1.4.1. Principio de Dualidad. Postulado de Broglie

September 21, 2017 | Author: Laura Luna | Category: Uncertainty Principle, Electron, Photon, Light, Quantum Mechanics
Share Embed Donate


Short Description

Download 1.4.1. Principio de Dualidad. Postulado de Broglie...

Description

Química 1.4.1 Principio de dualidad Postulado de De Broglie El físico francés Louis de Broglie en 1924, considero, que la luz no solo es un efecto corpuscular sino también ondulatorio. La dualidad onda-corpúsculo es la posesión de propiedades tanto ondulatorias como corpusculares por parte de los objetos subatómicos. La teoría de la dualidad de la materia considera que la materia tiene un comportamiento corpúsculo-onda ó partículaonda.

Postulados de Broglie: Diversos experimentos de óptica aplicada llevaron a la consideración de la luz como una onda. De otra parte el efecto fotoeléctrico demostró la naturaleza corpuscular de la luz(fotones) En 1924 De Broglie sugirió que el comportamiento dual de la onda-partícula dado a la luz, podría extenderse con un razonamiento similar, a la materia en general. Las partículas materiales muy pequeñas (electrones, protones, átomos y moléculas) bajo ciertas circunstancias pueden comportarse como ondas. En otras palabras, las ondas tienen propiedades materiales y las partículas propiedades ondulatorias (ondas de materia) Según la concepción de Broglie, los electrones en su movimiento deben tener una cierta longitud de onda por consiguiente debe haber una relación entre las propiedades de los electrones en movimiento y las propiedades de los fotones. La longitud de onda asociada a un fotón puede calcularse: ð Longitud de onda en cm. H= Constante de Planck= 6,625 x 10-27 ergios/seg M= Masa C= Velocidad de la Luz Esta ecuación se puede aplicar a una partícula con masa(m) y velocidad (v), cuya longitud de onda (ðð sería:

Página 1

Química Una de las más importantes aplicaciones del carácter ondulatorio de las partículas materiales es el microscopio electrónico, en el cual en vez de rayos de luz se emplea una corriente de electrones.

Página 2

Química 1.4.2 Principio de incertidumbre de Heisenberg Werner K. Heisenberg, físico alemán conocido por enunciar el principio de incertidumbre que lleva su nombre en 1927, siendo una contribución fundamental para la teoría cuántica. El principio de incertidumbre de Heisenberg, también conocido la “relación de indeterminación”, afirma la imposibilidad de realizar la medición precisa de la posición y del momento lineal (cantidad de movimientos) de una partícula al mismo tiempo. Esto produce que las partículas, en su movimiento no tienen una trayectoria definida. Heisenberg presentó su modelo atómico, negándose a describir al átomo como un compuesto de partículas y ondas, ya que pensaba que cualquier intento de describir al átomo de dicha manera fracasaría. El prefería hacer referencia a los niveles de energía o a las órbitas de los electrones, usando términos numéricos, utilizando lo que llamó “mecánica de matriz”. Para conseguir entender mejor este principio, se suele pensar en el electrón, ya que para realizar la medida o para poder ver a esta partícula se necesita la ayuda de un fotón, que choque contra el electrón modificando su posición, así como su velocidad, pero siempre se comete un error al intentar medirlo, por muy perfecto que sea el instrumental que utilizamos para el experimento, éste introducirá un fallo imposible de anular. Si en un estado concreto se realizan varias copias iguales de un sistema, como puede ser un átomo, las medidas que se realicen de la posición y cantidad de movimiento, difieren según la distribución de la probabilidad que haya en el estado cuántico de dicho sistema. Las medidas del objeto que se esté observando se verán afectadas por una desviación estándar, designada como Δx, para la posición y Δp, para el movimiento. Se comprueba así el principio de indeterminación que matemáticamente se expresa como: Δx . Δp ≥ h/2π , de donde “h” es la constante de Planck con un valor conocido de h= 6.6260693 (11) x 10^-34 J.s La indeterminación posición-momento no se produce en la física de sistemas clásicos, ya que ésta se utiliza en estados cuánticos del átomo, siendo h demasiado pequeña. La forma más conocida, que reemplaza el principio de indeterminación para el tiempo-energía se escribe como: ΔE. Δt ≥ h/2π Siendo esta la relación que se utiliza para estudiar la definición de la energía del vacío, y en la mecánica cuántica, se usa para estudiar la formación de partículas virtuales y sus consecuencias. A parte de las dos relaciones anteriores, existen otras “desigualdades”, como por ejemplo Ji, en el momento angular total de un sistema: En donde i, j y k son diferentes y Ji expresa el momento angular en un eje Xi : ΔJi ΔJj ≥ h/2π │( Jk)│ En un sistema cuántico de 2 magnitudes físicas, por ejemplo, a y b, interpretadas por operadores como A y B, no será factible preparar sistemas en el estado Ψ, si los desvíos estandar de a y b no cumplen la condición: ΔΨA . ΔΨB ≥ ½ │( Ψ [ A,B ] Ψ ) │

Página 3

Química El principio de incertidumbre tiene sus consecuencias, pues produce un cambio en la física, ya que se pasa de tener un conocimiento totalmente preciso en la teoría, pero no en el conocimiento, que se encuentra basado en probabilidades. Este resultado, como tanto otros en la mecánica cuántica, sólo afecta a la fisicoquímica subatómica, debido a que la constante de Planck es bastante pequeña, en un universo macroscópico la incertidumbre cuántica es despreciable, y continúan teniendo validez las teorías relativistas, como la de Einstein.

Página 4

Química 1.4.3 Ecuación de onda de Schrödinger

Página 5

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF