149 (Tarea 1)

September 14, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download 149 (Tarea 1)...

Description

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Xnrcn >= Co ki`kcpti hc D`tcgrno

Zrcsc`tnhi pir= Mndlc Tcsdh Ln`rdquc Gnrkìn ‛ Kûhdgi= 4>3;>>>> Hcysy Mifn``n Bcotrî` Lnrì` ‛ Kûhdgi= >:442:3248 Znion N`hrcn Znbi` Qconski ‛ Kûhdgi= >:436;>678 Zchri Codckcr Lurdooi Nan`nhir - Kûhdgi= >>::47;::1

Grupi= >::8>>Y>84 Xutir= Ouds Rnlû` Auc`tcs

Kîokuoi D`tcgrno ‛ (>::8>>NY438) S`dvcrsdhnh @nkdi`no Nbdcrtn y n Hdstn`kdn ‛ S@NH, KCNH Buknrnln`gn Zrigrnln Nhld`dstrnkdû` hc Clprcsns Iktubrc hc 2:2>

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

D`trihukkdû`

C` co prcsc`tc trnbnmi sc cvdhc`kdnrî co hcsnrriooi hc on u`dhnh > on kuno nbirhn on tclîtdkn hc Ki`kcpti hc D`tcgrno, nbirhn`hi ois ki`tc`dhis= on D`tcgrno D`hcad`dhn, [ulns hc Rdcln``, Xcirclns hhcc D`tcgrnkdû` c D`tcgrno Hcad`dhn, n trnväs hc oonn rcnodznkdû` rcnodznkdû` hc ois cmcr cmcrkd kdkd kdis is po pon` n`ttcn cnhi hiss pn pnrn rn knhn knhn tc tcln ln hcsnrr hcsnrrio ioon on`hi `hi c` ti titn tnoo 8 cm cmcrk crkdk dkdi diss scockkdi`nhis hc ons ipkdi`cs pon`tcnhns c` on guìn hc nktdvdhnhcs y c` on rýbrdkn hc cvnounkdû`, y prcsc`tn`hi vdhci hc sustc`tnkdû` hc nogu`is hc coois.

   

XNRCN >= CO KI@KCZXI HC D@XCGRNO @ilbrc hco cstuhdn`tc

Rio n hcsnrrioonr  

Zchri Codckcr Lurdooi Nan`nhir Muodî` N`ti`di Qdn`n ]nrntc Hcysy Mifn`n Bcotrî` Lnrì`

Rcvdsir Nocrtns C`trcgns

Mndlc Tcsdh Ln`rdquc Gnrkìn Znion N`hrcn Znbi` Qconski

Cvnounhir Kilpdonhir

Grupi hc cmcrkdkdis n hcsnrrioonr  Cmcrkdkdis N

Cmcrkdkdis C Cmcrkdkdis K Cmcrkdkdis B Cmcrkdkdis H

Hcsnrriooi hc ois cmcrkdkdis n, b, k, h y c hco hc o Xdpi hc cmcrkdkdis >= D`tcgrnocs D`lchdntns

Hcsnrrioonr Hcsnrrio onr co cmc cmcrkd rkdkdi kdi scockkd scockkdi`n i`nhi hi utdodz utdodzn`hi n`hi co îogcbrn îogcbrn,, on trd trdgi`i gi`ilct lctrìn rìn y pripdch pripdchnhc nhcss lntclîtdkns pnrn rchukdr ons au`kdi`cs n d`tcgrnocs d`lchdntns. Rckucrhc quc `i hcbc fnkcr usi hc ois lätihis hc d`tcgrnkdû` (sustdtukdû`, d`tcgrnkdû` pir pnrtcs, ctk.),  y kilprucbc su rcspucstn hcrdvn`hi co rcsuotnhi. Cmcrkdkdi n.

( x 2− 8 )  ∥   hx ( x −2 ) ¹ ∥ ( x + 2 ) hx ¹ ∥ x hx+ 2∥ > hx  

YYYYYYYYYYYYYYYYYYYYYYYYYY +>

 x ` ¹ ∥ x hx < ` + > ki`` `

¹

 x 2 2

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

¹ ∥ > hx = CO KI@KCZXI HC D@XCGRNO ¹ ∥ x hx + 2∥ > hx  x

2

¹  + 2 x 2

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

 ∥ ( x  x +2 ) hx ¹ ∥ (  x

2

¹  + 2 x + K  2

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO 2

h  x (  + 2 x + k ) hx 2

2

¹   h ( x  )+   h  ( 2 x )+  h (k ) hx 2 hx hx

(  )

h  x2 / 2  x 2



) hx +∥(

3/ 2

1 x −> −> /2   .x .x . hx 2

3

1 2 − > −> / 2  x 2

) . hx ( ) ; 2

¹ ∥  x > /2 hx +∥ ; x . hx

[c prikchc n rcnodznr on d`tcgrno

¹

 ; 2

∥ x / hx +;∥ x . hx > 2

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO > +> 2

; x  ;  x  + ; ¹ 2 2 ; /2

( ) ;

 ; 2 ¹ .  x 2 2 ;

2

; x + 2

2

; 2

2  x +  x ¹ x . ∝  x

; 2

¹ ∝   xx; +  x 2  RXN

Cmcrkdkdi h.

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

(

 )

∥  x x + x  >∝  x ;

hx

[ioukdû`

∥  x + x  >∝  x

(

(

 )

;

∥  x + x  ( x>) / ;

> 2

(

∥  x + x  >/ ;

; 2

;



)

hx

)

hx

hx

−; / 2

) hx

( x + x

[c hcrdvn= −> 8

 x  x 2 →  + +k 8 −> 2

−> 8  x →   +2 x 2 + k

8 8  x →  −   2 +k 8 ∝   x x

Hcsnrriooi hc ois cmcrkdkdis n, b, k, h y c hco Xdpi hc cmcrkdkdis 2= [ulns hc Rdcln``

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO Hcsnrrioonr co cmcrkdkdi scockkdi`nhi utdodzn`hi ons [ulns hc Rdcln``= Cmcrkdkdi n. 8

-

 x

2

( ¹  + D`x ) hx ¹, lchdn`tc on suln hc

Npr prix ixdl dlc c on d`t d`tc cgr grno no hc hcad ad`d `dhn hn

2 ∥ Rdcln`` hco pu`ti hcrckfi, ki` `;2) 23

 

------------------------------------------------

8

 x

2

∥ (¹ 2 + D`x ) hx ,` 8 ¹ 2

¹

 1:2 ∅+ 437 46

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Cmcrkdkdi b.

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO  

Nprixdlcc on d`tcgrn Nprixdl d`tcgrnoo hcad hcad`dh `dhnn  pu`ti dzqudcrhi, ki` ` < 1.

, lch lchdn` dn`tc tc on suln suln hc Rdcln` Rdcln``` hco

3

2  x ∥ ∝  x +  + 2 2

8

[c utdodzn on sdgudc`tc aûrluon pnrn fnoonr on bnsc hc ois rcktî`guois=

 Θ x < b −n ` Xc`clis quc= n < 2 → oìldtc d`acrdir  b < 3 → oìldtc supcrdir  ` < 1 → # hc rcktî`guois

 Θ x <

3 −2 ;   < :  x 8 :  + > < >: + >  < >> ; ; ; ;

[c rcclponzn c` on au`kdû` ois vnoircs fnoonhis n`tcrdirlc`tc a   (( x  x )>

Znrn  x ;: a  ;

<

>: ;

2

−;

>: ;

Znrn  x 3<

(  ) (  ) (  )



>> ;

<

>> ;

2

−;

>> ;

26 4

+ 2 <   >>> >> ; 8: 4

+ 2<   >>>

[c suln` ois rcsuotnhis n`tcrdircs scgý` on sdgudc`tc airluon= 8

Îrcn nprixdlnhn= ∞ a  ( ( d ) ∁ x d: 4

26 4

¹ : + +   + 2+   +

 )

8: > . 4 ;

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO  ;8 4

¹   u 2 Zir scr îrcn ons u`dhnhcs sc cxprcsn` u2 ¹ ;.777 u2

Cmcrkdkdi h. 3

∥ 2∝  x x x hx 2

[ioukdû`

Hnhi quc b −n ∁ x< `

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO n < 2 , b< 3 , ` < 3

∁ x<

3 −2 ;  < 3 3

∁ x< ;3 Oucgi

 x :; 3

  a   (( x  x > )< 2



>; 3

 x 2< >1  a  ( ( x  x2 ) <   6

∝ 3

3

>4

 x ; ) 2

2

; /2



2 x ;

3 2

2

((  )  )| ; /2



8 x ;

;/ 2

8 (3 ) ;

  −

|

3 2

8 ( 2) ;

; 2

  >.>;

Grnadkn c` GciGcbrn on suln hc Rdcln`` pnrn `= CO KI@KCZXI HC D@XCGRNO

¹^uä sc puchc ki`koudr no nulc`tnr co `ýlcri hc rcktî`guois9 [c ki`kouyc quc n lchdhn quc nulc`tn` ois rcktî`guois, co îrcn vnoir hco îrcn nulc`tn, cs hckdr si` hdrcktnlc`tc pripirkdi`nocs.

Hcsnrriooi hc ois cmcrkdkdis n, b, k, h y c hco Xdpi hc cmcrkdkdis ;= Xcirclns hc D`tcgrnkdû`

Hcsnrrioonr ois cmcrkd Hcsnrrioonr cmcrkdkdis kdis scockk scockkdi`nhi di`nhiss hcrdvn`hi hcrdvn`hi G′() hc ons sdgudc`tcs au`kdi`cs. Npodknr co sdgudc`tc Xcircln hc d`tcgrnkdû` c` knhn cmcrkdkdi=

Cmcrkdkdi n.

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO h  ¹ hx

;

a  ( ( x  x )<

2



>

 x +  x

2

t  + >

ht 

b ( x  x ) 2

)

∥ a  ( ( t ) ht 

) ( ( ; )−

)

  x −2 ( >)  x + 8 x + 8 + > 2

Luotdpodkn`hi=

(

 A ' ( x  x )<

  4 x + >6 4 x

2

2

+;1 x + ;7

)( −

  x −2 2  x +8 x + 3

)

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Cmcrkdkdi k.

Xcircln hc D`tcgrnkdû`

 U

h  h a ( x ) \ <  U hx hx

b ( x  x ) ht  2

tn`x

) (

)

  x   tn`x ( sck 2 x ) 2  x − ( ) 2 2 2 ( x ) + > (tn`x ) + >

  2 x

;

2

sck  xtn`x

 A  ( x  x )< 8 − 2  x + > tn`  x + > ' 

Hcsnrriooi hc ois cmcrkdkdis n, b, k, h y c hco Xdpi hc cmcrkdkdis 8= D`tcgrno Hcad`dhn

Hcsnrrioonr co cmcrkdkdi quc fn cocgdhi pir lchdi hco scgu`hi tcircln au`hnlc`tno hco kîokuoi, utdodzn`hi co îogcbrn, on trdgi`ilctrìn y pripdchnhcs lntclîtdkns pnrn rchukdr ons au`kdi`cs n d`tcgrnocs d`lchdntns, rckucrhc quc `i hcbc fnkcr usi hc ois lätihis hc d`tcgrnkdû` (sustdtukdû`, d`tcgrnkdû` pir pnrtcs, ctk.)

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Cmcrkdkdi n.

2

∥ ( x x −2 x + ; ) hx ;

−2

2

2

2

−2

−2

¹ ∥ x hx −∥ 2 x hx +∥ ; hx ;

−2

2

¹ ∥ x ; hx 2 ¹ >2

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Cmcrkdkdi b.

Knokuonr on sdgudc`tc d`tcgrno hcad`dhn=

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Hcspuäs hc knokuonr on d`tcgrno rcnodznr ois sdgudc`tcs pnsis= 2

( x  x −4 ) 2

∥ ( x −; ) hx −2

Znrn rchukdr cstn d`tcgrno hcad`dhn n u`n d`tcgrno d`lchdntn sc npodkn on hdacrc`kdn hc kunhrnhis pcracktis= 2

∥ ( x x +( x; −) ( x;−) ;  ) hx −2

[dlpodadkn`hi= 2

∥ ( x +; ) hx −2

Znrn knokuonr co scgu`hi tcircln au`hnlc`tno hco kîokuoi, sc npodkn on rcgon hc on  pitc`kdn= [cgu`hi tcircln au`hnlc`tno hco kîokuoi= b

∥ a  ( ( x x ) hx

 x `  ∥ x hx < ` + > + K  `

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO Hcsnrrioon`hi= 2

2  x ∥ ( x x +; ) hx <  + ; x +K ¹−2 2

2

−2

Npodkn`hi= A(b) ‛ A (n), tc`clis= 2

2

2 2  + ; ( 2 )−  + ; (−2 )

8

8

8 2

6 x  xhx hx +

 x . hx − ; 8

 x



;

U(







;

>

8 >  − ; ;

(

−6 x 2 2

8

8

>

>

  ∥ +>1 x  ∥ .

)−( ( ) − ( ) + 8 8

18 >  − ; ;

>1 hx

>

>

>

2

) −(

8 >

>1 ( 8 −> )

18 −8 ) + 86

18 − >   −1: + 86 ; 1;   −1: + 86 > 2>− 1:+ 86

< 14-1: = CO KI@KCZXI HC D@XCGRNO

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Cmcrkdkdi h. ϊ  / /2 2

∥ ( kis  x + sc`x ) hx :

[ioukdû` ϊ  / /2

∥ ( kis  x + sc`x ) hx 2

:

Rccskrdbdlis

kis  x < > + kis  ( 2 x ) 2 2

C`ti`kcs tc`clis ϊ  / /2

∥ :

(

)

> + kis  ( 2 x ) 2

  + sc`x hx

[nknlis on ki`stn`tc hc on d`tcgrno > 2

ϊ / 2

∥ ( > +kis  (2 x )+ sc`x ) hx





:

U( > 2

U

\|

)

>  x  x +  sc` ( 2 x ) − kisx ϊ / 2 2

> > 2 x + 8  sc` ( 2 x )− kisx

\|

:

/2 ϊ :

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

()

>  ϊ  2 2

> 8

+  sc`

( ) ()( 2

 ϊ  2

−kis

ϊ  2



ϊ  8

 + : + :−( : + : −>)

ϊ  2

∥ ( kis  x + sc`x ) hx ≆ >.74 ¹ 2

:

)

> > ( : )+  sc` ( 2 ( : ) ) −kis  ( : ) 2 8

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO

Xnbon Od`es hc Qdhcis

Xnbon Od`es hc vdhcis cxpodkntdvis

@ilbrc Cstuhdn`tc=

Cmcrkdkdis sustc`tnhis=

Zchri Codckcr 

Cmcrkdkdis n ‛ 

Lurdooi

Xdpi hc

Nan`nhir  Mndlc Tcsdh

cmcrkdkdi 8 Cmcrkdkdis b ‛ 

Ln`rdquc

Xdpi hc

Gnrkìn

cmcrkdkdi ; Cmcrkdkdi K ‛ 

Hcysy Mifn`n Bcotrn` Lnrd`

Xdpi hc cmcrkdkdi 8

Od`e vdhci cxpodkntdvi=

fttps=//www.yiutubc.kil/wntkf9v:). D`trihukkdû` no kîokuoi hdacrc`kdno. Chdtirdno D`stdtuti Ziodtäk`dki @nkdi`no. (pp. >22->26). Rckupcrnhi `ct.bdboditcknvdrtuno.u`nh.chu.ki/cs/crcnhcr/u`nh/7211>9pngc

hc=

fttps=//codbri-

Irtdz, A (2:>3). Kîokuo Irtdz, Kîokuoii hdacrc hdacrc`kdno `kdno (2n. ch.). Grupi chdtird chdtirdno no pntrdn. (pp. >;2->;4). >;2->;4). Rckupcrnhi Rckupcrnhi hc= fttps=//codbri-`ct.bdboditcknvdrtuno.u`nh.chu.ki/cs/crcnhcr/u`nh/>2>2769pngc

Irtdz, A., & Irtdz, A. (2:>3). Kîokuoi D`tcgrno. Grupi chdtirdno pntrdn. (pp. ;1-82). Rckupcrnhi hc= fttps=//codbri-`ct.bdboditcknvdrtuno.u`nh.chu.ki/cs/crcnhcr/u`nh/;48149pngc

Rdvcrn, A. (2:>8). Knokuoi d`tcgrno= sukcsdi`cs y scrdcs hc au`kdi`cs. Läxdki= Onriussc ‛ Grupi Chdtirdno Zntrdn. (pp. 27 ‛ ;6). Rckupcrnhi hc= fttps=//codbri`ct.bdboditcknvdrtuno.u`nh.chu.ki/cs/crcnhcr/u`nh/;48;>9pngc

Gucrrcri, G. (2:>8). Kîokuoi D`tcgrno= [crdc S`dvcrsdtnrdn Zntrdn. Läxdki= Grupi Chdtirdno Zntrdn. (pp. >8 >1). Rckupcrnhi hc= fttps=//codbri`ct.bdboditcknvdrtuno.u`nh.chu.ki/cs/crcnhcr/u`nh/;48;29pngc

[pdvne, L. (2:>6). Knokuous (;ª. ch.). Bnrkcoi`n= Chdtirdno Rcvcrtä. (pp. 244 - ;:;). Rckupcrnhi hc= fttps=//codbri-`ct.bdboditcknvdrtuno.u`nh.chu.ki/cs/crcnhcr/u`nh/816:89pngc

[cgurn, [cgur n, N. (2: (2:>8) >8).. Ln Lntc tclî lîtd tdkn knss Npod Npodkn knhn hnss n on onss Kd Kdc` c`kd kdns ns Ck Cki` i`ûl ûldk dki-N i-Nhl hld` d`ds dstr trnt ntdv dvns= ns= [dlpodkdhnh Lntclîtdkn. Grupi Chdtirdno Zntrdn. (pp. 2:> ‛ 2:;). Rckupcrnhi hc= fttps=//codbri`ct.bdboditcknvdrtuno.u`nh.chu.ki/cs/crcnhcr/u`nh/;4;649pngc Rihrìg rìgucz, F. (2:2 :2::). IQD D` D`ttcg cgrrnocs D` D`l lchdntns. fttps=//rcpisdtiry.u`nh.chu.ki/fn`hoc/>:341/;;3;6

UQdhci\.

Rckup upccrnhi

hc=

 

XNRCN >= CO KI@KCZXI HC D@XCGRNO Ribnyi, A. (2:2: :2:). IQN - S`dhnh >. Co Ki`kcpt ptii hc D`tcgrno. Rckup upccrnhi hc= fttps=//rcpisdtiry.u`nh.chu.ki/fn`hoc/>:341/;;38>

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF