18. How to Improve Forecast Accuracy With SAP APO Demand Planning 26125209

February 13, 2018 | Author: Damodhar Reddy Chilukuri | Category: Forecasting, Linear Trend Estimation, Regression Analysis, Errors And Residuals, Mean Squared Error
Share Embed Donate


Short Description

Download 18. How to Improve Forecast Accuracy With SAP APO Demand Planning 26125209...

Description

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ © SAP 2007-2008 / 0

How to Improve Forecast Accuracy with SAP APO Demand Planning

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Dr. Gerald Heisig SAP AG

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________

In This Session, You’ll Get An Overview About ... „ „

SAP APO Demand Planning (DP) basic architecture Key DP features „ „ „ „

„ „

Promotion Planning Lifecycle Management Seasonal Planning Etc.

The broad range of statistical forecasting methods in DP and guidelines for selecting the right method Integration of DP into other SAP solutions and SAP APO modules

© SAP 2007-2008 / 2

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

What We’ll Cover …

_________________________________ _________________________________ _________________________________

Introduction to Demand Planning Understanding the basic structures and architecture Tapping into Demand Planning features Looking at different forecasting techniques Demonstration: Demand Planning Wrap-up

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 3

Pain Points in Demand Planning

_________________________________ _________________________________ _________________________________ _________________________________

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Actual

15

16

17

18

19

20

21

22

23

24

Planned

_________________________________

8 Differences in planned demand and actual sales 8 Incorporation of all necessary demand information like promotions, product lifecycles, or other events in your demand plan

8 Demand visibility and consistency across all your

_________________________________ _________________________________ _________________________________ _________________________________

departments and users

8 Sophisticated statistical forecasting

_________________________________

© SAP 2007-2008 / 4

Implications for Your Demand Management

_________________________________ _________________________________ _________________________________

1

2

3

4

5

6

7

8

9

10

11

12

Actual

13

14

15

16

17

18

19

20

21

22

23

24

_________________________________

Pla nned

_________________________________

8 Bad forecast quality 8 Incomplete and inaccurate demand 8 High number of stock outs 8 High inventory levels 8 Slow response to changing market 8 Lack of information for right planning decisions

© SAP 2007-2008 / 5

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________

SAP APO Demand Planning (DP) Calculates future demand as accurate as possible Features

Key Benefits

„ Comprehensive forecasting toolset

„ Improved forecast quality

„ Statistical forecasting with causal and time-series methods

„ One tool for power and business user

„ Automatic outlier detection available

„ Consolidated demand plan (different regions, countries, departments, … )

„ Highly configurable planning books with macro functionality „ Supporting aggregation/ disaggregation logic

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

„ Lifecycle Planning

_________________________________

„ Plan promotions separately from the rest of your forecast

_________________________________

„ Offline Planning „ Seasonal Planning

_________________________________

„ Collaborative Demand Planning © SAP 2007-2008 / 6

DP Interactive Planning

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 7

What We’ll Cover …

_________________________________ _________________________________ _________________________________

Introduction to Demand Planning Understanding the basic structures and architecture Tapping into Demand Planning features Looking at different forecasting techniques Demonstration: Demand Planning Wrap-up

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 8

Integration Between SAP SCM and SAP NetWeaver Business Intelligence (SAP NetWeaver BI)

_________________________________

SAP SCM

_________________________________ _________________________________

External SAP BI

With internal SAP BI

_________________________________ Forecasting results

Central data store for reporting and analyzing

InfoCube

APO Demand Planning

POS data Cost information Order and shipping data

Demand History

Demand History

Demand History InfoCube

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Source systems include: SAP ERP Excel Non-SAP systems

_________________________________

© SAP 2007-2008 / 9

Data in SAP Supply Chain Management (SAP SCM) SAP ERP

_________________________________ _________________________________

SAP SCM

_________________________________

Transactional Data

SAP BI extraction structures

SAP BI

_________________________________ DP master Data: CVCs

Master Data ATP

_________________________________

DP

LC Transactional Data

CIF

Master Data

„ „ „ „

_________________________________ SNP

PP/DS

_________________________________

_________________________________ _________________________________

Location Product Resource PPM/PDS

_________________________________

ATP = Available-to-Promise, SAP BI = SAP NetWeaver BI, CVCs = Characteristic Value Combinations, CIF = Core Interface, DP = Demand Planning, LC = liveCache, SNP = Supply Network Planning, PP/DS = Production Planning and Detailed Scheduling, PPM = Production Process Model, PDS /=10Product Data Structure © SAP 2007-2008

Demand Planning Master Data: Characteristic Value Combinations Characteristics

Characteristic values

„ „

Product

„ „

Prod01 Prod02 Prod03

„

„

Location

Customer

„ „ „ „ „

© SAP 2007-2008 / 11

DC01 DC02 DC03 Cust01 Cust02 Cust03

_________________________________

Characteristic value combinations (CVCs)

_________________________________ _________________________________

„ „ „ „

„

_________________________________

„ „ „

Prod01, DC01, Cust01 Prod01, DC01, Cust02 Prod01, DC01, Cust03 Prod01, DC02, Cust01 Prod01, DC03, Cust02 Prod01, DC03, Cust03 …

_________________________________ _________________________________ _________________________________ Planning Object Structure

_________________________________ _________________________________ _________________________________

Planning Object Structure and Planning Area „ „ „

„

_________________________________

The planning object structure is an APO InfoCube saved in the database of the internal SAP NetWeaver® BI system The characteristic value combinations can be created automatically Optionally, for better performance you can create additional aggregates The planning object structure with the relevant characteristic value combinations (DP master data) is assigned to a planning area

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 12

Planning Area A planning area is the central data structure for saving planning data for Demand Planning and Supply Network Planning „

„

Characteristics and key figures and their functions for planning are determined here It groups together the central parameters that define the scope of the planning activities „

It also determines whether planning results are to be saved as orders or time series

_________________________________ _________________________________ Interactive Planning

_________________________________ _________________________________

Planning book

Characteristics

_________________________________

Key figures

_________________________________ _________________________________

Planning area

_________________________________ _________________________________

Characteristics

Key figures

Planning version

_________________________________

© SAP 2007-2008 / 13

Planning Book „

„

„

„

„

A planning book is based on information or a subgroup of Sales Manager Sales Rep Data View information from a planning area Data View In the planning book, select the Key figures Key figures characteristics and key figures required for the demand planner’s individual tasks Planning book Each planning book can contain several views where you can store key figures for detailed analyses Characteristics Key figures and planning tasks In each view you must also Planning area determine the planning horizon and time buckets profile Planning A planning area can have more Characteristics Key figures version than one planning book, but a planning book can be linked to only one planning area

© SAP 2007-2008 / 14

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

SAP NetWeaver BI and Demand Planning Reporting Reporting for Demand Planner and Sales Reps Regional Forecast Reporting

Planned Actual Deviation

_________________________________ _________________________________ _________________________________ _________________________________

Top 10 Deviations Planned/Actual

Forecast Accuracy

_________________________________ SAP APO

D M I

Historical

Demand Planning

Planned

_________________________________ _________________________________ _________________________________ _________________________________

„ „

DP delivers planning data through Data Mart Interface (DMI) SAP NetWeaver BI InfoCube for information consumers

_________________________________

© SAP 2007-2008 / 15

What We’ll Cover …

_________________________________ _________________________________ _________________________________

Introduction to Demand Planning Understanding the basic structures and architecture Tapping into Demand Planning features Looking at different forecasting techniques Demonstration: Demand Planning Wrap-up

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 16

Interactive Planning Flexibility „ „ „ „ „ „ „ „ „

Free definition of planning books and data views Creation of data groups (selections) and user-specific assignment Multi-level planning with full visibility (drill up/down) Supporting different aggregation/disaggregation logic Data representation on different periodicities and horizons Text can be added to any cell (notes management) Copy and paste (within grid and from/to Microsoft Excel) Graphic with data manipulation possibilities User-specific customization

© SAP 2007-2008 / 17

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Interactive Planning (cont.)

_________________________________ _________________________________

Macros „

Enable any kind of calculation

_________________________________

„

Can be started any time on any level

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 18

Interactive Planning – Alerts „ „

Alerts can be customized user specific Alerts are triggered during batch processing or interactive planning for: „ „

„

Forecast errors exceeding borders defined by the user Any kind of check carried out by a macro

Alerts are communicated to the user by: „ „ „

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Visualization in the alert monitor Mail SMS message

_________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 19

Lifecycle Management Actuals for old product

„

„

_________________________________

Lifecycle Planning simulates the launch, growth, maturity, and discontinuation phases of different products Mimics the sales curve that you expect the product to display during the following phases: „ „

Launch and growth Discontinuation

Forecast for new product

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Like Modeling Lifecycle

_________________________________ _________________________________ Phase-in profile © SAP 2007-2008 / 20

Phase-out profile

Realignment „ „

„

_________________________________

Generate new characteristic value combinations based on existing combinations

_________________________________ _________________________________

The key figures for realignment can be selected

_________________________________

An empty Excel file can be created with the structure of the required realignment steps to upload and execute realignment

_________________________________

_________________________________

_________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 21

Promotion Planning „ „

_________________________________

Attempts to predict the outcome of the effect of an event, e.g., an annual promotion or advertising campaign Characteristics of promotion planning include: „ „

Separation of base sales data from changes caused by the event Evaluating the effect of the promotional spending Corrected forecast + promotions

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

History (with promotions)

_________________________________ _________________________________ Forecast

Corrected forecast

_________________________________ Past

© SAP 2007-2008 / 22

Future

Promotions can be imported from SAP CRM Marketing Planner

Cannibalization

_________________________________

You use cannibalization groups to model the impact of a promotion on sales of related products Sales for special offer product

_________________________________

M M 07/03 08/03

M 09/03

M 10/03

Time

_________________________________ _________________________________ _________________________________

Original forecast Corrected forecast M M 07/03 08/03 © SAP 2007-2008 / 23

_________________________________ _________________________________

Corrected forecast

Original forecast

Sales for similar product

_________________________________

M 09/03

M 10/03

Time

_________________________________ _________________________________

Seasonal Planning

_________________________________

2003

2004

2005

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Product A (Apparel)

SRING '03

SUMMER '03

Product B (Apparel)

SRING '03

Product 1 (Footwear)

SEASON C '02

Product 2 (Footwear)

SEASON C '02

FALL '03

SUMMER '03

FALL '03

SEASON A '03

SEASON A '03

HOLIDAY '03

SRING '04

HOLIDAY '03

SUMMER '04

SRING '04

SEASON B '03

SEASON C '03

SEASON B '03

SEASON C '03

FALL '04

SUMMER '04

HOLIDAY '04

FALL '04

SEASON A '04

SEASON A '04

Jan

HOLIDAY '04

_________________________________ _________________________________ _________________________________ _________________________________

SEASON B '04

_________________________________

SEASON B '04

_________________________________ _________________________________

Apparel Planning Year Footwear Planning Year

Freely definable seasons and planning years are introduced that can be flexibly assigned to characteristic combinations

_________________________________ _________________________________

© SAP 2007-2008 / 24

Automatic Outlier Correction

_________________________________

8

_________________________________

7

_________________________________

6

_________________________________

5

_________________________________

4 Tolerance range = ep ± σ *1.25* MAD

3 2

_________________________________ _________________________________ _________________________________

ep = ex-post forecast

1 0

_________________________________ _________________________________

Today © SAP 2007-2008 / 25

Batch Processing/Process Chains A job scheduling tool for creation, scheduling, and monitoring complex job chains is offered „

„

The SAP NetWeaver BI tool for process chains is implemented as a framework Most DP processes are enabled for use by this framework

Automatic parallelization is offered for most of the DP processes

© SAP 2007-2008 / 26

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Offline Planning 1. Download data

_________________________________ _________________________________ _________________________________ _________________________________

2. Working on the file

_________________________________ _________________________________ _________________________________

3. Upload file data

_________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 27

Collaborative Planning

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Any planning book can be accessed through the Internet © SAP 2007-2008 / 28

Duet™ Demand Planning Duet™ Demand Planning enables sales and planners to utilize the full Microsoft Excel capabilities as an intuitive planning frontend for SAP SCM „ „ „ „

Load data from APO Demand Planning Analyze and contribute to demand plan Use MS Excel features like additional lines, columns, graphics, and formulae Save local file, distribute (e.g., by mail) with possibility for a later data synchronization, work online or offline

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 29

Consensus Demand Planning Objective „ „

Create a demand plan by integrating all available information Collaborative process to gain “one number” consensus from sales, marketing, operations „

Combine various data:

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________



Forecast Promotions

_________________________________



Budgets, sales plans, etc.

_________________________________



Manual changes



_________________________________ _________________________________ © SAP 2007-2008 / 30

What We’ll Cover …

_________________________________ _________________________________ _________________________________

Introduction to Demand Planning Understanding the basic structures and architecture Tapping into Demand Planning features Looking at different forecasting techniques Demonstration: Demand Planning Wrap-up

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 31

Forecasting „ „

Forecasting predicts future demand based on historical and judgmental data Forecasts can be created in various ways „

Statistical methods

„

Human judgment

„

Combination of above

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 32

Use of Statistical Methods

Demand Planning „ „



_________________________________

Forecasting

Statistical methods can support the planning process but they cannot solve basic planning problems Powerful forecasting software can calculate millions of forecasts on the lowest level of detail but this is not always the appropriate planning level „

Nobody can control/check millions of forecasts

„

With millions of data sets everything happens (Murphy’s law)

„

It is sometimes better to plan on a higher (controllable) level and break down the results into details using fixed rules

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 33

Data Preparation „ „

Statistical methods can only run on appropriate data Adaptations may be necessary for:

_________________________________ _________________________________ _________________________________ _________________________________

„

Start of real history

_________________________________

„

Negative/zero values

_________________________________

„

Missing values

„

Special events (e.g., strike, promotions, …)

„

Causal effects

_________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 34

Different Demand Patterns

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 35

Statistical Forecasting Methods Constant Exponential smoothing „ Moving average „ Weighted moving average

Multiple Linear Regression (MLR) Influence variables

„ „

Trend

„

„

Exponential smoothing „ Linear regression

„ „

Season (without trend) „

P I C K

_________________________________

Causal Analysis

„

A U T O M A T E D

_________________________________

„

Exponential smoothing

„

Climate (e.g., temperature) Price Advertising Distribution ...

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Trend – Season „

Exponential smoothing „ Manual forecasting „ Seasonal linear regression

B E S T

_________________________________

Composite Forecast Combine different forecasts Weight each forecast (time independent or dynamic)

„

Others „

Croston method (sporadic demand) „ History „ No forecast „ External forecast

„

_________________________________ _________________________________

© SAP 2007-2008 / 36

Selection of Forecasting Methods

_________________________________

It is not appropriate to use the same forecasting method for all items Basic classifications include:

„ „

„ „ „ „ „

Forecast/Planning – Horizon: short ↔ medium ↔ long Linear ↔ Nonlinear development of the trend Univariate forecast ↔ Causal analysis (MLR) Product type: New, mature, sporadic Different parameter settings

„



„



„

_________________________________

Product classification (e.g., spare part, standard product) Planning purpose/business requirements

_________________________________

Pilot study –

_________________________________

_________________________________

Logical reasons –

_________________________________

_________________________________

The assignment can be based on:

„

_________________________________

_________________________________

Grouping of products Assignment of parameters

_________________________________

Ex-post error measures, but should not be the only criteria

The assignment should be checked in regular intervals

„

© SAP 2007-2008 / 37

(Weighted) Moving Average

_________________________________ _________________________________

„ Only

suitable for constant demand patterns (with no trend-like or season-like patterns)

_________________________________

n

(Weighted) Moving Average: Gt+1 = Σ (Wt-j+1) Vt-j+1 / n

_________________________________

j=1

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Demand 95,1 94,9 94,6 94,7 95,2 95,6 95,7 95,6 95,5 95,3 95,9 96,2 96,4 96,3 96,1 95,9

Moving Average

Forecast (M)

_________________________________

97

95,1 95,2 95,3 95,4 95,5 95,7 95,8 95,9 96,0 96,0

n=7

_________________________________

96,5 96

_________________________________

95,5

Demand Forecast

95 94,5

_________________________________

94 93,5 1

2

3

4

5

6

7

8

9

Periods

© SAP 2007-2008 / 38

_________________________________

10

11

12

13

14

15

16

_________________________________

First-Order Exponential Smoothing

_________________________________ _________________________________

„ Only

suitable for constant demand patterns (with no trend-like or season-like patterns)

Gt+1(t) = (1- α)Gt(t-1) + αVt Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Demand 20 22 18 23 19 17 20 24 23 18 16 23 22 17 20 21

_________________________________ _________________________________

for all t = 2,…..,n ; G1 = V1

_________________________________

Forecast Forecast 20,0 20,6 19,8 20,8 20,8 19,6 19,7 21,0 21,6 20,5 19,2 20,3 20,8 19,7 19,8

20,0 20,2 20,0 20,3 20,3 20,0 20,0 20,4 20,6 20,4 19,9 20,2 20,4 20,1 20,1

α = 0.3 α = 0.1

Exponential Smoothing

_________________________________

30 25

_________________________________

20 Demand 15

Forecast (alpha = 0.3)

_________________________________

Forecast (alpha = 0.1)

_________________________________

10 5

_________________________________

0 1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16

Periods © SAP 2007-2008 / 39

Exponential Smoothing

_________________________________ _________________________________

In a trend, seasonal, or seasonal trend model

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 40

Linear Regression

_________________________________

For demand patterns „

With trend With trend + season

∑ (t n

b1 =

i =1

i

∑ (t n

i =1

− t)

_________________________________ _________________________________

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 © SAP 2007-2008 / 41

_________________________________

b0 = y −b1t

2

i

_________________________________

seasonal adjustment factor for each period within the season

− t )(y i − y )

y 1048,35 1102,06 1155,77 1209,48 1263,19 1316,90 1370,60 1424,31 1478,02 1531,73 1585,44 1639,15 1692,86 1746,57 1800,28 1853,99 1907,70 1961,41

Linear Regression

_________________________________

2100 2000 1900 1800

_________________________________

1700 1600 y

„

_________________________________

yt = b0 + b1* t yt = b0 + b1* t + Smod, t

1500

_________________________________

1400 1300 1200 1100

_________________________________

1000 900 800 0

2

4

6

8

10 Periods

12

14

16

18

Croston Method

_________________________________

Useful for intermittent, erratic, or slow-moving demand „ „

Example: When demand is zero most of the time (say 2/3 of the time) Might be caused by: „ „ „

_________________________________ _________________________________ _________________________________ _________________________________

Short forecasting intervals (e.g., daily) A handful of customers that order periodically Aggregation of demand elsewhere (e.g., reorder points)

_________________________________ _________________________________

An intermittent Demand Series

3.5

_________________________________

3

De m a nd

2.5 2

_________________________________

1.5 1

_________________________________

0.5

391

378

365

352

339

326

313

300

287

274

261

248

235

222

209

196

183

170

157

144

131

92

118

79

66

105

53

40

27

14

1

0 Period

© SAP 2007-2008 / 42

Choose Forecasting Model – Overview

Exponential Sm. (Croston)

_________________________________

Automatic Model Selection You can choose Automatic Model Selection if there is no knowledge of the patterns in the historical data „ „

The historical data are checked for constant, trend, seasonal, and seasonal trend patterns The forecasting model that corresponds most closely to the pattern detected is applied „

If no regular pattern is detected, the system runs the forecast as if the data revealed a constant pattern

You can also restrict the Automatic Model Selection to: „ „ „ „ „

Test for trend Test for season Test for trend and season Seasonal model and test for trend Trend model and test for seasonal pattern

© SAP 2007-2008 / 44

_________________________________ _________________________________

Lifecycle

Phase-In/Out

Trend + Season

Seasonal Linear Regression

Linear Regression

Intermittent Demand

First Order Expon. Sm. (Winters)

© SAP 2007-2008 / 43

Second Order Expon. Sm. (Holt)

Additionally, lifecycle profiles can be added to simulate phasein/out of products

First Order Exponential Sm.

„

Regular Demand Different univariate forecasting Constant Trend methods can be assigned based on regular and intermittent demand patterns

(Weighted) Moving Average

„

_________________________________

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Automatic Model Selection (cont.)

_________________________________ _________________________________

Procedure 1 The relevant forecast parameters (alpha, beta, and gamma) are constant No consideration of error measure

„ „

Tests for constant, trend, seasonal, and seasonal trend patterns, using all possible combinations for the alpha, beta, and gamma smoothing factors The model with the lowest error measure customized (e.g., Mean Absolute Deviation [MAD]) is chosen

„

_________________________________ _________________________________

Procedure 2 „

_________________________________

Procedure 2 is more precise than Procedure 1, but it takes longer

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 45

Multiple Linear Regression (MLR)

_________________________________

„

MLR can assess how the development of one (dependent) variable can be explained by several (independent) variables (and a constant value)

„

For a causal analysis, MLR does the final calculation of the regression coefficients

„

The input data for the MLR (i.e., the modeling of the causal effects) is the key issue Typical variables:

„

„

Trend

„

Seasonality

„

Climatic conditions (e.g., temperature, precipitation)

„

Economy (e.g., GDP, inflation, unemployment rate)

„ „

Product specific (e.g., price/costs, new model/version, marketing activities) Demography (e.g., population in age classes)

„

Others (e.g., lifecycle, replacement demand, distribution)

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Substantial experience is required for modeling causal effects!

„

© SAP 2007-2008 / 46

Composite Forecast

_________________________________

„

Combine different forecasts

_________________________________

„

Own defined model selection based on error measure

_________________________________

„

Weight each forecast (time independent or dynamic) Enables the combination of different forecasts with a constant or time-dependent weighting

_________________________________

„ „

The weighting will, in general, be purely arbitrary

_________________________________

Univariate

_________________________________

1 Forecast

Univariate ... MLR

n © SAP 2007-2008 / 47

_________________________________

Combine Combine and and Reconcile Reconcile

Result MLR

_________________________________ _________________________________ _________________________________

Forecasting and Forecast Errors

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 48

Error Measures

_________________________________ _________________________________

„

Look at errors over time

„

Cumulative measures summed or averaged over all data „ „ „ „ „

„

Error Total (ET) Mean Percentage Error (MPE) Mean Absolute Percentage Error (MAPE) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

_________________________________

Measure Bias

Smoothed measures reflects errors in the recent past „

_________________________________

_________________________________ _________________________________ _________________________________ _________________________________

Mean Absolute Deviation (MAD)

_________________________________ _________________________________ © SAP 2007-2008 / 49

Error Measures (cont.)

_________________________________

„

Look at errors over time

_________________________________

„

Cumulative measures summed or averaged over all data

_________________________________

„ „ „ „ „

„

Error Total (ET) Mean Percentage Error (MPE) Mean Absolute Percentage Error (MAPE) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

_________________________________ _________________________________ _________________________________

Smoothed measures reflects errors in the recent past „

Mean Absolute Deviation (MAD)

_________________________________

Measure error magnitude © SAP 2007-2008 / 50

_________________________________

_________________________________ _________________________________

Evaluation The planning/forecasting process has to be reviewed permanently/in regular intervals „

This can include the analysis of: „ „ „ „ „

KPIs (e.g., service level, out of stock) Financial data (e.g., turnover, profit) Promotions/advertising Special influences (e.g., strike) Causal effects

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

The results should be documented and archived

_________________________________ _________________________________

© SAP 2007-2008 / 51

What We’ll Cover …

_________________________________ _________________________________ _________________________________

Introduction to Demand Planning Understanding the basic structures and architecture Tapping into Demand Planning features Looking at different forecasting techniques Demonstration: Demand Planning Wrap-up

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 52

Demonstration: Demand Planning

_________________________________ _________________________________

1.

DP Interactive Planning

_________________________________

2.

DP Features and Forecasting Run

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 53

What We’ll Cover …

_________________________________ _________________________________ _________________________________

Introduction to Demand Planning Understanding the basic structures and architecture Tapping into Demand Planning features Looking at different forecasting techniques Demonstration: Demand Planning Wrap-up

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 54

Resources help.sap.com „

SAP Business Suite Æ SAP Supply Chain Management Æ SAP SCM 5.0 Æ Application Help Æ EN Æ SAP Advanced Planning and Optimization (SAP APO) Æ Demand Planning Æ Demand Planning Process „

„

Comparison of the Planning Methods

SAP Business Suite Æ SAP Supply Chain Management Æ SAP SCM 5.0 Æ Application Help Æ EN Æ SAP Advanced Planning and Optimization (SAP APO) Æ Demand Planning Æ Technical Aspects of Demand Planning

SAP Notes „ „

SAP Note 832393 (Release Restrictions for SCM 5.0) SAP Note 576015 (Collective Consulting Note for Demand Planning)

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 55

7 Key Points to Take Home „ „ „ „ „ „ „

Demand Planning (DP) is mid- to long-term planning that will help you to create forecasts for your products Demand Management is not just forecasting – data preparation is key to getting reasonable forecasts DP offers a broad range of features for demand management like promotion or lifecycle management DP offers a broad range of statistical forecasting methods that are applicable for all kinds of demand patterns Usually, the same statistical forecasting method cannot be used for all products Quality of resulting forecasts should be evaluated regularly DP is tightly integrated to SAP NetWeaver BI, SAP ERP, and other SAP APO modules like SNP, PP/DS, and GATP

© SAP 2007-2008 / 56

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

Your Turn!

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

How to contact me: Gerald Heisig [email protected]

_________________________________ _________________________________

© SAP 2007-2008 / 57

Copyright 2007-2008 SAP AG All Rights Reserved No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be changed without prior notice. Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors. SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned and associated logos displayed are the trademarks of their respective companies. Data contained in this document serves informational purposes only. National product specifications may vary. The information in this document is proprietary to SAP. This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This document contains only intended strategies, developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course of business, product strategy, and/or development. SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy or completeness of the information, text, graphics, links, or other items contained within this material. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials. This limitation shall not apply in cases of intent or gross negligence. The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access through the use of hot links contained in these materials and does not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web pages.

_________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________

© SAP 2007-2008 / 58

Notes: ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

Notes: ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

Notes: ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

Wellesley Information Services, 990 Washington Street, Suite 308, Dedham, MA 02026

Copyright © 2008 Wellesley Information Services. All rights reserved.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF