(1)CURVE BEAM.xls

August 23, 2018 | Author: Keat Leong | Category: N/A
Share Embed Donate


Short Description

Curve Beam...

Description

RC BEAM DESIGN b=hmin= 300 h=hmax= 600 (1) FLEXURAL MOMENT: *M(kn-m)= 334 (s.f) R= 3.68 As singly= 1813

*dmin=

(mm2) Asnom= (mm2) BR= 20 MF= 1.10 L/BR*MF 182

0.30

30 460 fyv= 460 No.of Bar Bar Dia  As prod.(mm2) 6 25 2945 O.K

234 L(m)=

4

=< d ? O.K

(2) FLEXURAL SHEAR: V(kn)= 67 vact(n/mm2)= 0.41 As/Svact=

fcu= fy=

d= 550

b= vc= Bar Type R

END

300 0.81 Bar Dia

d=

550

Space c/c A/s prod. 6 200 0.28  A/sprod.>=As/Sv act? N.O.K

As= 2945 Fcu=

30

RC BEAM DESIGN b=hmin= 300 h=hmax= 600 (1) FLEXURAL MOMENT: *M(kn-m)= 420 (s.f) R= 4.63 As singly= 1813

*dmin=

(mm2) Asnom= (mm2) BR= 20 MF= 1.00 L/BR*MF 200

0.30

30 460 fyv= 460 No.of Bar Bar Dia  As prod.(mm2) 6 25 2945 O.K

234 L(m)=

4

=< d ? O.K

(2) FLEXURAL SHEAR: V(kn)= 67 vact(n/mm2)= 0.41 As/Svact=

fcu= fy=

d= 550

b= vc= Bar Type R

END

300 0.81 Bar Dia

d=

550

Space c/c A/s prod. 6 200 0.28  A/sprod.>=As/Sv act? N.O.K

As= 2945 Fcu=

30

TORSIONAL BEAM DESIGN b=hmin= h=hmax=

230 600

x1= y1=

170 540 fcu= fy=

(1) FLEXURAL MOMENT: *M(kn-m)=

71 (s.f)

R=

25 460 No.of Bar

1.02 As singly=

fyv= Bar Dia

338

2

460 As prod.(mm2)

16

402 O.K

(mm2/m) Asnom= (mm2/m) BR= 20 MF= 1.57 L/BR*MF 127

*dmin=

179 L(m)=

4

=< d ? O.K

d= 550

(2) FLEXURAL SHEAR: V(kn)=

94

vact(n/mm2)=

0.74

As/Svact=

0.23

Bar Type

b=

230

vc=

0.43 Bar Dia

d=

10

100

A/sprod.>=As/Sv act? R= 1.02 v= 0.74

2) T(kn-m)= 34.54 vt = 2t/hmin^2(hmax-hmin/3)= 3)

As=

402 Fcu=

Space c/c A/s prod.

T (3) TORSIONAL DESIGN: 1) m= 71 V= 94

550

1.57 O.K

As= 338 A/s= 0.23

2.50

n/mm2

ultimate torsion shear stresses (n/mm2) gr.25 gr.30 gr.40 or more vtmin 0.33 0.37 0.40 vtu 4.00 4.38 5.00 vtmin= 0.33 vt > vtmin ?  Yes! Torsional reinf. Is required !

4) (a) v + vt=

3.24

(b) y1=

540 vt=

=< ? O.K =< 550 ? 2.50

vtu=

4.00

Yes! Check vt =< (vtu.y1/550)? =< (vtu.y1/550)? vtu.y1/550= O.K

5) A/s.add=T/0.8*x1*y1*(0.87*fyv)=

1.18

Bar Type

TOTAL A/S=

1.18

T

0.23 + =

1.41

6) As.add=(A/s.add)*(fyv/fy)*(x1+y1)= TOTAL As,req=

338 + =

3.93

Bar Dia

Space c/c A/s prod. 10

100

1.57

A/sprod.>=As/Sv act? OK 834 834

1173

No.of Bar Bar Dia 2

16

402

MID

2

16

402

2

16

402

BOT TOT. AS=

END

As prod.(mm2)

TOP

1206 As.prod.>=As.req?

O.K

25

CURVED BEAM DESIGN (Uniform Load) The analysis b= h= r= length= @= w=

300 600 20 8.38 12 0.20944 35

mm mm m m deg rad kn/m(s.f.)

@ @ cl curve beam

h/b= k=

2 9.72

(1) k4=

0.007

+Mmax @ mid span=

(2) k5=

-0.02

-Mmax @ support=

97

kn-m(s.f.)

-211

kn-m(s.f.)

@ point of contraflexure, phi1= (3) k7= 0.001

0.12 +Tmax @ contra pt.=

8

kn-m(s.f.)

(4) k6=

-Tmax @ support=

-1

kn-m(s.f.)

-8.5E-05

The design b=hmin= h=hmax=

300 600

x1= y1=

240 540 fcu= fy=

(1) FLEXURAL MOMENT: *M(kn-m)=

211 (s.f)

R=

2.32 As singly=

30 460 No.of Bar

fyv= Bar Dia

1059

460 As prod.(mm2)

3

25

1473 O.K!

(mm2/m) Asnom= (mm2/m) BR= 26 MF= 1.25 L/BR*MF= 123

*dmin=

234 L(m)=

4

=< d ? O.K!

d= 550

(2) FLEXURAL SHEAR: V(kn)=

147

vact(n/mm2)=

0.89

As/Svact=

0.30

(s.f)

Bar Type

b=

300

vc=

0.65 Bar Dia

d=

Space c/c

T

10

R= 2.32 v= 0.89

2) T(kn-m)= 8 vt = 2t/hmin^2(hmax-hmin/3)= 3)

As= 1473 cu=

A/s prod.

180

A/sprod.>=As/Sv act? (3) TORSIONAL DESIGN: 1) m= 211 V= 147

550

0.87 O.K!

As= 1059 A/s= 0.30

0.34

n/mm2

ultimate torsion shear stresses (n/mm2) gr.25 gr.30 gr.40 or more vtmin 0.33 0.37 0.40 vtu 4.00 4.38 5.00 vtmin= 0.37 vt > vtmin ? No! Torsional reinf. Is NOT required !

4) (a) v + vt=

1.23

(b) y1=

540 vt=

=< ? O.K! =< 550 ? 0.34

vtu=

4.38

Yes! Check vt =< (vtu.y1/550)? =< (vtu.y1/550)? vtu.y1/550= O.K!

5) A/s.add=T/0.8*x1*y1*(0.87*fyv)=

0.18

Bar Type

Total A/S=

0.18

T

0.30 + =

0.48

6) As.add=(A/s.add)*(fyv/fy)*(x1+y1)= Total Asreq= =

1059 +

4.30

Bar Dia

Space c/ A/s prod. 10

180

0.87

A/sprod.>=As/Sv act? OK! 143 143

1202

No.of Bar

Bar Dia

As prod.(mm2)

TOP

3

25

1473

MID

2

25

982

BOT

3

25

1473

TOT. AS= 3927 As.prod>=As.req? Note: Clear distance between bars should  not exceed 300mm.

END

O.K!

30

CURVED BEAM DESIGN (Uniform & Point Load) The analysis (Uniform Load) b= 300 mm h= 600 mm r= 5 m length= 7.85 m @= 45 deg 0.785398 rad w= 18.3 kn/m(s.f.)

left hand P @ @ right hand cl phio

h/b= k=

curve beam

2 9.72

(1) k4=

0.075

+Mmax @ mid span=

(2) k5=

-0.24

-Mmax @ support=

@ point of contraflexure, phi1= (3) k7= 0.019

0.38 +Tmax @ contra pt.=

(4) k6=

-Tmax @ support=

-0.02522

34

kn-m(s.f.)

34

-110

kn-m(s.f.)

110 

9

kn-m(s.f.)

9

-12

kn-m(s.f.)

12 

(Uni.load) Along curve Mmax= 110 Tmax= 12 Vmax= 72 The analysis (Point Load) P= 263 phio= 0 @= 45 r= 5 k= 9.72

kn(s.f.) deg deg m

0.0000 0.7854

K1= K2= K3=

0.164 0.0000 0.500

rad rad

k1= k2= k3= k4= k5= k6= k7= k8=

0.6669 4.0595 0.4833 12.78 0.9667 0.2776 0.9667 0.5553

At Mid-span:

Mo= To= Vo=

216 0 132

kn-m kn-m kn

216  0  132 

At left supp:

@ phi= M= T= V=

45 -312 -40 -132

deg kn-m kn-m kn

312  40  132 

@ phi= M= T= V=

-45 -312 40 132

deg kn-m kn-m kn

At right sup:

312  40  132 

sin phio= sin 2 phio= cos phio= sin^2 phio= sin @= sin 2 @= cos @= sin^2 @=

beam: kn-m kn-m kn

0.00   0.00   1.00   0.00   0.71 1.00   0.71 0.5  

(Pt.load) Along curve beam: Mmax= 312 kn-m Tmax= 40 kn-m Vmax= 132 kn

The design (Uni. & Pt.load) Along curve beam: M total= 422 kn-m T total= 51 kn-m V total= 203 kn b=hmin= h=hmax=

300 600

x1= y1=

240 540 fcu= fy=

(1) FLEXURAL MOMENT: *M(kn-m)=

422 (s.f)

R=

30 460 No.of Bar

4.65 As singly=

fyv= Bar Dia

2461

460 As prod.(mm2)

6

25

2945 O.K!

(mm2/m) Asnom= (mm2/m) BR= 26 MF= 0.91 L/BR*MF= 170

*dmin=

234 L(m)=

4

=< d ? O.K!

d= 550

(2) FLEXURAL SHEAR: V(kn)=

203

(s.f)

vact(n/mm2)= 1.23 As/Svact=

0.31

Bar Type

b=

300

vc=

0.81 Bar Dia

d=

Space c/c

T

10

R= 4.65 v= 1.23

2) T(kn-m)= 51 vt = 2t/hmin^2(hmax-hmin/3)= 3)

As= 2945 cu=

A/s prod.

100

A/sprod.>=As/Sv act? (3) TORSIONAL DESIGN: 1) m= 422 V= 203

550

1.57 O.K!

As= 2461 A/s= 0.31

2.28

n/mm2

ultimate torsion shear stresses (n/mm2) gr.25 gr.30 gr.40 or more vtmin 0.33 0.37 0.40 vtu 4.00 4.38 5.00 vtmin= 0.37 vt > vtmin ?  Yes! Torsional reinf. Is required !

4) (a) v + vt=

3.51

(b) y1=

540 vt=

=< ? O.K! =< 550 ? 2.28

vtu=

4.38

Yes! Check vt =< (vtu.y1/550)? =< (vtu.y1/550)? vtu.y1/550= O.K!

5) A/s.add=T/0.8*x1*y1*(0.87*fyv)=

1.24

Bar Type

Total A/S=

1.24

T

0.31 + =

1.55

6) As.add=(A/s.add)*(fyv/fy)*(x1+y1)= Total Asreq= =

2461 + 3426

4.30

Bar Dia

Space c/ A/s prod. 10

100

1.57

A/sprod.>=As/Sv act? OK! 965 965

No.of Bar

Bar Dia

As prod.(mm2)

TOP

6

25

MID

2

25

2945 982

BOT

6

25

2945

TOT. AS= 6872 As.prod>=As.req? Note: Clear distance between bars should  not exceed 300mm.

O.K!

30

END

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF