural steel ggrade EN 10024-2 S 275 EC3-1-1
Table 3.1
t = 6 mm < 40 mm
fy = 275 MPa fu = 430 MPa
(Note: In UK National Annex use EN 10025: Table 7 i.e. t ≤ 16 mm) EC3-1-1
Section Properties
EC3-1-1
γM0 = 1,0 γM1 = 1,0 γM2 = 1,25 1 25
Clause 6.1(1)
SPT
Clause 6.2.2.(2) ( )
Dr. W.M.C. McKenzie
Section Property Tables Anet = Agross – deductions for bolt holes 24
Lattice Girders: Example 2.1 - Solution (cont.) Bottom Chord: 2/50 x 50 x 6 equal angles, legs back-to-back to both sides of a gusset plate with an 8 mm space. M16 non-preloaded bolts in line at each end. (123,4 kN - Tension) Gross area – Ag = 11,4 cm2 SPT EC3-1-1
EC3-1-1
EC3-1-1
EC3-1-1
N u,Rd =
Clause 6.2.3 Equation 6.5 Equation 6.6
N Ed ≤ 1,0 N t,Rd ,
N pl,Rd =
Af y
γ M0
=
1140 × 275 1,0 × 10
3
= 313,5 kN
Equation 6.7 0,9 Anet f u
γ M2
Nt,Rd = 286,1 kN Dr. W.M.C. McKenzie
=
0,9 × [1140 − (2 × 18 × 6)] × 430 3
1,25 × 10 123 4 123,4 = 0,43 ≤ 1,0 286,1
= 286,1 kN
Bottom chord is adequate 25
Lattice Girders: Example 2.1 - Solution (cont.) Diagonals: 1/75 x 75 x 8 equal angle, connected to a gusset plate with M16 non preloaded bolts in line at each end. non-preloaded end (155,2 (155 2 kN - Tension) Gross area: Ag = 11,4 cm2
SPT
EC3-1-1
EC3-1-8
Equation 6.6
EC3-1-1
N pl,Rd =
Af y
γ M00
Equation 6.5
=
1140 × 275 1,0 , × 10
3
N Ed ≤ 1,0 N t,Rd
= 313,5 kN
Table 3.3/Figure g 3.9
Edge distance e2 ≥ 1,2d0 = (1,2 × 16) = 19,2 mm Dr. W.M.C. McKenzie
Assume e2 = 20,0 mm 26
Lattice Girders: Example 2.1 - Solution (cont.)
EC3-1-8
EC3-1-8
N u,Rd
Clause 3 3.10.3/Equation 10 3/Equation 3.13 3 13
Table 3.8
N u,Rd u Rd =
Assume the pitch = 2,5d0
β 3 Anet f u γ M2
β3 = 0,5cm2
β 3 Anet f u 0,5 × ⎡⎣1140 − (18 × 6 )⎤⎦ × 430 = = = 177,5 177 5 kN 3 γ M2 1,25 × 10
Nt,Rd = 177,5 kN
Dr. W.M.C. McKenzie
155,22 155 = 0,87 ≤ 1,0 177,5
Diagonals are adequate
27
Lattice Girders: Example 2.1 - Solution (cont.) Secondary ties: 1/50 x 50 x 6 equal angle, connected to a gusset plate with one M16 non-preloaded non preloaded bolt at each end. end (22,2 (22 2 kN - Tension) Gross area: Ag = 5,69 cm2
SPT
EC3-1-1
EC3-1-8
Equation 6.6
EC3 1 1 EC3-1-1
N pl,Rd =
Af y
γ M0
E Equation ti 6.5 65
=
569 × 275 , × 10 1,0
3
N Ed ≤ 1,0 10 N t,Rd
= 156,5 kN
Table 3.3/Figure 3 3/Figure 3.9 39
Edge g distance e2 ≥ 1,2d , 0 = ((1,2 , × 16)) = 19,2 , mm Dr. W.M.C. McKenzie
Assume e2 = 20,0 mm 28
Lattice Girders: Example 2.1 - Solution (cont.) EC3-1-8
N u,Rd =
Clause 3.10.3/Equation q 3.13
2,0 ( e2 − 0,5d 0 ) tf u
Nt,Rd 53 7 kN t Rd = 53,7
Dr. W.M.C. McKenzie
γ M2
=
N u,Rd =
2,0 ( e2 − 0,5d 0 ) tf u
2,0 ⎡⎣ 20,0 − ( 0,5 × 14 )⎤⎦ × 6 × 430 3
1,25 × 10
22,2 = 0,41 ≤ 1,0 53,7
γ M2
= 53,7 kN
Secondary ties are adequate
29
Lattice Girders: Example 2.1 - Solution (cont.) Upright: 1/80 x 60 x 7 unequal angle with long-leg connected to a gusset plate with two or more bolts in line at each end. (65,8 kN - Compression) Gross area: Ag = 9,38 cm2; i = 1,28 cm
SPT
EC3-1-1
Clause 3.2.6
E = 210000 MPa
Check Section Classification EC3-1-1 EC3 11
EC3-1-1
EC3-1-1
Clause 5.5.2
Table 3.1 31
ε = (235/275)0,5, = 0,92 0 92 mm
Table 5.2
h 80 = = 11,4 11 4 t 7
b + h 80 + 60 = = 10,0 10 0 2t 2×7 Dr. W.M.C. McKenzie
≤ 15ε = (15 × 0,92 0 92 ) = 13,8 13 8
≤ 11,5 11 5ε = (11,5 11 5 × 0,92 0 92 ) = 10,58 10 58
The Section is Class 3 30
Lattice Girders: Example 2.1 - Solution (cont.) Compression Resistance of Cross-section – Nc,Rd EC3-1-1
EC3-1-1
N Ed ≤ 1,0 N c,Rd
Clause 6.2.4/Equation 6.9
Equation 6.10
N c,Rd =
Af y
γ M0
=
938 × 275 1,0 × 10
3
= 257,9 kN
Resistance to Flexural Buckling – Nb,Rd EC3-1-1
EC3-1-1
Clause 6.3.1.1/Equation 6.46
Equation 6.47
Dr. W.M.C. McKenzie
N b,Rd =
N Ed ≤ 1,0 N b,Rd
χ Af y γ M1 31
Lattice Girders: Example 2.1 - Solution (cont.) Buckling Curves
χ=
1 2
Φ+ Φ −λ
EC3-1-1
2
Clause 6.3.1.2/Equation 6.49
but χ ≤ 1,0
(
where λv is as defined in Clause 6.3.1.2/3
Clause 6.3.1.2/3
λv =
For Class 1,2 and 3 cross-sections λv =
λ1 = π
210000 = 86,81 275
Dr. W.M.C. McKenzie
)
where Φ = 0,5 ⎡1+α λ − 0,2 + λ 2 ⎤ ⎣ ⎦
Annex BB/Clause BB.1.2/Equation BB.1
λeff = 0,35 + 0,7λv EC3-1-1
EC3-1-1
λv =
Af y N cr
Af y N cr
where N cr =
=
π 2 EI L2cr
Lcr where λ1 = π iλ1
E fy
Lcr 2000 = = 1,8 18 iλ1 12,8 × 86,81 32
Lattice Girders: Example 2.1 - Solution (cont.) EC3-1-1
Annex BB/Clause BB.1.2/Equation BB.1
λeff = 0,35 + 0,7λv = [0,35 + (0,7 × 1,8)] = 1,61 Select the appropriate pp p buckling g curve from Table 6.2 EC3-1-1
Table 6.2
Use buckling curve b
Determine the imperfection factor from Table 6.1 EC3-1-1
Table 6.1
(
)
α = 0,34
Φ = 0,5 ⎡1+α λ − 0,2 + λ 2 ⎤ = 0,5 ⎡1 + 0,34 (1,61 − 0,2 ) + 1,612 ⎤ ⎣ ⎦ ⎣ ⎦ 1 1 = χ= = 0,3 03 2 2 2 2 2,04 + 2,04 − 1,61 Φ+ Φ −λ Dr. W.M.C. McKenzie
= 2,04
33
Lattice Girders: Example 2.1 - Solution (cont.) EC3-1-1
Clause 6.3.1.1/Equation 6.46
EC3-1-1
Equation 6.47
N b,Rd =
χ Af y γ M1
=
0,3 × 938 × 275 3
1 0 × 10 1,0
N Ed 65,8 = = 0,85 ≤ 1,0 N b,Rd 77 77,39 39
N Ed ≤ 1,0 N b,Rd ,
= 77,39 kN
Uprights are adequate
Note: The value for χ could have been determined from Figure 6.4 using the value , as indicated in Clause 6.3.1.2(3). ( ) of the non-dimensional slenderness = 1,61 Dr. W.M.C. McKenzie
34
Lattice Girders: Example 2.1 - Solution (cont.) Secondary strut: 1/50 x 50 x 6 equal angle, connected to a gusset plate with two or more bolts in line at each end. (16,45 kN - Compression) Gross area: Ag = 5,69 cm2; i = 0,968 cm
SPT
EC3-1-1
Clause 3.2.6
E = 210,000 MPa
Check Section Classification EC3-1-1 EC3 11
Table 3.1 31
EC3 1 1 EC3-1-1
Table 5.2
b + h 50 + 50 = = 8,3 83 2t 2×6 Dr. W.M.C. McKenzie
ε = (235/275)0,5, = 0,92 0 92 mm h 50 = = 8,3 83 t 6
≤ 15ε = (15 × 0,92 0 92 ) = 13,8 13 8
≤ 11,5 11 5ε = (11,5 11 5 × 0,92 0 92 ) = 10,58 10 58
The Section is Class 3 35
Lattice Girders: Example 2.1 - Solution (cont.) Compression Resistance of Cross-section – Nc,Rd EC3-1-1
EC3-1-1
N Ed ≤ 1,0 N c,Rd
Clause 6.2.4/Equation 6.9
Equation 6.10
N c,Rd =
Af y
γ M0
=
569 × 275 1,0 × 10
3
= 156,5 kN
Resistance to Flexural Buckling – Nb,Rd EC3-1-1
EC3-1-1
Clause 6.3.1.1/Equation 6.46
Equation 6.47
Dr. W.M.C. McKenzie
N b,Rd =
N Ed ≤ 1,0 N b,Rd
χ Af y γ M1 36
Lattice Girders: Example 2.1 - Solution (cont.) Buckling Curves
χ=
1 2
Φ+ Φ −λ
EC3-1-1
but χ ≤ 1,0
(
)
where Φ = 0,5 ⎡1+α λ − 0,2 + λ 2 ⎤ ⎣ ⎦
where λv is as defined in Clause 6.3.1.2
Clause 6.3.1.2
λv =
For Class 1,2 and 3 cross-sections
λ1 = π
Clause 6.3.1.2/Equation 6.49
Annex BB/Clause BB.1.2/Equation BB.1
λeff = 0,35 + 0,7λv EC3-1-1
2
EC3-1-1
210000 = 86,81 86 81 275
Dr. W.M.C. McKenzie
Af y N cr
λv =
λv =
where N cr =
Af y N cr
=
π 2 EI L2cr
Lcr where λ1 = π iλ1
E fy
Lcr 1000 = = 1,2 12 iλ1 9,68 × 86,81 37
Lattice Girders: Example 2.1 - Solution (cont.) EC3-1-1
Annex BB/Clause BB.1.2/Equation BB.1
λeff = 0,35 + 0,7λv = [0,35 + (0,7 × 1,2)] = 1,19 Select the appropriate buckling curve from Table 6.2 62 EC3-1-1
Table 6.2
Use buckling curve b
Determine the imperfection factor from Table 6.1 EC3-1-1
Table 6.1
(
)
α = 0,34
Φ = 0,5 ⎡1+α λ − 0,2 + λ 2 ⎤ = 0,5 ⎡1 + 0,34 (1,19 − 0,2 ) + 1,192 ⎤ ⎣ ⎦ ⎣ ⎦ 1 1 χ= = = 0,48 0 48 2 2 2 2 Φ+ Φ −λ 1,38 + 1,38 − 1,19 Dr. W.M.C. McKenzie
= 1,38
38
Lattice Girders: Example 2.1 - Solution (cont.) EC3-1-1
Clause 6.3.1.1/Equation 6.46
EC3-1-1
Equation 6.47
N b,Rd =
χ Af y γ M1
=
0,48 × 569 × 275 3
1 0 × 10 1,0
N Ed 22,2 = = 0,3 ≤ 1,0 N b,Rd 75,1 75 1 b Rd
N Ed ≤ 1,0 N b,Rd ,
= 75,1 kN
Secondary y struts are adequate q
Note: As in the case of the uprights, the value for χ could have been determined from Figure 6.4 using the value of the non-dimensional slenderness = 1,61 as indicated in Clause 6.3.1.2(3). Dr. W.M.C. McKenzie
39
Lattice Girders: Example 2.1 - Solution (cont.) Top chord: 2/80 x 60 x 7 unequal angle with long-leg connected to a gusset plate with two or more bolts in line at each end. (185,1 kN - Compression) z Packing plates 8 mm thick
y
y
Figure 2.25 z Section properties: SPT
Ag = 18,8
iyy,two angles = 2,51 cm ivv, one angle = 1,28 1 28 cm Dr. W.M.C.
z
u
cm2;
izz,two angles = 2,59 2 59 cm
McKenzie
v
y
y u
z
v 40
Lattice Girders: Example 2.1 - Solution (cont.) Check Section Classification
EC3-1-1
Clause 3.2.6
E = 210,000 MPa
EC3-1-1
Table 3.1
ε = (235/275)0,5 = 0,92 mm
EC3-1-1
Table 5.2 52
h 80 = = 11,4 11 4 t 7
b + h 80 + 60 = = 10,0 10 0 2t 2×7
≤ 15ε = (15 × 0,92 0 92 ) = 13,8 13 8
≤ 11,5 11 5ε = (11,5 11 5 × 0,92 0 92 ) = 10,58 10 58
The Section is Class 3 Dr. W.M.C. McKenzie
41
Lattice Girders: Example 2.1 - Solution (cont.) Compression Resistance of Cross-section – Nc,Rd EC3-1-1
EC3-1-1
N Ed ≤ 1,0 N c,Rd
Clause 6.2.4/Equation 6.9
Equation 6.10
N c,Rd =
Af y
γ M0
=
1880 × 275 1 0 × 10 1,0
3
= 517,0 kN
Resistance to Flexural Buckling – Nb,Rd EC3-1-1
EC3-1-1
Clause 6.3.1.1/Equation 6.46
Equation q 6.47
Dr. W.M.C. McKenzie
N b,Rd =
N Ed ≤ 1,0 N b,Rd
χ Af y γ M1 42
Lattice Girders: Example 2.1 - Solution (cont.) Closely Spaced Built-up Members EC3-1-1
Clause 6.4.4/Figure 6.12/Table 6.9
M i Maximum spacing i between b t interconnections i t ti is i given i by b in i Table T bl 6.9 69
EC3-1-1
Table 6.9
Maximum spacing = 15imin,single angle
15imin = (15 ×12,8) = 192,0 mm ? mm ? mm ? mm ? mm
Figure 2.26
? mm ? mm
Dr. W.M.C. McKenzie
43
Lattice Girders: Example 2.1 - Solution (cont.) Buckling Curves
χ=
1 2
Φ+ Φ −λ
EC3-1-1
2
EC3-1-1
but χ ≤ 1,0
Clause 6.3.1.2/Equation 6.46
(
)
where Φ = 0,5 ⎡1+α λ − 0,2 + λ 2 ⎤ ⎣ ⎦
Annex BB/Clause BB.1.1
Out-of-plane Out of plane buckling length Lcr is normally taken as the system length. length In this case assume restraint is provided by joists, i.e. Lcr = 2.5 m EC3-1-1
Clause 6.3.1.2
λv =
For Class 1,2 1 2 and 3 cross cross-sections sections
λv =
210000 λ1 = π = 86,81 86 81 275
λv =
Dr. W.M.C. McKenzie
Af y N cr Af y N cr
where N cr = =
π 2 EI L2cr
Lcr where h λ1 = π iλ1
E fy
Lcr 2500 = = 1,15 1 15 iλ1 25,1 × 86,81 44
Lattice Girders: Example 2.1 - Solution (cont.) Select the appropriate buckling curve from Table 6.2 EC3-1-1
Use buckling curve c for a T-section
Table 6.2
Determine the imperfection factor from Table 6.1 EC3-1-1
α = 0,49
Table 6.1
(
)
Φ = 0,5 ⎡1+α λ − 0,2 + λ 2 ⎤ = 0,5 ⎡1 + 0,49 (1,15 − 0,2 ) + 1,152 ⎤ ⎣ ⎦ ⎣ ⎦
χ=
1 2
Φ+ Φ −λ
Dr. W.M.C. McKenzie
2
=
1 2
2
1 39 + 11,39 1,39 39 − 11,15 15
= 1,39
= 0,46
45
Lattice Girders: Example 2.1 - Solution (cont.) EC3-1-1
Clause 6.3.1.1/Equation 6.46
EC3-1-1
Equation 6.47 6 47
N b,Rd b Rd =
χ Af y γ M1
=
0,46 × 1880 × 275 3
1,0 × 10
N Ed 185,1 = = 0,78 0 78 ≤ 1,0 10 N b,Rd 237,8
N Ed ≤ 1,0 N b,Rd b Rd
= 237,8 , kN
Top Chord is adequate
Note: The value for χ could have been determined from Figure 6.4 using the value of , as indicated in Clause 6.3.1.2(3). ( ) the non-dimensional slenderness = 1,15 Dr. W.M.C. McKenzie
46
THE END FIN DAS ENDE Tο Tέλοs KONIEC
Dr. W.M.C. McKenzie
完
SAMAPT
47
View more...
Comments