135640720 FB MultiPier Help Manual

December 16, 2016 | Author: Viet Duc Dang | Category: N/A
Share Embed Donate


Short Description

engineering...

Description

Table of Contents FB MultiPier

17

What’s New in FB-MultiPier?

17

Program Menus

19

View Menu ..................................................................................................... 19 Control Menu ................................................................................................. 20 Wizard Menu.................................................................................................. 20 Help Menu ..................................................................................................... 21

Model Data 21 Global Data Edit ............................................................................................ 21 New Project/Problem Tab ....................................................................... 21 General Pier Option.......................................................................... 23 Pile and Cap Option ......................................................................... 23 Single Pile Option ............................................................................. 24 High Mast Light/Sign Option............................................................. 25 Retaining Wall Option....................................................................... 26 Sound Wall Option............................................................................ 27 Stiffness Option ................................................................................ 28 Pile Bent Option................................................................................ 29 Column Analysis Option ................................................................... 30 Bridge (Multiple Piers) Option .......................................................... 31 Analysis Tab............................................................................................ 32 Analysis Tab ..................................................................................... 32 Pile/Pier Behavior ............................................................................. 34 Cap Behavior .................................................................................... 34 Section Properties ............................................................................ 35 Soil Behavior .................................................................................... 35 Iteration Control ................................................................................ 35 Interaction Diagram Phi Factor......................................................... 36 Analysis Type ................................................................................... 36 Design Options ................................................................................. 37 Print Control...................................................................................... 37 AASHTO Tab .......................................................................................... 38 AASHTO Tab.................................................................................... 38 AASHTO Load Factors Table........................................................... 39 Automated AASHTO Loads.............................................................. 40 AASHTO Load Manager................................................................... 41 Wind Load Generator ....................................................................... 42 AASHTO Load Combination Preview Table..................................... 43 Limit States to Check........................................................................ 44 Dynamics Tab ......................................................................................... 45 Dynamics Tab................................................................................... 45 Analysis Type Dynamic .................................................................... 47 Global Mass...................................................................................... 47 Global Damping................................................................................ 47 Time Stepping Parameters............................................................... 48 Rayleigh Damping Factors ............................................................... 48 Model Analysis Damping .................................................................. 49 Time Functions ................................................................................. 49

1

Edit Load Functions.......................................................................... 49 Load Function Edit Table.................................................................. 51 Pushover Tab.......................................................................................... 52 Pushover Tab ................................................................................... 52 Pier Data Edit................................................................................................. 53 Pile and Cap Tab .................................................................................... 53 Pile and Cap Tab.............................................................................. 53 Pile Length Data ............................................................................... 54 Pile Cross Section Type ................................................................... 55 Pile/Shaft Type ................................................................................. 56 Pile to Cap Connection..................................................................... 56 Pile Cap Data ................................................................................... 57 Pile Cap Grid Geometry ................................................................... 57 Grid Spacing Table........................................................................... 58 Edit Cross Section ............................................................................ 59 Gross Section Pile Properties ............................................................................................................59 Gross Pile Properties .....................................................................................................................59 Pile/Shaft Segment List..................................................................................................................60 Pile Set Info....................................................................................................................................61 Database Section Selection ...........................................................................................................61 Section Type ..................................................................................................................................62 Segment Dimensions .....................................................................................................................63 Section Properties..........................................................................................................................63 Full Cross Section Pile Properties......................................................................................................64 Full Cross-Section Pile Properties..................................................................................................64 Detailed Cross Section...................................................................................................................65 Section Dimensions .......................................................................................................................66 Section Type ..................................................................................................................................67 Section Type ..............................................................................................................................67 Circular Section Properties ........................................................................................................67 Circular Section Properties.....................................................................................................67 Edit Bar Groups......................................................................................................................69 Group Data.............................................................................................................................70 Confined Concrete Option..................................................................................................71 Shear Reinforcement .............................................................................................................73 Miscellaneous ........................................................................................................................73 Confined Concrete Model ......................................................................................................73 Mander Models for Confined Concrete...............................................................................74 Unconfined Concrete .........................................................................................................82

Reinforcement......................................................................................... 83 Longitudinal Reinforcement................................................................................................84

Transverse Reinforcement...................................................................... 87 Steel Jacket............................................................................................. 87 Full-Scale Column without Steel Casing................................................. 88 Half Scale Column With Steel Retrofitting Jacket................................... 90 Conclusions............................................................................................. 91 Rectangular Section Properties .................................................................................................92 Rectangular Section Properties..............................................................................................92 Void Data ...............................................................................................................................94 H-Pile Properties ....................................................................................................................95 H-Pile Properties ................................................................................................................95 Section Dimensions ...........................................................................................................95 Section Orientation.............................................................................................................96 H-Pile Properties ........................................................................................................................96 Pipe Pile Properties....................................................................................................................96 Pipe Pile Properties................................................................................................................96 Material Properties .........................................................................................................................96 Material Properties .....................................................................................................................96 Default Stress/Strain Curves ......................................................................................................96 Custom Stress/Strain .................................................................................................................97

2

Section Stress-Strain Plot ..........................................................................................................98

Soil Tab ................................................................................................... 99 Soil Tab............................................................................................. 99 Soil Layer Data ............................................................................... 101 Elevations ....................................................................................... 102 Soil Table........................................................................................ 102 Soil Layer Models ........................................................................... 104 Soil Layer Models.............................................................................................................................104 Soil Dynamics Dialog .......................................................................................................................108 Soil Model Plot .................................................................................................................................108 Printable Soil Graph .........................................................................................................................110 Advanced Soil Data..........................................................................................................................112

Soil Strength Criteria ...................................................................... 113 Soil Strength Criteria ........................................................................................................................113 SPT Window ....................................................................................................................................114

Pier Tab................................................................................................. 115 Pier Tab .......................................................................................... 115 Taper Data...................................................................................... 116 Pier Geometry ................................................................................ 117 Pier Geometry..................................................................................................................................117 Pier Rotation Angle ..........................................................................................................................119 Bearing Locations ............................................................................................................................120 Bearing Angle ..................................................................................................................................121

Pier Cross Section Type................................................................. 122 Pier Cross Section Type ..................................................................................................................122 Gross Section Pier Properties..........................................................................................................122 Gross Pier Component Properties ...............................................................................................122 Pier Components .........................................................................................................................123 Database Section Selection .........................................................................................................124 Section Data.................................................................................................................................125 Section Properties........................................................................................................................126 Parabolic Taper Cantilever Properties .........................................................................................126 Full Cross Section Pier Properties ...................................................................................................127 Full Pier Component Properties ...................................................................................................127 Section Dimensions .....................................................................................................................128 Section Type ................................................................................................................................130 Section Type ............................................................................................................................130 Circular Section Properties ......................................................................................................130 H-Pile Properties ..................................................................................................................130 Rectangular Section Properties ...............................................................................................130 H-Pile Properties ..................................................................................................................130 H-Pile Properties ......................................................................................................................130 Bullet Section Properties..........................................................................................................130 Bullet Section Properties ......................................................................................................130 Group Data...........................................................................................................................131 Void Data .............................................................................................................................132 Cross Section Orientation ....................................................................................................132 Material Properties .......................................................................................................................133

Bent Cap ............................................................................................... 133 2D Bridge View............................................................................... 133 Wall Structure........................................................................................ 133 Sound Wall Explanation ................................................................. 133 Extra Members Tab............................................................................... 134 X-Members Tab.............................................................................. 134 Extra Members List......................................................................... 135 Extra Member Sections .................................................................. 135 Nodes Attached .............................................................................. 136 Load Tab ............................................................................................... 136 Load Tab......................................................................................... 136

3

Load Case ...................................................................................... 139 Buoyancy .............................................................................................. 140 Node Applied .................................................................................. 140 Loads .............................................................................................. 140 Bearing Location Loads ........................................................................ 141 Load Table...................................................................................... 142 Load Table .......................................................................................................................................142 Dynamic Loads ............................................................................................................................142 Table Format....................................................................................................................................144 Table Edit Options............................................................................................................................144 Load Case Options ..........................................................................................................................144

AASHTO Load Table...................................................................... 145 AASHTO Load Table .......................................................................................................................145 AASHTO Table Format ....................................................................................................................146 AASHTO Table Edit Options............................................................................................................146 AASHTO Load Case Options...........................................................................................................147

Spring Tab............................................................................................. 147 Spring Tab ...................................................................................... 147 Spring Stiffness .............................................................................. 148 Spring Nodes .................................................................................. 148 Discrete Mass/Damper Tab .................................................................. 149 Mass/Damper Tab .......................................................................... 149 Mass/Dampers in 3D View ............................................................. 149 Retaining Tab........................................................................................ 151 Retaining Tab ................................................................................. 151 Soil Layer........................................................................................ 152 Wall and Layer Geometry............................................................... 152 Retaining Wall Explanation............................................................. 153 Soil Layer Data ............................................................................... 154 Soil Layer Data ................................................................................................................................154 Retaining Wall Soil Layer Data ........................................................................................................155

Wall Load Data ............................................................................... 155 Wall Load Data ................................................................................................................................155 Surcharge ........................................................................................................................................155

Bridge Data Edit .......................................................................................... 156 Bridge Tab............................................................................................. 156 Bridge Tab ...................................................................................... 156 Edit Supports .................................................................................. 158 Edit Custom Bearings..................................................................... 159 Edit Span ........................................................................................ 160 Add Substructure............................................................................ 163 Span End Condition........................................................................ 164

Model View Windows

165

Soil Edit Window.......................................................................................... 165 Soil Edit Window ................................................................................... 165 Pile Edit Window.......................................................................................... 166 Pile Edit Window ................................................................................... 166 Zoom Feature Tutorial .................................................................... 168 Pile Data................................................................................................ 168 Edit Cap Thickness ............................................................................... 169 Custom Grid Spacing ............................................................................ 169 Bridge Plan View Window ........................................................................... 170 3D View Window ......................................................................................... 170 3D View Window ................................................................................... 170 Element Data Dialog ............................................................................. 173

4

Program Results

174

Pile Results.................................................................................................. 174 Pile Results ........................................................................................... 174 Pile Selection ........................................................................................ 174 Plot Display Control............................................................................... 175 Graphs .................................................................................................. 176 Printable Forces Dialog......................................................................... 177 Pier Results ................................................................................................. 179 Pier Results........................................................................................... 179 Pier Selection ........................................................................................ 179 Graphs .................................................................................................. 180 Printable Forces Dialog......................................................................... 180 Pier Cross Section Table ...................................................................... 182 Pile Interaction ............................................................................................. 185 Interaction Diagrams ............................................................................. 185 Pile Selection ........................................................................................ 185 Pile Segment Selection ......................................................................... 186 Pile Element Selection .......................................................................... 187 Interaction Diagram............................................................................... 188 Pier Interaction ............................................................................................ 189 Pier Selection ........................................................................................ 189 Pier Segment Selection ........................................................................ 190 Pier Element Selection.......................................................................... 191 3D Results ................................................................................................... 192 3D Results............................................................................................. 192 3D Results Window............................................................................... 193 3D Results Dynamic Options ................................................................ 196 Result Forces Dialog............................................................................. 197 3D Display Control ................................................................................ 198 3D Display Control.......................................................................... 198 Display Control ............................................................................... 200 Node Information ............................................................................ 202 Max Min Forces Dialog................................................................... 202 XML Report Generator ................................................................................ 203 XML Report Generator.......................................................................... 203 Results Viewer............................................................................................. 205 Results Viewer ...................................................................................... 205

General Modeling

206

Column Connection to the Pile Cap ............................................................ 206 Taper Modeling............................................................................................ 207 Bridge Span Overview................................................................................. 210 Node Numbering ......................................................................................... 213 Span Length Calculation ............................................................................. 214 Preliminary Soil Values................................................................................ 216

Bridge Span Modeling

216

Deck Modeling ............................................................................................. 216 Transfer Beam Properties ........................................................................... 219 Rigid Link Properties ................................................................................... 220 Bearing Pad Properties ............................................................................... 221 Bridge Span Dead Load .............................................................................. 224 Transfer Beam ............................................................................................. 229 Wind Generator ........................................................................................... 232 Bridge Span Element Numbering ................................................................ 234

5

Setup Options

235

Expanding Memory...................................................................................... 235 The FB-MultiPier Engine can be adjusted to allow larger pile system solutions. If the problem is to large for the current settings the engine will generate a error message like: ........................................................................................................ 235 Not enough Memory.............................................................................. 235 You can correct this from the Program Settings Dialog in the control menu in the interface as mentioned above............................................................... 235 Program Settings ......................................................................................... 235

FB-Pier License Installation

236

License File.................................................................................................. 236 FB-MultiPier operates using a license file to determine its status. All shipped versions run in Demo mode as the default. The program can be "unlocked" into various modes including full version and student version, networked or stand-alone. This unlocking can be done by hand, through phone contact with the Bridge Software Institute ( http://bsi-web.ce.ufl.edu ) or automatically through an internet connection to the BSI web server................................................................................ 237 The program requires a license file to be installed. This license file is linked to the computer on which it is installed. .......................................................... 237 The following describes the modes and processes required:............... 237 E-mail/Fax/Phone License Update ....................................................... 238 FB-MultiPier License Installation Help......................................................... 239 Update a License on a Stand Alone Workstation........................................ 240 Update/Install a License on a Network Server ............................................ 241 License Update Tutorial ........................................................................ 242 Set Client Path for a License File on a Network Server .............................. 242 Transfer License to a Different Computer ................................................... 244

Toolbar Icons

246

DESCRIPTION OF TOOLBAR ICONS ....................................................... 246 General Pier Wizard .................................................................................... 248

Batch Analysis

249

Batch Mode.................................................................................................. 249 Running FBPier_eng in Batch Mode ........................................................... 250

Soil-Pile Interaction

251

Axial Efficiency ...................................................................................... 255 Soil Resistance Due to Pile Rotation........................................................... 255 This option is used for the program to calculate and apply rotational springs to the pile nodes in the ground. These springs are based on the axial resistance of the piles (skin friction) as well as the rotation of the piles. It is particularly important in soil layers where the piles can develop large values of skin friction. ..................................................................................................................................256 Calculation of bending strains ..........................................................................................................256

Soil’s Lateral Resistance P(F/L) Form Bending Moments and Skin Friction ........................................................................................................ 256 Moment Due to Side Shear, Ms ..................................................... 257 Soil Properties ............................................................................................. 258 Lateral Soil-Pile Interaction.......................................................................... 265 Figure B17: Reese et al (1975) Static P-Y Curve for Stiff Clay Located Below the Water Table .274

P-Y Resistance for Florida Limestone (McVay) .................................... 275 Limestone (McVay no 2 - 3 Rotation) .................................................. 277 Sand (API)............................................................................................. 280 Clay (API) .............................................................................................. 281 Axial Soil-Pile Interaction............................................................................. 281

6

Axial Soil-Pile Interaction ...................................................................... 281 Driven Pile Sand (API) .......................................................................... 282 Driven Pile Clay (API) ........................................................................... 282 Axial T-Z Curve for Side Friction........................................................... 283 Axial Skin Friction for Florida Limestone (McVay).......................... 284 Drilled and Cast Insitu Piles/Shafts ................................................ 288 Axial T-Z(Q-Z) Curve for Tip Resistance .............................................. 293 Driven Pile Sand (API)_QZ............................................................. 295 Driven Pile Clay (API)_QZ.............................................................. 295 Drilled and Cast Insitu Piles/Shafts ................................................ 296 Torsional Soil-Pile Interaction...................................................................... 301

Finite Element Theory

303

Finite Element.............................................................................................. 303 Membrane Element ..................................................................................... 304 Plate Element .............................................................................................. 304 Flat Shell Elements...................................................................................... 306 Mindlin Theory ............................................................................................. 307 Special Element for FB-MultiPier................................................................. 309 Mesh Correctness and Convergence .......................................................... 310 The difference in element stresses at a node is an important measure of model correctness. In general, we do not have the exact displacements in order to check our model. Hence, the stress check is necessary to verify convergence of our model. If the difference in stresses between elements is small the finite element mesh is good. ..................................................................................................... 311

Nonlinear Behavior

311

Nonlinear Behavior ...................................................................................... 311 Discrete Element Model .............................................................................. 311 Discrete Element Model ........................................................................ 311 Discrete element model is elaborated in the following sections (use the links): ...........................312

Element Deformation Relations ............................................................ 312 Integration of Stresses .......................................................................... 314 Element End Forces.............................................................................. 317 Element Stiffness .................................................................................. 317 Stress-Strain Curves ................................................................................... 319 Stress-Strain Curves ............................................................................. 319 Concrete................................................................................................ 319 Mild Steel .............................................................................................. 320 High Strength Prestressing Steels ........................................................ 321 Adjustment for Prestressing.................................................................. 322 When piles are prestressed prior to installation, there are stresses and strains existing at the time of installation cue to the prestressing. The program shifts the origin of the stress-strain curve for the steel by the amount of the prestressing stress in the steel and the corresponding steel strain. Also, the program shifts the origin of the concrete stress-strain curve by the amount of compression in the concrete and the corresponding concrete strain. It is assumed that the prestressing is symmetrically placed and thus only a constant compressive stress is developed in the concrete due to the prestressing. ....................................................................................................................................322

Confined Concrete Model............................................................................ 322 Bi-axial Interaction diagram ......................................................................... 322 Assumptions and Features for the Biaxial Interaction Diagram ..... 322 Failure (Demand/Capicity) Ratio for Cross Sections ............................ 326 Nonlinear Solution Strategies ...................................................................... 327 Nonlinear Solution Strategies ............................................................... 327

7

Equivalent Stiffness Formulation

329

Equivalent Stiffness Generation .................................................................. 329 Converting FB-MultiPier Coordinates to a Standard Coordinate System ... 331

Engine Input Users Guide

335

Engine Input Overview ................................................................................ 335 Global Headers............................................................................................ 335 Header .................................................................................................. 335 Print Control .......................................................................................... 336 General Control..................................................................................... 337 Multiple Pier Substructure Information.................................................. 340 Superstructure Information ................................................................... 342 User Defined Bearing Connection ........................................................ 346 Self Weight and Buoyancy Load Factors.............................................. 348 Bridge Spring Toggle ............................................................................ 348 Case #1................................................................................................................................348 Case #2................................................................................................................................348 Case #3................................................................................................................................348 Case #n................................................................................................................................348

Pushover ............................................................................................... 349 Combination (AASHTO)........................................................................ 349 COMBINATION .............................................................................. 350 Modify Load Factors.............................................................................. 351 Dynamic Control Parameters................................................................ 353 Dynamic Step by Step Integration ........................................................ 356 T1,F1 T2,F2 T3,F3 T4,F4......................................................................................................357

Spectrum Analysis ................................................................................ 357 Span Concentrated Nodal Loads.......................................................... 360 Pier Specific Headers .................................................................................. 362 Pile Information ..................................................................................... 362 For Nonlinear Analysis of Oblong Piers, used with NLOPT=2 and KTYPE=4 NOTE: This type is ONLY available for pier elements NOT for piles. .....................................................................379

Multiple Pile Sets................................................................................... 386 PILESET ......................................................................................... 386 PILESET ......................................................................................... 386 Pile Batter Information .......................................................................... 387 Missing Pile Data .................................................................................. 388 Multiple Soil Sets................................................................................... 397 SOILSET......................................................................................... 398 SOILSET......................................................................................... 398 Structural Information............................................................................ 398 SOUND........................................................................................... 402 STRUCTURE ................................................................................. 417 Column Information............................................................................... 418 Concentrated Nodal Loads ................................................................... 419 Wind Load Generation .......................................................................... 422 Spring Properties .................................................................................. 425 Pile Cap Properties ............................................................................... 427 Removed Pile Cap Element.................................................................. 427 Removed Pier Cap Element ................................................................. 428 Bearing Connection............................................................................... 429 Point Mass ............................................................................................ 430 MASS.......................................................................................................................................430 NS,NF,NI M=MX,MY,MZ,MRX,MRY,MRZ ..............................................................................430

Point Dampers ...................................................................................... 431 DAMP.......................................................................................................................................431

8

NS,NF,NI C=MX,MY,MZ,MRX,MRY,MRZ................................................................................431

Dynamic Load Function Application...................................................... 432 NF,NL,NI L=LCN F=L1,L2,L3,L4,L5,L6 M= MODEXF D=FUNC .............................................432

Post Processing Formats

433

POST PROCESSING FILE FORMATS ...................................................... 433 Multiple Pier Generation .............................................................................. 433 Pier to Superstructure Connectivity............................................................. 434 Geometry and Control Information .............................................................. 437 Npset ..................................................................................................... 437 Is the number of pile sets for the piles. ................................................. 437 Nseg1, nseg2, nseg3, ….. nsegN ......................................................... 437 Name..................................................................................................... 438 NUMNP, nstr, kbent .............................................................................. 438 X, Y, Z ................................................................................................... 439 Idx, idy, idz, idrx, idry, idrz..................................................................... 439 Mtype, nume................................................................................... 440 DX, DY, DZ, RX, RY, RZ ...................................................................... 440 MINIMUMS............................................................................................ 441 Pile Data ...................................................................................................... 442 NUMPN, NUMLC .................................................................................. 443 NPX, NPY, nmpil, npil, kfix, nplnod....................................................... 443 TPL, GSE .............................................................................................. 444 Axial Forces for Beam Elements ................................................................. 445 Mtype, nume................................................................................... 445 Axial ................................................................................................ 446 Maximum Moments in Beam Elements ....................................................... 446 Mtype, nume................................................................................... 446 Rmom ............................................................................................. 446 Stresses of Pile Cap .................................................................................... 447 Capacity Information.................................................................................... 447 Nxpile, nxstruc....................................................................................... 447 PTUV, YPC, ZPC .............................................................................................................................448

Shear and Moment Results ......................................................................... 449 W, V2I, V3I, V2J, V3J, XMI2, XMI3, XMJ2, XMJ3, XMMAX, XML, FRATI, FRATJ, AXLI, AXLJ............................................................................................ 450 Analysis Convergence Information.............................................................. 450 Mode Shape and Frequency Information (Response Spectrum Analysis) . 452 AASHTO Load Combination Results .......................................................... 454

References 455 References .................................................................................................. 455

Tutorials

458

Tutorial Index ............................................................................................... 458

9

Segment Selection

460

Confined Concrete Model References

460

AASHTO Table

463

AASHTO Table

464

P-Y Multiplier Reduction for Shaft with Torsion

464

Barge Impact

466

BARGE ........................................................................................................ 466

3D Bridge View

467

Calculating Foundation Stiffness Using FB-MultiPier

468

Sound_Wall_Eplanation

470

3D 3D Display Control .................................................................... 470 3D 3D Results ....................................................................................... 470 3D Display Control.......................................................................... 470 3D Node Information ...................................................................... 471 3D Results Dynamic Options ................................................................ 471 3D Results Window............................................................................... 471 AASH AASHTO Load Factors Table.............................................. 471 AASH Automated AASHTO Loads................................................. 471 AASH Limit States to Check........................................................... 472 AASHTO Load Case Options...........................................................................................................472

AASHTO Load Combination Preview Table................................... 472 AASHTO Load Combination Results .......................................................... 472 AASHTO Load Manager................................................................. 472 AASHTO Load Table .......................................................................................................................473 AASHTO Table Edit Options............................................................................................................473 AASHTO Table Format ....................................................................................................................473

Add Substructure............................................................................ 473 Adjustment for Prestressing.................................................................. 473 Analysis Convergence Information.............................................................. 473 Analysis Type ................................................................................. 474 Angle of Internal Friction ....................................................................... 474 AP 1020 Pile Pier Behavior ............................................................ 474 AP 1033 Iteration Control ............................................................... 474 AP 1123 Print Control..................................................................... 474 AP 1211 Soil Behavior.................................................................... 475 AP 1258 Design Options ................................................................ 475 AP 1708 Interaction Diagram Phi Factor........................................ 475 Axial Forces for Beam Elements ................................................................. 475 Axial Skin Friction for Florida Limestone ........................................ 475 Axial Soil Pile Interaction ...................................................................... 476 Axial T Z Curve for Side Friction .................................................... 476 Axial T Z Q Z Curve for Tip Resistance.......................................... 476 Batch Mode.................................................................................................. 476 Bearing Connection............................................................................... 476 Bearing Location Loads ........................................................................ 477 Bearing Pad Properties ............................................................................... 477 Bearing Rotation ..............................................................................................................................477

10

Bridge Multiple Piers Option ........................................................... 477 Bridge Span Overview................................................................................. 477 Bridge Spring Toggle ............................................................................ 478 Bridge Tab ...................................................................................... 478 Cap Behavior .................................................................................. 478 CAP Edit Cap Thickness....................................................................... 478 Capacity Information.................................................................................... 478 CD Custom Stress Strain .........................................................................................................479

Clay API ................................................................................................ 479 ClayEnd ...........................................................................................................................................479 ClaySide...........................................................................................................................................479

Column Connection to the Pile Cap ............................................................ 479 Column Information............................................................................... 479 Combination AASHTO .......................................................................... 480 Concentrated Nodal Loads ................................................................... 480 Conclusions........................................................................................... 480 Concrete................................................................................................ 480 CONFINED CONCRETE MODEL....................................................................................480

Control Menu ............................................................................................... 481 Converting FB Pier Coordinates to a Standard Coordinate System ........... 481 Deck Modeling ............................................................................................. 481 DESCRIPTION OF TOOLBAR ICONS ....................................................... 481 Discrete Element Model ........................................................................ 481 DrilledEnd ........................................................................................................................................482 DrilledSide........................................................................................................................................482

Driven Pile Clay API.............................................................................. 482 Driven Pile Clay API QZ ................................................................ 482 Driven Pile Sand API............................................................................. 482 Driven Pile Sand API QZ ............................................................... 483 DrivenEnd ....................................................................................... 483 DrivenSide ...................................................................................... 483 Dynamic Control Parameters................................................................ 483 Dynamic Load Function Application...................................................... 483 Dynamic Step by Step Integration ........................................................ 483 Dynamics Tab................................................................................. 484 Edit Custom Bearings..................................................................... 484 Edit Load Functions........................................................................ 484 Edit Span ........................................................................................ 484 Edit Supports .................................................................................. 484 Element Deformation Relations ............................................................ 485 Element Dialog...................................................................................... 485 Element End Forces.............................................................................. 485 Element Stiffness .................................................................................. 485 Engine Input Overview ................................................................................ 485 Equivalent Stiffness Generation .................................................................. 486 Expanding Memory...................................................................................... 486 Failure Ratio for Cross Sections ........................................................... 486 FB PIER LICENSE INSTALLATION HELP ................................................. 486

FB Pier1

486

Figure B 2.............................................................................................. 487 Figure B 3.............................................................................................. 487 File Menu ..................................................................................................... 487 FINITE ELEMENT ....................................................................................... 487 Flat Shell Elements...................................................................................... 487 Full Scale Column without Steel Casing ............................................... 488

11

General Control..................................................................................... 488 General Pier Wizard .................................................................................... 488 Generalized Stress and Strain..................................................................... 488 Geometry and Control Information .............................................................. 488 GRID 2094 Grid Spacing Table...................................................... 489 GRID Custom Grid Spacing.................................................................. 489 Gross Pier Component Properties ...............................................................................................489 Gross Pile Properties ...................................................................................................................489

Group Interaction ......................................................................................... 489 Half Scale Column With Steel Retrofitting Jacket................................. 490 Header .................................................................................................. 490 Help Menu ................................................................................................... 490 High Strength Prestressing Steels ........................................................ 490 HP H Pile Properties ........................................................................................................490 HP Section Dimensions....................................................................................................491 HP Section Orientation.....................................................................................................491

Hyperbolic Curve................................................................................... 491 ID Interaction Diagram .......................................................................... 491 ID Interaction Diagrams ........................................................................ 491 ID Pier Selection ................................................................................... 491 ID Pile Selection.................................................................................... 492 Integration of Stresses .......................................................................... 492 INTERACTION DIAGRAMS ................................................................. 492 Intermediate GeomaterialQZ............................................................................................................492 Intermediate GeomaterialTZ ............................................................................................................492

Lateral Soil Pile Interaction ................................................................... 493 LE Database Section Selection....................................................................................................493 LE Parabolic Taper Cantilever Properties ....................................................................................493 LE Pier Components ....................................................................................................................493 LE Section Data ...........................................................................................................................493 LE Section Properties ..................................................................................................................494

License File.................................................................................................. 494 Limestone McVay use 2 3 Rotation ...................................................... 494 Load Function Edit Table................................................................ 494 LOAD Load Case Options................................................................................................................494 LOAD Load Table ............................................................................................................................494 LOAD Table Edit Options.................................................................................................................495 LOAD Table Format .........................................................................................................................495 Longitudinal Reinforcement..............................................................................................495 LP Database Section Selection....................................................................................................495 LP Full Cross Section Pile Properties ..........................................................................................495

LP Load Case ................................................................................. 496 LP Loads......................................................................................... 496 LP Node Applied............................................................................. 496 LP Pile Set Info ............................................................................................................................496 LP Pile Shaft Segment List ..........................................................................................................496 LP Section Properties ..................................................................................................................496 LP Section Type...........................................................................................................................497 LP Segment Dimensions..............................................................................................................497 Mander Models for Confined Concrete.............................................................................497

Mass Damper Tab .......................................................................... 497 Mass Dampers in 3D View ............................................................. 497 Matlock s Soft Clay Below Water Table................................................ 498 Max Min Forces Dialog................................................................... 498 Maximum Moments in Beam Elements ....................................................... 498 MEM Extra Member Sections......................................................... 498 MEM Extra Members List ............................................................... 498 MEM Nodes Attached..................................................................... 499

12

Membrane Element ..................................................................................... 499 Mesh Correctness and Convergence .......................................................... 499 Mild Steel .............................................................................................. 499 Mindlin Theory ............................................................................................. 499 Missing Pile Data .................................................................................. 500 MLE Section Type....................................................................................................................500

Mode Shape and Frequency Information Response Spectrum Analysisi ... 500 Modify Load Factors.............................................................................. 500 Multiple Pier Generation .............................................................................. 500 Multiple Pier Substructure Information.................................................. 501 Multiple Pile Sets................................................................................... 501 Multiple Soil Sets................................................................................... 501 NLE Full Pier Component Properties ...........................................................................................501 NLE Section Dimensions .............................................................................................................501 NLP Material Properties ...........................................................................................................501 NLP Section Dimensions .............................................................................................................502 NLP Section Type ....................................................................................................................502

NONLINEAR BEHAVIOR ............................................................................ 502 Nonlinear Solution Strategies ............................................................... 502 O Neill s Clay ........................................................................................ 502 O Neill s Sand ....................................................................................... 503 OP Bullet Section Properties................................................................................................503 OP Cross Section Orientation ..............................................................................................503 OP Group Data ....................................................................................................................503 OP Void Data .......................................................................................................................503

P Y Resistance for Florida Limestone................................................... 504 PAD Bearing Locations ....................................................................................................................504

PI Pile Data ........................................................................................... 504 Pier Cross Section Table ...................................................................... 504 Pier Element Selection.......................................................................... 504 Pier Rotation Angle ..........................................................................................................................504

Pier Segment Selection ........................................................................ 505 Pier to Superstructure Connectivity............................................................. 505 Pile Batter Information .......................................................................... 505 Pile Cap Properties ............................................................................... 505 Pile Data ...................................................................................................... 505 Pile Element Selection .......................................................................... 506 Pile Information ..................................................................................... 506 Pile Segment Selection ......................................................................... 506 Pipe Pile Properties..............................................................................................................506

Plate Element .............................................................................................. 506 Point Dampers ...................................................................................... 507 Point Mass ............................................................................................ 507 Poisson s Ratio ..................................................................................... 507 POST PROCESSING FILE FORMATS ...................................................... 507 PP 1044 Pile Cap Grid Geometry .................................................. 507 PP 1087 Pile Cross Section Type .................................................. 508 PP Pile Cap Data............................................................................ 508 PP Pile Length Data ....................................................................... 508 PP Pile Shaft Type ......................................................................... 508 PP Pile to Cap Connection ............................................................. 508 PR Graphs ............................................................................................ 508 PR Pile Results ..................................................................................... 509 PR Pile Selection .................................................................................. 509 PR Plot Display Control ........................................................................ 509 PR Printable Forces .............................................................................. 509 Print Control .......................................................................................... 509

13

Printable Soil Graph .........................................................................................................................510

Program Settings ......................................................................................... 510 PRP 1049 General Pier Option ...................................................... 510 PRP 1050 High Mast Light Sign Option ......................................... 510 PRP 1051 Retaining Wall Option ................................................... 510 PRP 1052 Sound Wall Option ........................................................ 511 PRP 1059 Pile and Cap Option ...................................................... 511 PRP 1060 Single Pile Option.......................................................... 511 PRP 1061 Stiffness Option............................................................. 511 PRP 1062 Column Analysis Option................................................ 511 PRP 1063 Pile Bent Option ............................................................ 511 PRR Graphs.......................................................................................... 512 PRR Pier Results .................................................................................. 512 PRR Pier Selection ............................................................................... 512 PRR Printable Forces Dialog ................................................................ 512 Pushover ............................................................................................... 512 PYM Advanced Soil Data.................................................................................................................513

Reese and Welch s Stiff Clay Above Water Table ............................... 513 Reese s Stiff Clay Below Water Table .................................................. 513 References .................................................................................................. 513 Reinforcement....................................................................................... 513 Removed Pier Cap Element ................................................................. 514 Removed Pile Cap Element.................................................................. 514 Result Forces Dialog............................................................................. 514 Results Viewer ...................................................................................... 514 RET Retaining Wall Soil Layer Data ................................................................................................514

RET Soil Layer ............................................................................... 514 RET Soil Layer Data ........................................................................................................................515 RET Surcharge ................................................................................................................................515

RET Wall and Layer Geometry ...................................................... 515 RET Wall Load Data ........................................................................................................................515

Retaining Wall Explanation............................................................. 515 Rigid Link Properties ................................................................................... 516 RP Circular Section Properties.............................................................................................516 RP Confined Concrete Option..........................................................................................516 RP Edit Bar Groups..............................................................................................................516 RP Group Data.....................................................................................................................516 RP Miscellaneous ................................................................................................................516 RP Shear Reinforcement .....................................................................................................517

Running FBPier eng in Batch Mode ............................................................ 517 Sand API ............................................................................................... 517 Sand of Reese Cox and Koop .............................................................. 517 SandEnd ..........................................................................................................................................517 SandSide .........................................................................................................................................518 SECTION Detailed Cross Section................................................................................................518

Section Properties .......................................................................... 518 Self Weight and Buoyancy Load Factors.............................................. 518 Set Path for a License File on a Network Server ........................................ 518 Shear and Moment Results ......................................................................... 519 Shear Modulus ...................................................................................... 519 Soil Dynamics Dialog .......................................................................................................................519

Soil Information ..................................................................................... 519 SOIL PILE INTERACTION .......................................................................... 519 Soil Properties....................................................................................... 520 Soil Resistance Due to Pile Rotation........................................................... 520 Soil Table........................................................................................ 520 SOILPLOT Soil Model Plot...............................................................................................................520

Sound Wall Explanation ................................................................. 520

14

SP Elevations ................................................................................. 520 SP Rectangular Section Properties......................................................................................521

SP Soil Layer Data ......................................................................... 521 SP Soil Layer Models.......................................................................................................................521 SP Soil Strength Criteria ..................................................................................................................521 SP Void Data........................................................................................................................521

Span Concentrated Nodal Loads.......................................................... 522 Span End Condition........................................................................ 522 Special Element for FB-PIER ...................................................................... 522 Spectrum Analysis ................................................................................ 522 SPR Spring Nodes ......................................................................... 522 SPR Spring Stiffness ...................................................................... 523 Spring Properties .................................................................................. 523 SPT Window ....................................................................................................................................523 SS Default Stress Strain Curves ..............................................................................................523 SSPLOT Section Stress Strain Plot .........................................................................................523

Steel Jacket........................................................................................... 523 STP Cross Section Type..................................................................................................................524 STP Pier Geometry ..........................................................................................................................524

STP Taper Data.............................................................................. 524 Stress Strain Curves ............................................................................. 524 Stresses of Pile Cap .................................................................................... 524 Structural Information............................................................................ 525 Subgrade Modulus ................................................................................ 525 Superstructure Information ................................................................... 525 TAB 130 Soil Tab ........................................................................... 525 TAB 132 Pile and Cap Tab............................................................. 525 TAB 134 Pier Tab ........................................................................... 526 TAB 135 Load Tab ......................................................................... 526 TAB 136 Analysis Tab .................................................................... 526 TAB 137 Problem Tab .................................................................... 526 TAB 243 Spring Tab ....................................................................... 526 TAB 282 X Members Tab ............................................................... 526 TAB 285 AASHTO Tab................................................................... 527 TAB 290 Retaining Tab .................................................................. 527 TAB 298 Pushover Tab .................................................................. 527 Taper Modeling............................................................................................ 527 Torsional Soil Pile Interaction ............................................................... 527 Transfer Beam Properties ........................................................................... 528 Transfer License to a Different Computer ................................................... 528 Transverse Reinforcement.................................................................... 528 Tutorials ....................................................................................................... 528 Unconfined Concrete .......................................................................................................528

Undrained Strength ............................................................................... 529 Update a License on a Network Server....................................................... 529 Update a License on a Stand Alone Workstation........................................ 529 User Defined Bearing Connection ........................................................ 529 User DefinedPY .................................................................................... 529 User DefinedQZ.............................................................................. 530 User DefinedTq ..................................................................................... 530 User DefinedTZ .............................................................................. 530 View Menu ................................................................................................... 530 Water Table........................................................................................... 530

What s New in Version 3

530

WIN 3D View Window ........................................................................... 531 WIN Pile Edit Window ........................................................................... 531

15

WIN Soil Edit Window ........................................................................... 531 Wind Load Generation .......................................................................... 531 Wind Load Generation Table.......................................................... 531 Wizard Menu................................................................................................ 532 XML Report Generator.......................................................................... 532 Young s Modulus .................................................................................. 532

16

FB MultiPier

What’s New in FB-MultiPier? What's New in FB-MultiPier (FB-Pier v4)? FB-MultiPier is the newest development of the FB-Pier program. FB-MultiPier is based on the proven accuracy and reliability of FB-Pier with changes to the interface and features that make it even more powerful. The name has changed to reflect the new capabilities and to keep the two product lines separate.

Multiple Pier Modeling

Unique piers Each pier can have an entire different set of properties, including: pier geometry, pile group size, soil strata, loads, etc. Each pier can also have its own elevation. Up to 99 piers can be easily generated to rapidly layout an entire bridge. The 2D Bridge window shows the bridge layout in plan and the 3D Bridge window shows the 3D visualization of the bridge.

Pier rotation Each pier can have a rotation about the vertical (z) axis. This is ideal for modeling skew bridges and radial piers on curved alignments.

Bridge superstructure The bridge superstructure is incorporated into the model using an equivalent beam that connects the centerline of two piers. The bearing connections at the pier supports can be released, constrained, or user-defined using a custom load-displacement curve.

Two rows of bearing locations Two independent lines of bearings accommodate the transfer of load from the bridge superstructure to the piers. Because the bearings are offset from the center of the pier cap, any pier cap torque induced from unequal spans is automatically included.

17

Wind Load Generation Wind loads can be applied to the entire bridge at once. The resulting loads are transferred to the bearings at each pier.

Dynamic Pier Analysis – Special Release Available

Time step integration Time history load functions and ground acceleration records can be applied to the model. Different time step integration methods are available as well as a variety of analysis control parameters. Concentrated masses and dampers can be added to the model to simulate added mass and energy dissipation effects.

Modal analysis The modal analysis option performs a frequency analysis of the model. Both frequencies and mode shapes are provided as output results.

Dynamic soil modeling Soil gap modeling is available to model energy dissipation due to hysteretic damping. Cyclic degradation parameters are also available to modify the lateral soil response during dynamic loading.

Animated results The 3D model displacement results can be animated for a time step integration analysis. Animation results can be played and paused and a slider bar is provided for selectively viewing individual time step results.

Time-Displacement plots The displacement results for any model node can be plotted over time.

Seismic database Ground acceleration records and response spectrums are provided for notable earthquakes.

18

Program Menus File Menu

The File menu handles the problem creation, file access, printing, and exiting the program.

Create a new problem Open an existing problem Close current problem Save current problem Prints the active window Access the printer setup

Previously opened files

Exit the program Figure A7: File Menu Options

View Menu

The View menu controls the appearance of the toolbar at the top of the screen and the status bar at the bottom of the screen.

19

Show/hide toolbar Show/hide status bar Show/hide 3D control (zoom) bar

Figure A8: View Menu Options

Control Menu

The Control menu allows the user to access the output data from the program, log file options, program settings, access to the license update wizard, and control the appearance of the fonts used in the dialogs, graphics, and plots.

Figure A9: Control Menu Options

The Program Settings option will open the Program Settings Dialog with options for pile nodes, water tables and memory settings.

Wizard Menu

The Wizard menu provides access to General Pier Wizard. Following the steps provided by the wizard the user can quickly create a customized general pier model.

20

Figure A11: Wizard Menu Options

Help Menu

The Help menu provides access to the online help manual. The Help About option is provided to list the version number of the program and current system settings.

Figure A10: Help Menu Options

Help About Tutorial

Model Data Global Data Edit New Project/Problem Tab New Project/Problem Tab

Select a new problem type in the "Select a New Problem Type" window, or . . .

21

Figure A13: New Problem Tab

Change an existing one in the "Model Data" window.

Choose from the following problem types to view a picture of each standard type (default problems):

1.

General Pier Option

2.

Pile and Cap Option

3.

Single Pile Option

4.

High Mast Light/Sign Option

5.

Retaining Wall Option

6.

Sound Wall Option

7.

Stiffness Option

8.

Pile Bent Option

9.

Column Analysis Option

10.

Bridge (Multiple Piers) Option

Select the unit type (English or Metric) in the "Select a New Problem Type" window.

22

General Pier Option

Figure A14: General Pier Model

Select this option to begin a typical pier problem.

For complete a list of problem options go to the Problem Tab page.

Pile and Cap Option

23

Figure A15: Pile and Cap Model

Select this option to begin a typical pile and cap problem.

For complete a list of problem options go to the Problem Tab page.

Single Pile Option

24

Figure A16: Single Pile Model

Select this option to begin a typical pile problem.

For complete a list of problem options go to the Problem Tab page.

High Mast Light/Sign Option

25

Figure A17: High Mast, Light/Sign Model

Select this option to begin a typical high mast light/sign problem.

For complete a list of problem options go to the Problem Tab page.

Retaining Wall Option

26

Figure A18: Retaining Wall Model

Select this option to begin a typical retaining wall problem.

Note: With this option, the Pier page becomes the Wall Structure page.

For complete a list of problem options go to the Problem Tab page.

Sound Wall Option

27

Figure A19: Sound Wall Model

Select this option to begin a typical sound wall problem.

Note: With this option, the Pier page becomes the Wall Structure page.

For complete a list of problem options go to the Problem Tab page.

Stiffness Option

28

Figure A20: Stiffness Model

Select this option to begin a typical stiffness problem.

For complete a list of problem options go to the Problem Tab page.

Pile Bent Option

29

Figure A21: Pile Bent Model

Select this option to begin a typical pile bent problem.

Note: With this option, the Pier page becomes the Bent Cap page.

For complete a list of problem options go to the Problem Tab page.

Column Analysis Option

30

Figure A22: Column Model

Select this option to begin a typical column problem.

For complete a list of problem options go to the Problem Tab page.

Bridge (Multiple Piers) Option

31

Figure A23: Bridge Model

Select this option to begin a typical bridge (multiple piers) problem.

For complete a list of problem options go to the Problem Tab page.

Analysis Tab Analysis Tab

32

Pile/Pier Behavior allows linear or nonlinear material behavior. Cap Behavior allows bearing capacity of cap to be included. The "Axial Bearing Effects" option is used to model the soil reaction on the bottom of the pile cap. This is done by assigning vertical soil springs to each of the nodes in the pile cap. The "Gap to Soil" parameter is used to specify an initial gap between the bottom of the pile cap and the ground surface. If the loading is sufficient to close this gap, then the analysis will consider the vertical soil reaction on the pile cap. Otherwise, the vertical soil reaction will not be considered. The Soil Behavior option "Include Soil in Analysis" is enabled by default and causes the program to model soil in the analysis. Unchecking this option removes the soil and requires the user to enter pile tip spring stiffness to restrain the model. Use very large springs since the stiffness is only added on the diagonal. Print control options determine what information is printed in the output file.

Figure A24: Analysis Tab

Choose options in the following categories:

1.

1.

1.

1.

1.

1.

1.

1.

Pile/Pier Behavior

2.

2.

2.

2.

2.

2.

2.

2.

Cap Behavior

3.

3.

3.

3.

3.

3.

3.

3.

Section Properties

33

4.

4.

4.

4.

4.

4.

4.

4.

Soil Behavior

5.

5.

5.

5.

5.

5.

5.

5.

Iteration Control

6.

6.

6.

6.

6.

6.

6.

6.

Interaction Diagram Phi Factor

7.

7.

7.

7.

7.

7.

7.

7.

Analysis Type

8.

8.

8.

8.

8.

8.

8.

8.

Design Options

9.

9.

9.

9.

9.

9.

9.

9.

Print Control

Pile/Pier Behavior

One may select either linear or nonlinear behavior of the pier and the piles.

Linear Behavior:

• Assumes the behavior is purely linear elastic. • Deflections do not cause secondary moments; no P-delta moments (moments of the axial force times the displacements of one end of element to another).

Nonlinear Behavior:

• Uses input or default stress strain curves which are integrated over the cross-section of the piles or pier components. Full cross-section properties must be described for non-linear analysis to be performed. • Non-linear analysis accounts for second order effects (P-delta) as well as stiffness changes in the structure, as when concrete cracks.

Return to the Analysis Tab page.

Cap Behavior

Check "Axial Bearing Effects" to consider the soil reaction on the bottom of the pile cap in the problem. The program will then use the input soil parameters to create vertical acting soil springs, which are automatically attached to the pile cap nodes.

34

If "Axial Bearing Effects" is checked, the user may also enter a "Gap to Soil" value, specifying the distance from the bottom of the Pile Cap to the ground surface. Return to the Analysis Tab page.

Section Properties

When "Transformed Section" is checked, the program calculates the transformed section properties from the input ‘Full Cross Section’ when the user specifies ‘Linear Analysis’.

Return to the Analysis Tab page.

Soil Behavior

Check "Include Soil in Analysis" to include soil in the problem.

If "Include Soil in Analysis" is unchecked, then enter the stiffness at the tip of the pile.

Use high spring values to model a rigid connection.

Return to the Analysis Tab page.

Iteration Control

Enter the maximum number of iterations that analysis will run before it determines that the solution will not converge.

35

Note: If a small value is entered, the solution may not converge, because it has not been given the chance to finish the calculations. On the other hand, if a very large value is entered, the analysis may take a long time.

A typical value for the number of iterations is 60.

Enter the tolerance between successive iterations that the analysis must reach before providing a solution. Note: This value is typically 1% of the loading.

Return to the Analysis Tab page.

Interaction Diagram Phi Factor

Check "User-defined phi" to enter a custom phi factor, or leave the option unchecked if you want to use the default value.

Return to the Analysis Tab page.

Analysis Type

The Analysis tab offers two types of analysis:

1.

1.

1.

1.

1.

1.

1.

1.

Static

2.

2.

2.

2.

2.

2.

2.

2.

Dynamic

Return to the Analysis Tab page.

36

Design Options

Check "AASHTO Combinations" if you want to select various AASHTO load combinations to use in the analysis.

The AASHTO tab will be enabled once this option is checked.

Load types need to be assigned to each load case when converting an existing model to an AASHTO design model. Load type assignment is done on the Load tab.

Return to the Analysis Tab page.

Print Control

Select the type of output to be printed to an output file from the following:

1.

1. 1.

1.

1.

1.

1.

1.

Pile Displacements

2.

2. 2.

2.

2.

2.

2.

2.

Pile Element Forces

3.

3. 3.

3.

3.

3.

3.

3.

Pile Properties

4.

4. 4.

4.

4.

4.

4.

4.

Missing Pile Information

5.

5. 5.

5.

5.

5.

5.

5.

Pier Displacements

6.

6. 6.

6.

6.

6.

6.

6.

Pier Element Forces

7.

7. 7.

7.

7.

7.

7.

7.

Pier Properties

8.

8. 8.

8.

8.

8.

8.

8.

Soil Response Forces

9.

9. 9.

9.

9.

9.

9.

9.

Soil Data per Layer

10. 10.

10.

10.

10.

10.

10.

10.

Soil Data per Pile Node

11. 11.

11.

11.

11.

11.

11.

11.

Soil Graph per Pile Node

37

12. 12.

12.

12.

12.

12.

12.

12.

Unbalanced Forces

13. 13.

13.

13.

13.

13.

13.

13.

Cap Stresses/Moments

14. 14.

14.

14.

14.

14.

14.

14.

Stress-Strain Curves Data

15. 15.

15.

15.

15.

15.

15.

15.

Bridge/Spring Forces

16. 16.

16.

16.

16.

16.

16.

16.

Interaction Diagram Data

17. 17.

17.

17.

17.

17.

17.

17.

Coordinates

18. 18.

18.

18.

18.

18.

18.

18.

Bridge Span Displacement

19. 19.

19.

19.

19.

19.

19.

19.

Bridge Span Forces

20. 20.

20.

20.

20.

20.

20.

20.

Bridge Span Properties

21. 21. 21. 21. 21. 21. 21. 21. XML Data Printing – Creates XML output file that can be used to extract FB-MultiPier data. See FB-MultiPier XML Specification documentation.

Return to the Analysis Tab page.

AASHTO Tab AASHTO Tab

Select the AASHTO combinations that will be used in the analysis using the following:

1.

1. 1.

1.

1.

1.

1.

1.

AASHTO Load Factors Table

2.

2. 2.

2.

2.

2.

2.

2.

Automated AASHTO Loads

3.

3. 3.

3.

3.

3.

3.

3.

AASHTO Load Manager

4.

4. 4.

4.

4.

4.

4.

4.

Wind Load Generation Table

5.

5. 5.

5.

5.

5.

5.

5.

AASHTO Load Combination Preview Table

6.

6. 6.

6.

6.

6.

6.

6.

Limit States to Check

Note: The AASHTO Combination option in the Design Options section of the Analysis Tab must be selected for this tab to appear.

38

Figure A32: AASHTO Tab

AASHTO Load Factors Table

Edit the individual AASHTO load factors in the table, or reset the values to the default values.

39

Figure A33: AASHTO Load Factor Table

Return to the AASHTO Tab page.

Automated AASHTO Loads

Choose to include self weight and/or buoyancy cases.

For AASHTO LRFD, self weight is included in the "DC" case and buoyancy is included in the "WA" case.

For AASHTO LFD, self weight is included in the "D" case and buoyancy is included in the "B" case.

Return to the AASHTO Tab page.

40

AASHTO Load Manager

The AASHTO Load Manager manages the type and number of load cases in your model. Changes made with this manager apply to every pier.

Figure A34: AASHTO Load Manager Dialog

To add a new load case, select a load case from the "Available Types" list. Then click the "Add" ( > ) button. To change the number of load cases for a particular load type, select a load case from the "Defined Load Cases" list. Load case types which can vary in number will be followed by parenthesis and a number. Example: Live Load (1). In the box below the "Defined Load Cases" list, change the value to the desired number of load cases. This will change the number of load cases for that load type in the "Defined Load Cases" list. Note: certain load case types are grouped together. Example, "Wind on Structure" and "Wind on Live Load". Changing the number of cases for one of these types will automatically change the number of cases for the other type.

41

Wind Load Generator

Enter the wind load parameters.

Click ‘Generate Wind Load Cases’ to convert the wind load to loads at the bearing locations and automatically create wind load cases. Depending on the problem type you will see one of the following dialog boxes.

This dialog appears for the General Pier and Pile Bent Bridge problem type.

Figure A35-a: Wind Load Generation Dialog for Single Pier

This dialog appears for the Bridge problem type.

42

igure A35-b: Wind Load Generation Dialog for Multiple Piers

A wind angle of zero degrees applies all of the wind in the transverse direction. The equations used in the wind load generation are found here.

AASHTO Load Combination Preview Table

Shows the load combination that will be run. Color changes indicate limit states.

43

Figure A36: AASHTO Load Combination Preview Table

Limit States to Check

Select the limit states to check in the analysis.

Note: The program does not display (or analyze) a load combination unless the load types expected in that combination are defined. For example, the STRENGTH-III load combination will not be considered until a dead load type (DC) and a wind load type (WS) are defined. Dead, live, and wind load types are considered mandatory to generate load combinations. All other load types are optional. Check the load combination preview in the AASHTO tab to confirm the generation of specific load combinations.

Return to the AASHTO Tab page.

44

Dynamics Tab Dynamics Tab

The Dynamics Tab provides various options for controlling a dynamic analysis.

Figure A37: Dynamics Tab

Analysis Type Two dynamic analysis types are available. 1.

1. 1. 1. 1. 1. 1. 1. implicit integration to solve for results at every time step.

Time Step Integration - Uses

2.

2. 2. 2. 2. 2. 2. 2. Modal Response Analysis – Applies static loads and then performs a response spectrum analysis using the equilibrium (deformed) position. Performs a CQC of the modal analysis results.

45

This analysis type requires the user to select the number of modes to use in the analysis. Check the modal contribution factors in the printed output file to ensure that at least 90% of the dynamic response is accounted for. The reported analysis results do not include the effect of static loads (i.e. self weight). Adding the static results and response spectrum results may not be conservative and is left to engineering judgment.

Damping Three types of damping input are available. 1.

1. 1. 1. 1. 1. 1. 1. Rayleigh damping. The damping is proportional to the mass and stiffness. Factors can be entered for the pier, piles, and soil.

2.

2. 2. 2. 2. 2. 2. dampers are applied using the Mass/Damper tab.

3.

3. 3. 3. 3. 3. 3. 3. Hysteretic damping. This form of damping is available when gap modeling is enabled for the lateral soil response as well as for nonlinear pile and pier material behavior.

2.

Concentrated dampers. These

Mass Two types of mass modeling are available. 1.

1.

1.

1.

1.

1.

1.

1.

Consistent (distributed) mass.

2.

2.

2.

2.

2.

2.

2.

2.

Lumped (concentrated) mass.

Time Stepping Parameters Three types of time stepping options are available. 1.

1.

1.

1.

1.

1.

1.

1.

Average acceleration (Newmark).

2.

2.

2.

2.

2.

2.

2.

2.

Linear acceleration (Newmark).

3.

3.

3.

3.

3.

3.

3.

3.

Wilson-Theta.

Enter a constant value for the time step to use in the analysis. Enter the number of time steps to consider in the analysis. For a Modal Response Spectrum analysis, enter the number of modes to consider and the damping ratio used for the response spectrum.

Load Functions/Spectrums

46

Two types of load functions are available for a dynamic analysis. 1.

Load (force vs. time)

2.

Ground Acceleration (acceleration vs. time). The gravity factor is used in conjunction with the acceleration record. If the acceleration is in terms of g’s, then the gravity factor would be either 386.4 in/sec2 or 9.81 m/sec2. If the acceleration is already in terms of an acceleration unit, then the gravity factor should be entered as 1.0. Ground Acceleration (acceleration vs. frequency). For response spectrum anaylsis.

Click the "Edit Load Functions " button to define one or more load functions to apply to the model.

Analysis Type Dynamic

Time Step Integration Modal Response

#Nodes

Global Mass Consistent Mass Lumped Mass

Global Damping No Damping

47

Damping

Time Stepping Parameters Average Acceleration Linear Acceleration Wilson Theta

Time Step

Sec.

#Steps

Rayleigh Damping Factors

Mass Pier Piles Soil

48

Stiffness

Model Analysis Damping

Damping Ratio

Time Functions

Applied Load (Load vs Time) Ground Acceleration

G= 366.2 in/sec^2 Scale Factor

Acceleration = Scale Factor *9* Time Function

Edit Load Functions

The Edit Load Functions dialog is used to define one or more load functions for a dynamic analysis.

49

Figure A38: Edit Load Function Dialog

The "Load Function" combo box contains a list of all defined load functions. Select "Add Load Function" in the combo box to create a new load function. When the ground acceleration option is specified, only one load function can be defined and is automatically applied to the entire model. For this case, select "Change Load Function" in the combo box to select a different function.

Click the "Read From File" button to retrieve an existing load function from a text file. Predefined load functions have the following extensions: ".dlf"

Load vs. Time

".acc"

Acceleration (ground) vs. Time

".spt"

Acceleration vs. Frequency (response spectrum)

The format of the text file should contain paired data (time, load), (time, acceleration), or (freq., acceleration). The file can have between one and four pairs per line (maximum 80 characters per line).

Click the "Edit Function Values " button to display the "Load Function Edit Table", which is a spreadsheet-style grid for customizing the data points.

50

Load Function Edit Table

The "Load Function Edit Table" displays the paired values used in the load function. Rows can be inserted or deleted as needed. The "Update Table" button sorts the values according to increasing time. You can drag and drop a range of data points from a spreadsheet directly into the table.

Figure A39: Load Function Edit Table Dialog

51

Pushover Tab Pushover Tab

Click on the Run Pushover Analysis checkbox to activate the pushover analysis module.

There must be 2 load cases. The first load case is used to apply permanent loads that will not be incremented (i.e. self weight). The second load case is used to specify the load that will be incremented.

Enter the number of pushover steps and the load increment factor. The load increment factor multiplies the loads in the second load case to create an accumulating load that is applied until convergence cannot be achieved.

For example, a load increment factor of 1.0 would add 100% of the original load to each incremental load case. If the original load increment was 10 kips, the second load increment would be 20 kip load, the third increment 30 kips, and so forth for the number of load steps. The failure load is printed to the output file when a load is reached that can not converge to a solution.

Figure A40: Pushover Tab

52

Pier Data Edit Pile and Cap Tab Pile and Cap Tab

Use the Pile/Shaft Drop down to select standard pile from the database.

You can add cross sections to the database in the edit mode. Click the 'Edit Cross Section' button to customize the pile/shaft.

The number of piles in the X and Y-directions is used to create a grid for positioning the piles. Piles not shown at a grid position are labeled as missing.

Enter data for the pile and cap in the following fields:

1. Pile Cap Grid Geometry 2. Pile Cross Section Type 3. Pile to Cap Connection 4. Pile Length Data 5. Pile/Shaft Type 6. Pile Cap Data

53

Figure A41: Pile and Cap Tab

Pile Length Data

Enter the elevation of the tip in the Tip Elevation text box.

Note: The tip elevation must be negative.

Enter the number of nodes in the pile free length above the soil.

54

Figure A42: Free Length of Pile Above Soil

Return to the Pile and Cap Tab page.

Pile Cross Section Type

A different edit window appears depending upon the type of cross section selected.

If "Linear Properties" is selected and the "Edit Cross Section" button is clicked, then the Linear Pile Properties window will appear.

Otherwise, if "Full Cross Section" is selected, then the Full Cross-Section Pile Properties window will appear.

Return to the Pile and Cap Tab page.

55

Pile/Shaft Type

Choose the type of pile from the drop-down list.

Figure A43: Pile Database Options

Return to the Pile and Cap Tab page.

Pile to Cap Connection

Choose to use either a "Pinned" of "Fixed" pile to cap connection.

Return to the Pile and Cap Tab page.

56

Pile Cap Data

Enter the elevation of the pile cap in the "Head/Cap Elevation" text box.

Check the "Apply Overhang" box to enter the over hang of the pile cap.

Click the "Edit Pile Cap" button to enter the following properties for the pile cap:

1. Young’s Modulus 2. Poisson’s Ratio 3. Thickness 4. Unit Weight

Return to the Pile and Cap Tab page.

Pile Cap Grid Geometry

Enter the number of grid points in the X and Y directions.

Then, select the pile spacing in the X and Y directions from the following pull-down menu:

Figure A44: Pile Spacing Drop Down Menu

57

Where d is the standard dimension of the cross section (the width of a square pile or the diameter of a circular pile).

Note: With no over hang specified the program automatically places piles at all grid points.

For the constant and variable spacing options see the Grid Spacing Table.

Return to the Pile and Cap Tab page.

Grid Spacing Table

If constant spacing is selected from the pull-down menu in the Pile Cap Grid Geometry section on the Pile and Cap Tab page, then only the "Constant Spacing" text box is editable.

Enter the custom spacing in both directions into the text box. Note: Entering a constant spacing will also affect the overhang distance.

Otherwise, if variable spacing is selected, then the "Constant Spacing" text box is "grayed out" and the only individual spread sheet elements are editable.

Enter the custom spacing between each pile into the corresponding fields of the spreadsheet.

58

Figure A45: Grid Spacing Table

Return to the Pile Cap Grid Geometry section.

Edit Cross Section Gross Section Pile Properties Gross Pile Properties

Modify the properties of a gross pile cross section in the following fields:

1. Pile/Shaft Segment List 2. Pile Set Info 3. Database Section Selection 4. Section Type 5. Section Properties

59

6. Segment Dimensions

Figure A46: Gross Pile Properties Dialog

Return to the Pile Cross Section Type page.

Pile/Shaft Segment List

60

Add and remove pile/shaft segments.

Return to the Linear Pile Properties or Full Cross-Section Pile Properties page.

Pile Set Info

Add and remove pile sets (types). This allows the user to use different pile types for each pile.

Return to the Linear Pile Properties or Full Cross-Section Pile Properties page.

Pile Sets Tutorial

Database Section Selection

If the "Use Database Section" option is selected, the user can select from a predefined set of crosssections.

In the Linear Pile Properties page, there is only one option (Linear Pile) when you click on the "Retrieve Section" button.

However, in the Full Cross-Section Pile Properties page, there are the following options:

61

Figure A47: Pile Database Options

If the "Modify Current Section" option is selected, the user can customize the current cross section.

Furthermore, the user can also save custom cross sections by clicking the "Save Section" button.

Return to the Linear Pile Properties or Full Cross-Section Pile Properties page.

Section Type

Select a cross section type from the following:

1.

62

Circular Pile

2.

Square Pile

3.

H-Pile

Note: this option is only available if the "Modify Database Section" option is selected.

Return to the Linear Pile Properties page.

Segment Dimensions

Enter the following data for the dimensions of the segment:

1.

Length

2.

Area

3.

Diameter—Only available for a circular pile

4.

Width—Only available for a square pile

5.

Depth—Only available for a square pile

6.

[Unit] Weight

Note: this option is only available if the "Modify Database Section" option is selected.

Return to the Linear Pile Properties page.

Section Properties

Enter the following data for the dimensions of the segment:

1.

Inertia 2 Axis—The moment of inertia about the 2-axis

2.

Inertia 3 Axis—The moment of inertia about the 3-axis

63

3.

Torsional Inertia

4.

Young’s Modulus

5.

Shear Modulus

Note: this option is only available if the "Modify Database Section" option is selected.

Return to the Linear Pile Properties page.

Full Cross Section Pile Properties Full Cross-Section Pile Properties

Modify all of the properties of a pile cross section in the following fields:

1. Pile/Shaft Segment List 2. Pile Set Info 3. Database Section Selection 4. Section Details 5. Section Type 6. Material Properties 7. Section Dimensions

64

Figure A48: Full Cross Section Properties Dialog

Return to the Pile Cross Section Type page.

Detailed Cross Section

By selecting Section Details on the Full Cross-Section Pile Properties page, one can edit the bar groups and material properties of the cross section in a spreadsheet format.

65

Select a segment from the "Section List" and a pile set from the "Pile Set" list to edit.

Return to the Full Cross-Section Pile Properties or the Full Pier Component Properties page.

Section Dimensions

The fields in which one can enter data depend upon the type of cross section selected.

Circular Section: 1. Length 2. Diameter 3. Unit Weight Rectangular Section: 1. Length 2. Width 3. Base 4. Unit Weight H-Pile: 1. Length 2. Unit Weight Pipe Pile: 1. Length 2. Diameter 3. Thickness 4. Unit Weight

Return to the Full Cross-Section Pile Properties page.

66

Section Type Section Type

Select a cross section type from the following:

The "Edit Section Contents" button yields different windows depending upon the type of cross section selected.

1. Circular Pile 2. Square Pile 3. H-Pile 4. Pipe Pile

Note: this option is only available if the "Modify Database Section" option is selected.

Return to the Full Cross-Section Pile Properties page.

Circular Section Properties Circular Section Properties

Enter the data for a circular cross section in the following fields:

1. Edit Bar Groups 2. Group Data 3. Confined Concrete Option 4. Shear Reinforcement 5. Miscellaneous

67

Figure A49a: Circular Cross Section Properties Dialog - Custom Group Method

68

Figure A49b: Circular Cross Section Properties Dialog - Percentage Group Method

Percentage Steel Tutorial

Return to the Section Type page.

Edit Bar Groups Add or remove rebar groups to or from the cross section.

Note: The properties of the bar group must be entered in the Group Data section.

Return to the Circular Section Properties, the Bullet Section Properties, or the Rectangular Section Properties page.

69

Percentage Steel Tutorial

Group Data

There are two methods for entering bar group data; Custom and Percentage.

Custom: 1. Enter the number of bars in the group in the "Number of Bars/Strands" text box. 2. Next, select the type of layout for the bars from the "Group Type" options—circular or rectangular. 3. If the rectangular option is selected, choose the orientation of the group of bars from the "Group Orientation" options—horizontal or vertical. 4. Then, enter the area of the bars and, depending upon the layout, the diameter of a circular layout or the starting coordinates of a rectangular layout. 5. Click the Add button to add the bar group to the section. 6. Click the Apply button to update any changes made to the bar group. 7. Repeat steps 1-4 to add more groups of bars/strands. 8. Click OK when done to exit the dialog.

Percentage: 1. Enter a Reinforcement % (the % of the cross section area that is steel) 2. Enter the cover. Cover 2 is the distance between the cross section edge and the steel bars, in the 2 direction. Cover 3 is the distance between the cross section edge and the steel bars, in the 3 direction. 3. Enter the Minimum Spacing (minimum distance between two bars). 4. Click the Update Bar List button to display the available bar options. 5. Select a bar type from the Bar Type list box. 6. Click the Apply button to apply the steel to the cross section, or double click the selected Bar Type. Any existing bar data will be deleted. 7. Click OK when done to exit the dialog.

Percentage Steel Tutorial

70

For both methods: Choose between mild steel or prestress for the type of steel in the group. If prestress is chosen, then enter the prestress after losses.

Return to the Circular Section Properties or the Rectangular Section Properties page.

Confined Concrete Option

Choose between "Shell & Spiral", "Spiral Only", and "None" to determine the type confinement for the concrete.

71

Figure A50: Confined Concrete Options

Enter values for the yield stress, shear spacing, and bar diameter ( "None" option).

72

Note: Not available with the

Note: A shell thickness must be entered in the "Shell Thickness" text box in order to select Shell and Spiral.

Return to the Circular Section Properties page.

Shear Reinforcement

Select either spiral or tied for the type of shear reinforcement.

Return to the Circular Section Properties page.

Miscellaneous

Enter data using the following fields:

Enter the shell thickness in inches in the "Shell Thickness" text box. Enter the diameter of a void in the member in inches in the "Void Diameter" text box.

Click the "H-Pile Properties" button to edit the properties of an h-pile embedded in he circular cross section.

Return to the Circular Section Properties page.

Confined Concrete Model

CONFINED CONCRETE MODEL

Introduction

73

Effective confinement has been shown to considerably enhance the compressive strength and ductility of concrete. The strength and ductility enhancement from confinement of the concrete will of course cause corresponding increases in the axial and flexural strength and ductility of reinforced concrete columns or piles. The confining effect of the column or pile may be accomplished by the used of circular hoops, spiral reinforcement, and an external steel jacket.

In the case of internal confinement i.e. spirals or circular hoops, the cover concrete will be unconfined and will become ineffective after the maximum compressive strain of the concrete has been attained, but the confined core will continue to carry stress at high strains. The compressive stress-strain response used for the core and cover concrete are those obtained by the Mander model (Mander and Priestly, 1988) for confined and unconfined concrete, respectively.

In the case of an external jacket, the jacket will provide confinement to the cover concrete and the inner concrete will be doubly confined by the jacket and the internal confinement due to the circular hoops or spirals. Although the steel area of the shell (casing) is not considered for direct bending or axial strength the confining effects to the concrete are. The compressive stress-strain response used for the core and cover concrete are those obtained by the modified Mander model. The Mander model was modified for the confining effects of the external shell by Priestly et al (1991).

Mander Models for Confined Concrete

Both the Mander and modified Mander models use the following equation for the longitudinal compressive stress of confined concrete: '

Eqn. d28

f * x*r = f r −1+ x cc

r

c

where f ’cc

is the compressive strength of the of confined concrete

x is given by:

Eqn. d29

x=

ε ε

c ' cc

The expression suggested for e’cc increases linearly with f ’cc and is given by:

74

   ε cc = ε co 1 + 5*    '

Eqn. d30

'

f f

  −1    co  '

cc '

where f ’co

is the unconfined compressive stress of the concrete

e’co

is the unconfined concrete compressive strain, adopted as 0.002

The parameter r is given by:

Eqn. d31

r=

E E −E c

c

sec

Confined Concrete f’cc

f’co

Unconfined Concrete

ε’co εsp ε’cc

εcu

Compressive Strain εc Figure D8: Confining Effect on Compressive Response of Concrete (Priestly et al 1991)

Ec

Eqn. d32

is the tangent modulus of elasticity for unconfined concrete and is given by:

E

= 60200 c

f

' co

75

Esec is the secant modulus for confined concrete, defined with respect to f ’cc and e’cc and is given by:

Eqn. d33

E

sec

=

'

f

ε

cc ' cc

For f ’cc, the confined concrete strength, Mander used the five-parameter failure criterion proposed by William and Warnke and the tri-axial test data of Schickert and Winkler. In the case of circular columns confined by circular hoops or spirals, the confined concrete compressive stress has been shown to be:

Eqn. d34

f

' CC

=

f

  2.254 1 + 7.94 co    '

f f

' l '

−2

co

f f

  − 1.254  '  co  '

l

where f ’l

is effective confining pressure, and may be obtained from the equilibrium of internal forces acting on the dissected sections shown in Figure D9

For the cover concrete in columns, assuming uniform yield of the jacket, the equilibrium of forces requires:

Eqn. d35

f

' lj

=

2f t ( D − 2t yj

j

j

j

)

where f ’lj

is the lateral confining pressure acting on the cover concrete Dj

is the outside diameter of the steel jacket

tj

is the thickness of the steel jacket

fyj

is the yield strength of the steel jacket

76

Dj

Ja ck et

f ’ lj fyj

fy j

+ ds

H oop

f ’ lh fyh

fyh

=

f ’ lj + f ’ lh fy j

fyh

fyh

fyj

C o m b in ed Ja ck e t a n d H o o p Figure D9: Confining Action of Steel Jacket and Internal Hoops [4]

77

The confining ratio for the steel jacket is defined as:

Eqn. d36

ρ

sj



4t

j

( D − 2t ) j

j

Substituting into equation d35 we obtain

Eqn. d37

f

' lj

=

1 ρ 2 sj

f

yj

By using f ’l = f ’lj in equation d34, the compressive strength of the cover concrete confined by the steel jacket can be determined.

Additional confinement is provided to the concrete core by the transverse reinforcement. The additional lateral pressure, f ’lh, may also be determined from the equilibrium of forces. Assuming uniform yield of the transverse steel yields the following equation:

Eqn. d38

f

' lh

= 2k e

f A ds yh

sh

s

where ds

is the diameter of the concrete core defined along the center line of the confining steel s vertical spacing of the transverse steel fyh

is the yield strength of the transverse reinforcement

Ash

is the cross-sectional area of the transverse steel

The confinement effectiveness coefficient, ke, is defined as:

Eqn. d39

k

e



A A

e

cc

78

is the

where Ae

is the area of an effectively confined concrete core

A

Eqn. d40

cc

=

A (1 − ρ c

cc

)

where Ac

is the core area of the section

rcc

is the ratio of the area of longitudinal reinforcement to the confined area of the concrete core of the section Ac, i.e.:

ρ

Eqn. d41

cc

=

4A πd

s 2 s

where A5

is the total longitudinal steel area .

By assuming an arching action between circular hoops in the form of a second -degree parabola with an initial tangent slope of 45E, the confinement effectiveness ratio has been shown to be:

Eqn. d42

k

e

'   s 1 − 0.5   d s  =

2

(1 − ρ ) cc

where s’

is the clear distance between the hoop.

Similarly, the confinement effectiveness coefficient for a circular spiral has been shown to be:

Eqn. d43

k

e

'   s 1 − 0.5   d s  =

(1 − ρ ) cc

79

By introducing rs as the ratio of the volume of transverse confining steel to the volume of confined concrete i.e.:

Eqn. d44

ρ

s



A πd π 4 sd sh

2 s

80

s

ds

Ae

D

As

E ffe c t i v e C o r e

s

s’

A rc h in g A c tio n B e tw e e n H o o p s Figure D10: Definition of Confinement Effectiveness Coefficient [4]

81

Eqn. d45

ρ = 4 As

sh

d

s

s

The lateral confining pressure due to transverse steel in equation d37 may be written as:

Eqn. d46

'

f

1 ρ 2ke s

=

lh

f

yh

Thus using f ’l =f ’lj + f ’lh in equation d34 will allow the enhanced compressive strength of the concrete core to be determined.

Scott et al (1989) proposed an expression for the ultimate compressive strain, ecu, which is given by: Eqn. d47

ε

= 0.004 + 0.0207 ρ

cu

s

f

yh

where rs

is the volumetric ratio of steel to concrete core fyh

is the yield strength of the transverse steel

Unconfined Concrete

For the concrete outside the inner core when a steel shell is not used , the unconfined condition may be simulated by setting the lateral confinement pressure equal to zero, i.e f’l = 0. The following simplifications can be made to the prior equations: Eqn. d48

f

Eqn. d49

ε

Eqn. d50

82

' cc '

f

' co

= ε co '

cc

E

=

sec

=

'

f

ε

co ' co

Eqn. d51

x=

ε ε

c ' co

It is assumed that the stress-strain curve for unconfined concrete follows equation d28 during the earlier stages of loading up to 2e’co. For compressive strains larger than 2e’ co, the strains are assumed to decrease linearly with strains up to the spalling strain esp. A value of 0.005 has been adopted for esp. The longitudinal compressive stress for unconfined concrete may be written as:

For ec # 2e’co, '

Eqn. d52

f xr = f r −1+ x co

c

r

For 2e’co # ec # esp,

Eqn. d53

f

c

=

f

   ε c − 2ε 'co  2r 1 −   2 1 co   −  r −1+ 2   ε sp 2ε co 

'

For ec > esp Eqn. d54

f

c

=0

Reinforcement

To avoid congestion of reinforcement, earlier design practices tended to use large diameter bars, up to #14 or #18, however, such practice may lead to potential bond problems in cases where the column main reinforcement were lapped at insufficient length with starter bars in the plastic hinge regions. Consequently, such columns are characterized by very rapid flexural strength degradation under the design seismic loads. The current Caltrans (1981) approach has been to avoid lap splicing of the main reinforcement in the potential plastic hinge region of bridge columns. The analytical model developed here assumes full yield of the main reinforcement including strain hardening.

83

Longitudinal Reinforcement

The monotonic uniaxial stress-strain curve of a typical reinforcing steel is shown by an elastic region, a yield plateau, a strain hardening region, followed by a falling branch after peak stress up to the strain at which fracture occurs. A typical stress-strain curve for the reinforcing steel is shown in Figure D11.

The monotonic uniaxial stress strain curve for reinforcing steel is defined by the following equations:

For the elastic range, i.e. es # ey Eqn. d55

f

s

= Esρ

s

Where es

is the axial strain in the reinforcing steel fs

is the stress in the reinforcing steel

Es

is the modulus of elasticity of the reinforcing steel

For the yield plateau, i.e. ey < es # esh, Eqn. d56

f

s

=

f

y

where esh

is the axial strain at the on-set of strain hardening fy

84

is the yield stress of the reinforcing steel

fy

εsu

εy εsh Strain

Figure D11: Mild Steel Stress-Strain Curve [4]

For the strain-hardening range, i.e. esh # es # esu

Eqn. d57

f

s

=

f

 m (ε s − ε sh ) + 2 (ε s − ε sh ( 60 − m ) )    + y  60 − + 2 2 + 1 ( ) ( ) 30r s ε s ε sh  

where esu

is the ultimate strain in the reinforcing steel

fsu

is the ultimate stress in the reinforcing steel and

85

Eqn. d58

Eqn. d59

   m=

f f

su y

   

( 30r s +1) − 60r −1 2

s

15r

r =ε s

su

2

s

− ε sh

It has been shown by Mizra and MacGregor (1979) that the ratio of ultimate to yield strength was fsu/fy = 1.55. The steel model adopted for the program assumes a modulus of elasticity of 29000 ksi and a slightly lower ultimate to yield strength ratio of 1.50. The other mechanical properties assumed for the stress strain model are:

For all grades of steel,

Eqn. d60

Eqn. d61

 18 f = ε sh  32 − f yl 

y

ε su = 0.18 + 3ε sh −

  ε y 

f ( 0.04 + 2ε ) f y

sh

yl

where fyl of units

is equal to 40 for ksi units. This would be converted to any other consistent set

The above equations are non-dimensional, allowing the model to be used with any grade steel. They were obtained by interpolating from the values given by Priestly for 40 and 60 ksi steel.

It should be noted that the tangent modulus at the onset of strain hardening may be obtained by taking the derivative of Eqn. d57 with respect to steel strain, es, and operated at the strainhardening strain, esh:

Eqn. d62

86

E

sh

=

f

   2m − 120 60 − m  +   y 4 2  2( 30r s +1)  

Transverse Reinforcement

Closely spaced transverse reinforcement in regions of severe inelastic actions will maintain the integrity of the concrete core and increase the rotational capacity of the column. Maintaining the integrity of the core also allows higher shear forces to be resisted by the concrete. The potential shear failure plane must intersect a large quantity of transverse reinforcement, which increases the shear resistance. Lateral stability of the longitudinal reinforcement is improved by the presence of the closely spaced hoop or spiral. The hoops or spiral acts as anti-buckling ties to allow full compression yield of the mild steel to be developed. The integrity of the core and mild steel ensures the vertical load carrying capacity of the column after a severe earthquake.

The effective use of the transverse reinforcement also requires careful detailing of spirals or hoops. Current usage may entail welding at the lap splices of the spiral or hoop, or bending back of these bars into the concrete core for anchorage in order to develop full yield capacity. Design practice prefers the use of since fewer anchorages are required for spirals when compared to hoops. The transverse reinforcement in earlier design practice, however was often anchored with lap splices in the plastic hinge regions where serious spalling of the cover concrete is expected. The loss of cover concrete may initiate unwinding of the spirals or hoops and renders the transverse reinforcement ineffective. The model used here assumes full development of the transverse steel strength at the ultimate condition.

Steel Jacket

The role of the steel jacket for a column is the same as that of the transverse reinforcement. The jacket prevents the spalling of cover concrete and allows the development o large compressive strains in the mild steel without buckling. The shear strength of the encased region is also enhanced.

Although the commercially available structural steel for steel jackets has yield strengths ranging from 36 ksi to 50 ksi or higher, the level of confining pressure required does not generally require yield strength greater than 36 ksi. Suitable steel for the jacket is the A36 hot-rolled, which has relatively low carbon content (from 0.25 to 0.29%). The low carbon content provides a good welding property, which is important for on-site welding of the steel jacket.

Grout

87

It is assumed that the steel jacket is fully bonded to the reinforced concrete column to facilitate composite action. It is further assumed that the strength of the grout is the same as that of the concrete column.

Voids in members

While voids are allowed in the general analysis procedures used in FB-MultiPier, the reduction in the beneficial effects of confinement due to voids in columns and piles are not considered in the Mander and modified Mander models used FB-MultiPier.

Examples

Several example columns are analyzed and comparisons are made between the experimental results, the results obtained from FB-MultiPier program with those produced by the COLRET computer program.

In the analysis performed with FB-MultiPier, to achieve the large post yield displacements on the flat portion of the P-D curves, a spring was placed at the tip of the column.

The force plotted is the force absorbed by the column attached to the spring. This is a technique called displacement control.

Full-Scale Column without Steel Casing

The example used in the comparison was a full scale (60" diameter) flexure column tested by the National Institute of Standards and Technology (Stone and Cheok, 1989). The column represents the current ductile design for bridge columns. The design details for the column are described in Table D1. The test column was subjected to an axial compression force of 1000 kips and a lateral cyclic displacement of increasing amplitudes until failure of the column.

Table D1: Design details for Full-Scale Flexure Column

88

Diameter D

60"

Height L’

30'

cover to main bar

4"

Concrete Strength f’co

5.2 ksi

Longitudinal Steel

25 #14

Yield Strength fy

68.9 ksi

Transverse Steel

#5 Spiral at 3.5"

Yield Strength fyh

71.5 ksi

Axial Force

1000 kips

Full-Scale Column Lateral Force (kips)

350 300 250 200 150 100 50 0

0

1

2 3

4 5 6 7 8 9 10 11 12 13 14 Lateral Deflection (in)

Experimental Values

COLRET Values

Flpier Values

Figure D12: Force Deformation Curve for Full Scale Column

The force deformation curve for the full-scale column is given in Figure D12. As can be seen from the figure, the data from FB-MultiPier program is generally close to both the COLRET values and the experimental data. For the majority of the curve the FB-MultiPier values are less than the COLRET values. Also, it is noted that the initial stiffness of the response is higher from the CORLET than obtained from the FB-MultiPier Analysis and the measured response.

89

Half Scale Column With Steel Retrofitting Jacket

The second example analyzed for comparison purposes was a test column with a 24" diameter is about half scale for most applications. It is retrofitted with a steel sleeve that has a length of 48 inches. The design details for the column are shown in Table D2.

Table D2: Design details for Column With Steel Jacket

90

Diameter D

24"

Height L’

12'

Cover to Main Bar

4"

Concrete Strength f’co

5.2 ksi

Longitudinal Steel

26 #6

Yield Strength fy

45.7 ksi

Transverse Steel

#2 hoops at 5 in.

Yield Strength fyh

51.0 ksi

Length of Jacket

48"

Thickness of Jacket

.188"

Yield strength of Jacket

47 ksi

Axial Force

400 kips

Column 4 Lateral Force (kips)

70 60 50 40 30 20 10 0 0

1

2 3 4 5 Lateral Deflection (in)

Experimental Values

COLRET Values

6 FlPier Values

Figure D13: Force Deformation Curve for Jacketed Column

The force-deformation curve for the jacketed column is given in Figure D13. Looking at the results, we can see that FB-MultiPier provides a close estimation of the experimental and COLRET curves until the post yield region of curve where we see a reduction in the lateral load capacity predicted by FB-MultiPier in comparison to the experimental and COLRET values. It is also noted that the CORLET program show slightly greater strengths than that for the test.

Conclusions

A model for the prediction of the non-linear response of circular concrete piles with confinement has been presented. More details on the model are available in Stone and Cheok (1989) .

91

7

This model has been incorporated into the FB-MultiPier computer program that is used specifically for analyzing bridge pier structures consisting of pier columns and cap supported on piles or shafts. This allows the user of the program to model the behavior of concrete piles confined by hoops, spirals and/or a steel jacket subjected to a broad variety of loadings.

In the comparative studies conducted, the FB-MultiPier results show generally less of an increase in strength and ductility than those given by the COLRET program. This is due to the following differences between the FB-MultiPier program and the CORLET program.

First, equation d47 is used to compute the maximum concrete strain, ecu gives less strain than the procedure using COLRET. COLRET uses a more complex procedure that was only documented for grade 40 and grade 60 steel. The FB-MultiPier program is written to handle a wide variety of inputs and thus it used the more conservative equation d47 which is applicable for any grade of steel.

Second, the COLRET program assumes the entire area contained within a diameter ds is confined in integrating the stresses over the column area, whereas FB-MultiPier conservatively uses only the effectively confined area of the core.

Finally, in the case of an external steel jacket, FB-MultiPier neglects the longitudinal stiffness of the jacket, when using the confined model and the COLRET program takes this stiffness into account.

These differences tend to give a somewhat conservative solution, which is probably best for a general purpose program to be used for a wide variety of applications. The program can of course be modified to accommodate more detailed models in the future.

Rectangular Section Properties Rectangular Section Properties

Enter the properties for a rectangular cross section in the following fields:

1. Edit Bar Groups 2. Group Data 3. Void Data

92

4. H-Pile Properties button

Figure A52a: Rectangular Cross Section Properties Dialog - Custom Group Method

93

Figure A52b: Rectangular Cross Section Properties Dialog - Percentage Group Method

Return to the Section Type page.

Void Data

Enter the diameter for a circular void, or the length and width for a rectangular void.

Return to the Rectangular Section Properties page.

94

H-Pile Properties H-Pile Properties

Enter the properties of the H-pile in the following fields:

1. Section Dimensions 2. Section Orientation

Figure A51: H-Pile Cross Section Properties Dialog

Return to the Section Type, the circular section properties Miscellaneous, or the Rectangular Section Properties page.

Section Dimensions

Enter the depth, width, web thickness, and flange thickness of the H-pile in the text boxes.

95

Return to the H-Pile Properties page.

Section Orientation

Select the orientation of the H-pile (Web horizontal or web vertical).

Return to the H-Pile Properties page.

H-Pile Properties Pipe Pile Properties Pipe Pile Properties Enter a section length, diameter, shell thickness, and unit weight. Concrete is not included in this cross section. (f’c and Ec are set to zero.)

Material Properties Material Properties

Choose between a Default Stress/Strain option and a Custom Stress Strain option.

Depending upon the stress-strain selection, the "Edit Properties" and "Plot Stress Strain" buttons will yield different windows.

Return to the Full Cross-Section Pile Properties or the Full Pier Component Properties page.

Default Stress/Strain Curves

96

Depending upon the type of cross section chosen, the user can edit the individual material properties, if the "Custom Stress Strain" option is selected, and the "Edit Properties" button is clicked.

First choose a material type on the right, and then enter the properties for that material in the text boxes.

Figure A53: Material Stress/Strain Properties Dialog

Return to the Material Properties page.

Custom Stress/Strain

97

The user can edit the stress-strain data of the materials present, if the "Custom Stress Strain" option is selected, and the "Edit Properties" button is clicked.

First choose a material type on the right, and then enter the stress-strain data for that material in the spreadsheet.

Figure A54: Custom Material Stress/Strain Properties Dialog

Return to the Material Properties page.

Section Stress-Strain Plot

If the "Plot Stress Strain" button in the Full Cross-Section Pile Properties window is clicked, or the "Plot" button in the Custom Stress/Strain window is clicked, then a stress-strain plot will appear.

98

One can view the stress-strain plot for each material present in the problem, by selecting that material from the options at the top.

Figure A55: Graph of Material Stress/Strain Properties

Return to the Full Cross-Section Pile Properties page or the Custom Stress/Strain page.

Soil Tab Soil Tab

Choose soil set drop down to add a soil set.

Choose soil layer drop down to add a layer.

Choose soil model, then click 'Edit' to specify properties.

99

The 'Group' button specifies P-Y multipliers.

Edit the soil with the following options:

1. Soil Layer Data 2. Soil Layer Models 3. Soil Strength Criteria 4. Elevations

Figure A56: Soil Tab

The ‘Plot ’ button will activate the Printable Soil Graph dialog which allows the user to view and print the various soil curves.

The ‘Table‘ button provides access to an alternate method for creating/modifying soil layers. This feature allows the user to view/modify multiple soil sets and layers and the same time and quickly enter properties for each.

100

The ‘Import’ button will retrieve all soil information (all soil sets, all soil layers, all soil properties) from an existing input file, and replace the current soil data in the open model with this data.

Water Table

The user has the option of specifying a water table for each soil layer. The latter may be used to model flowing water, perched water or continuous static water. Each soil layer must have a water table associated with it in order to compute effective stresses. In the case where the total stress is equal to the effective stress (i.e. no pore pressure), the user needs to place the water table for the layer at or below the layer’s bottom boundary, i.e. specify a water elevation at or below the bottom of the layer.

Self-weight of the piles is corrected when the pile is within the water table. The submerged portion of the pile uses the buoyant unit weight.

Soil Layer Data

Create a new soil set or select an existing one from the "Soil Set" drop-down list.

Create a new soil layer or select an existing one from the "Soil Layer" drop-down list.

Select the type of soil from the following options in the "Soil Type" drop-down list: 1. Cohesionless 2. Cohesive 3. Rock

Select the layer models for each soil layer: 1. Lateral 2. Axial 3. Torsional

101

The Tip Model selection only applies to the soil layer that contains the pile tip. It will be disabled for all other soil layers.

Enter the unit weight for the current soil layer in the "Unit Weight" text box.

Note: The unit weight is the total unit weight of the soil. The program will automatically subtract the unit weight of water to get the effective unit weight

Return to the Soil Tab page.

Elevations

Enter the depth of the water table, the top of the layer, and the bottom of the pile.

Return to the Soil Tab page.

Soil Table

All soil set and soil layer properties can be entered using the Soil Table. There are three main steps to complete this process.

102

Figure A57: Soil Table (Global Data Tab)

1) Enter Soil Set data. From the Global tab, information is entered for each soil set used. Each soil set requires 4 properties need to be entered; number of soil layers, water table elevation, SPT ‘N’ values and number of cycles used. 2) Enter Soil Layer data. Under the Soil Set data on the Global tab, properties must be set for every layer in each set. Each layer requires; soil type, top and bottom elevations, unit weight, internal friction angle, and the Soil Model used for Lateral, Axial, Torsional and Tip. The option to set properties for both top and bottom of layer can be set here. Note: The unit weight is the total unit weight of the soil. The program will automatically subtract the unit weight of water to get the effective unit weight. 3) Enter Soil Layer Properties. Move to each of the tabs (Lateral, Axial, Torsional, Tip) in turn and enter the requested properties. Each tab contains a table with a row for each soil layer and columns for all the possible properties that could be used by the available models. The selected model is displayed here and can be changed, which will update the global tab and will change the active table cells that are available to enter data.

Soil Table Tutorial

103

Soil Layer Models Soil Layer Models

Select options from the following drop-down lists to model the soil:

1. Lateral

a. Cohesionless i. Sand (O'Neill) ii. Sand (Reese) iii. Sand (API) iv. Custom P-Y b. Cohesive i. Clay (O'Neill) ii.

Soft Clay Below the Water Table

iii.

Stiff Clay Below the Water Table

iv. Stiff Clay Above the Water Table v. Clay (API) vi. Custom P-Y c. Rock i.

i.

i.

v.

i.

i.

Limestone (McVay) : NO 2-3 Rotation

iii.

Sand (O'Neill)

v.

v.

v.

v.

v.

Clay (O'Neill)

vii.

Soft Clay Below the Water Table

ix.

i.

Limestone (McVay)

v.

Sand (API)

Sand (Reese)

vi.

vii.

104

i.

ii.

iv. v.

i.

Stiff Clay Below the Water Table Stiff Clay Above the Water Table

x.

Clay (API)

xi.

Custom P-Y

2. Axial a.

Driven Pile

b.

b.

b.

b.

b.

b.

b.

b.

Drilled Shaft Sand

c.

c.

c.

c.

c.

c.

c.

c.

Drilled Shaft Clay

d.

d.

d.

d.

d.

d.

d.

d.

Drilled Shaft IGM

e.

e.

e.

e.

e.

e.

e.

e.

Driven Pile Sand (API)

f.

f.

f.

f.

f.

f.

f.

f.

Driven Pile Clay (API)

g.

g.

g.

g.

g.

g.

g.

g.

Drilled Shaft Limestone (McVay)

h.

h.

h.

h.

h.

h.

h.

h.

Custom T-Z

3. Torsional a. Hyperbolic b. Custom T-? 4. Tip a.

a.

a.

a.

a.

a.

a.

a.

Driven Pile

b.

b.

b.

b.

b.

b.

b.

b.

Drilled Shaft Sand

c.

c.

c.

c.

c.

c.

c.

c.

Driven Pile Sand (API)

d.

d.

d.

d.

d.

d.

d.

d.

Drilled Shaft Clay

e.

e.

e.

e.

e.

e.

e.

e.

Driven Pile Clay (API)

f.

f.

f.

f.

f.

f.

f.

f.

Drilled Shaft IGM

c.

Custom Q-Z

One can edit the properties of the selected option by clicking the "Edit" button which opens the Additional Soil Properties dialog below. One can also click the ‘Table ’ button to use the Soil Table for entering soil properties.

105

Figure A57: Additional Soil Properties Dialog

Clicking the "Dynamic Properties " button will open the Soil Dynamics Dialog which will allow the user to input additional soil properties that pertain only to dynamic type analysis. See Soil-Pile Interaction for details on the soil properties.

When using a custom soil curve, one can enter/edit the properties of the selected option by clicking the "Edit" button which opens the dialog below.

106

Figure A58: Custom Soil Properties Dialog

The Import Data button retrieves custom curves data from a text (.txt) file, and replaces the current curve data in the table. The Save to File button saves the custom curve data from the table to a text (.txt) file, in the format below. Number of Curve Points in File XValue YValue XValue YValue XValue YValue XValue YValue XValue YValue XValue YValue XValue YValue

The ‘Plot ’ button plots a "load" vs. deflection graph based upon the selected options.

107

The Group button allows the user to specify advanced properties for the soil model.

The ‘Specify Top and Bottom Layer Props’ checkbox allows you to enter different soil properties at the top and bottom of each layer. The values will be interpolated across the layer.

Return to the Soil Tab page.

Soil Dynamics Dialog

Figure A59: Dynamic Soil Properties Dialog

The Dynamic Soil Properties dialog is used to input additional soil properties that pertain only to dynamic type analysis. It is available by clicking the "Dynamics Properties" button on the "Additional Soil Properties" dialog. These properties are for lateral behavior only.

Soil Model Plot

108

As of version 4.10 this topic has been renamed and moved. Please see ‘Printable Soil Graph for the later help file entry.

Depending upon options selected in the Soil Layer Models section, different types of load vs. deflection curves are plotted.

1. Lateral—Plots the lateral reaction per unit length vs. lateral deflection 2. Axial—Plots the axial stress vs. axial displacement 3. Torsional—Plots torsional stress vs. rotational displacement 4. Tip—Plots the tip force vs. tip displacement

Figure A60: Printable Soil Graph dialog

Return to the Soil Layer Models page.

109

Soil Plot Tutorial

Printable Soil Graph

The ‘Plot’ button on the Soil page actives the Printable Soil Graph Dialog which allows users to plot the different types of load vs. deflection curves for multiple nodes of a pile. All plot types (P-Y, T-Z, T-0, Q-Z) may be viewed (one at a time) by changing the selected Plot Type radio button.

1. P-Y (Lateral) - Plots the lateral reaction per unit length vs. lateral deflection 2. T-Z (Axial) - Plots the axial stress vs. axial displacement 3. T-0 (Torsional) - Plots torsional stress vs. rotational displacement 4. Q-Z (Tip) - Plots the tip force vs. tip displacement

110

Figure A60: Printable Soil Graph dialog

The properties of the selected Soil Layer are displayed on the right hand side for easy reference, and the exact plot values for the plot are displayed in a table below this. Each displayed plot and its corresponding data table may be printed or saved using the option buttons below each.

The Soil Set may be changed and will affect both the Soil Layers and Piles settings available. The only available Soil Layers will be those that exist in the selected Soil Set. Only Piles currently in the selected Soil Set will be available and will control the nodes (elevations) available for display.

111

The elevations available are based on the selected Soil Layer and the location of nodes with in the selected pile. Elevations are listed from top down and will include the top of layer, all the nodes within the layer and then the bottom of layer. Each selection displays both the node number and elevation of the selection. Once these selections are completed press the ‘Update Plot’ button to show the new plot and table data.

Return to the Soil Layer Models page.

Soil Plot Tutorial

Advanced Soil Data

Select the type of P-Y multipliers to use from the following:

1. User defined P-Y multipliers 2. All P-Y multipliers are one 3. Use the default P-Y multipliers by clicking "Default"

The user can choose to enter soil data for the top and the bottom of each layer.

112

Figure A61: Advanced Soil Layer Properties Dialog

Return to the Soil Layer Models page.

Soil Strength Criteria Soil Strength Criteria

Enter the internal friction angle of the soil.

Enter the number of cycles for a cyclic loading.

Check the "Use SPT N Values" box and click the Edit SPT button to have the program calculate the phi-angle.

113

Return to the Soil Tab page.

SPT Window

Enter the depth of the water table at the drilling location.

Enter the number of data points with N values for the calculation of the internal friction angle.

Enter the profile for the N values.

Choose to correct for overburden.

Figure A63: SPT Data Dialog

Return to the Soil Strength Criteria page.

114

Pier Tab Pier Tab

The 'Edit Cross Section' button allows selection of structure cross sections. To specify bearing locations, check the bearing location box, then click the Bearing Locs button to specify the bearing locations. Bearing locations must be specified before applying AASHTO loads. To specify tapered sections, check the taper box and specify the number of uniform sections.

This page is also the Wall Structure page for the Retaining Wall and Sound Wall options, and the Bent Cap page for the Pile Bent option.

Edit the pier properties with the following options:

1. Pier Geometry 2. Pier Cross Section Type 3. Taper Data

115

Figure A63: Pier Tab

Taper Data

Choose to apply a taper to the pier column, pier cap beam, and the pier cap cantilever.

Also, select whether the cantilever taper is linear or parabolic.

116

Figure A64: Pier Taper End Point Locations

For more detailed explanation, see the Taper Modeling page.

Return to the Pier Tab page.

Pier Geometry Pier Geometry

Enter the height of the pier, the cantilever distance, the column spacing, the column offset, and the number of pier columns.

117

Enter the number of column nodes, cantilever nodes, and beam nodes.

Choose to specify Bearing Locations for the pier.

Choose to have flooded pier columns.

Figure A65: Pier Node Spacing Diagram

118

Figure A66: Pier Cap Slope

Return to the Pier Tab page.

Pier Rotation Angle

Pier Rotation Angle can be entered from the Bridge Page.

Figure: B2 Pier Rotation Angle

119

Bearing Locations

Select either uniform or variable bearing spacing. You will only be able to enter data into the appropriate field for your selection.

If the current problem has a single pier then the Bearing Layout options will be visible. This allows you to select one or two rows of bearing locations. If the problem has multiple piers then this option will be located on the Bridge Tab. The interface will alter itself to only request the needed data for the options selected.

Enter the number of Bearing Locations, the Column Offset of the starting location and the spacing between locations. If more than one bearing row is present then the Bearing Offset must also be entered.

120

Figure A67: Bearing Location Dialog

Return to the Pier Geometry page

Bearing Angle

Bearing Angle can be entered from the Bridge Page.

Figure: B1 Bearing Angle

121

Pier Cross Section Type Pier Cross Section Type

A different edit window appears depending upon the type of cross section selected.

If "Gross Properties" is selected and the "Edit Cross Section" button is clicked, then the Gross Pier Component Properties window will appear. If Gross Properties are selected only linear analysis is possible.

Otherwise, if "Full Cross Section" is selected, then the Full Pier Component Properties window will appear. When Full Pier component properties are input non-linear analysis is an option and linear analysis also. (For linear analysis the program calculates linear elastic properties from the Full Property description.)

Return to the Pier Tab page.

Gross Section Pier Properties Gross Pier Component Properties

Modify the properties of a linear pier cross section in the following fields:

1. Pier Components 2. Database Section Selection 3. Section Data 4. Section Properties 5. Parabolic Taper Cantilever Properties

122

Figure: G1 Gross Pier Properties

Return to the Pier Cross Section Type section.

Pier Components

Select the pier component to edit, or add and remove components.

123

Figure A69: Component Taper End Point Locations

Return to the Linear Pier Component Properties or the Full Pier Component Properties page.

Database Section Selection

If the "Use Database Section" option is selected, the user can select from a predefined set of crosssections.

In the Linear Pier Component Properties page, there is only one option (Linear Pile) when you click on the "Retrieve Section" button.

However, in the Full Pier Component Properties page, there are the following options:

124

Figure A70: Pier Cross Section Options

If the "Modify Current Section" option is selected, the user can customize the current cross section.

Furthermore, the user can also save custom cross sections by clicking the "Save Section" button.

Return to the Linear Pier Component Properties or the Full Pier Component Properties page.

Section Data

Enter the area and the unit weight of the section

Return to the Linear Pier Component Properties page.

125

Section Properties

Enter the following data for the dimensions of the segment:

1. Inertia 2 Axis—The moment of inertia about the 2-axis 2. Inertia 3 Axis—The moment of inertia about the 3-axis 3. Torsional Inertia 4. Young’s Modulus 5. Shear Modulus

Note: this option is only available if the "Modify Database Section" option is selected.

Return to the Linear Pier Component Properties page.

Parabolic Taper Cantilever Properties

Enter the depths for a cantilever with a parabolic taper.

Figure A71: Cantilever Parabolic Taper Properties

126

Return to the Linear Pier Component Properties or the Full Pier Component Properties page.

Full Cross Section Pier Properties Full Pier Component Properties

Modify all of the properties of a pier cross section in the following fields:

1. Pier Components 2. Database Section Selection 3. Section Type 4. Section Dimensions 5. Material Properties 6. Parabolic Taper Cantilever Properties 7. Section Details

127

Figure A72: Pier Full Cross Section Properties Dialog

Return to the Pier Cross Section Type section.

Section Dimensions

The fields in which one can enter data depend upon the type of cross section selected.

Circular Section:

128

1. Diameter 2. Unit Weight Rectangular Section: 1. Width 2. Base 3. Unit Weight H-Pile: 1. Unit Weight Bullet: 1. Diameter 2. Width 3. Unit Weight

Figure A74: Bullet Cross Section Dimensions

Return to the Full Pier Component Properties page.

129

Section Type Section Type

Select a cross section type from the following:

The "Edit Section Contents" button yields different windows depending upon the type of cross section selected.

1. Circular Pile 2. Square Pile 3. H-Pile 4. Bullet

Note: this option is only available if the "Modify Database Section" option is selected.

Return to the Full Pier Component Properties page.

Circular Section Properties H-Pile Properties Rectangular Section Properties H-Pile Properties H-Pile Properties Bullet Section Properties Bullet Section Properties

Edit the properties of a bullet section in the following fields:

1. Edit Bar Groups

130

2. Group Data 3. Void Data 4. Cross Section Orientation

Figure A64:

Return to the Section Type page.

Group Data

131

Enter the data for the bars in an individual bar group in the following text boxes:

Enter the number of bars in the group in the "Number of Bars/Strands" text box.

If the rectangular option is selected, choose the orientation of the group of bars from the "Group Orientation" options—parallel (linear bar groups) or circular end (semicircular regions at the ends of the section).

Then, enter the area of the bars and, depending upon the layout, the diameter of a circular end layout or the starting coordinates of a parallel layout.

Choose between mild steel or prestress for the type of steel in the group.

If prestress is chosen, then enter the prestress after losses.

Return to the Bullet Section Properties page.

Void Data

Enter the diameter for a bullet void, or the length and width for a rectangular void.

Return to the Bullet Section Properties page.

Cross Section Orientation

Select whether the cross section is oriented in the horizontal direction or the vertical direction.

132

Return to the Bullet Section Properties page.

Material Properties

Bent Cap 2D Bridge View

Wall Structure Sound Wall Explanation

Figure: SW1 Sound Wall Explanation

133

Extra Members Tab X-Members Tab

Additional members can be added to connect nodes in the pier.

Sections to be used for extra members can be selected from the "Extra Member Sections" dropdown which contains sections used for the pier, pile and any sections created under the extra member page. New sections can be created using the "Edit Cross Section" button. The cross section type (Gross Properties or Full Cross Section) uses the same type selected for the Pier cross sections and can only be changed by changing the selection on the Pier page.

To add an extra member, click on the first node (I-Node). Then, click on the second node (JNode). Click the 'Add' button to put the member in the list and choose an appropriate section property.

To change the location of an extra member, select an extra member from the "Extra Member" list. Then change the I-Node, J-Node, or both. This can be done by clicking nodes in the 3D Edit Window, or by typing new values in the I-Node or J-Node boxes. Then click the "Update" button.

Create extra members using the following options:

1.

1. 1.

1.

1.

1.

2.

Extra Member Sections

3.

Nodes Attached

134

1.

1.

Extra Members List

Figure A75: Extra Members Tab

Notes: Extra members cannot be used to replace sections along the length of a pile. Extra members cannot cross the plane of the pile cap. For example, an extra member element cannot connect a column node and a pile node. However, an extra member element can connect two column nodes, or two pile nodes (but not along the same pile). Extra members are not available in the following models: Pile and Cap Only, Stiffness, Single Pile, Column Analysis.

Extra Members List

Add and remove extra members to and from the project.

Return to the X-Members Tab page.

Extra Member Sections

135

Select the cross section type of the extra member from the drop down list.

Return to the X-Members Tab page.

Nodes Attached

Select the nodes to attach the member to.

Return to the X-Members Tab page.

Load Tab Load Tab

To add a load, select a node with mouse in 3-D View window. Then click the right 'Add' button to add the load to the node. Enter load values for the 6 degrees of freedom.

Additional load cases can be added by clicking the left 'Add' button. The 'Table' button shows a table of the loads for the selected load case.

The self-weight and buoyant load factors are used to set the contribution of self-weight and buoyancy for each load case. These are used for non-AASHTO loads.

For AASHTO load cases, self weight is included by adding a dead load type case and buoyancy is included by adding a buoyancy type case. See AASHTO tab to automatically include self weight and buoyancy. Edit the loads in the following areas:

136

1. Load Case 2. Node Applied 3. Loads

In static analysis mode, the Load tab looks as follows:

Figure A76-a: Load Tab

Check "Include Preload Case" to apply a pre-existing load to all load cases. Preload is typically used to model construction loads. Check "Applied Displacement" to apply a displacement (rather than a load) to a node. Loads and Displacements can not be applied at the same node in the same load case.

In AASHTO load mode, the Load tab looks as follows:

137

Figure A76-b: Load Tab in AASHTO Mode The ‘L’ and ‘R’ designations next to the bearing loads indicate a left and/or right bearing row, respectively.

In dynamics analysis mode the Load tab looks as follows:

138

Figure A76-c: Load Tab in Dynamic Analysis Mode

Nodal loads are marked as either static (S), or dynamic (D). Clicking on the S or D letter toggles the load type from static to dynamic, and vice versa. For dynamic load types, the directional factors specify the direction of load application. The factors must be either 1 or 0, where 1 indicates load application in that direction, and 0 indicates no load application in that direction. The load function is selected from the load function combo box. Each node can have a different load function. Click on the "Acc. (all nodes)" placeholder in the node list to specify a direction when the ground acceleration option is selected.

Click the "Table" button to edit both static and dynamic loads.

Load Case

Select a load case to view or modify. Add and remove new load cases.

Return to the Load Tab page.

139

Buoyancy

The buoyant force on the bridge substructure that is submerged, i.e., below the water table, is automatically computed if a buoyancy factor greater than 0 is selected in nonAASHTO mode and if buoyancy is activated (checked on) in AASHTO mode. The computation includes piles, pile cap, pier columns. Partial buoyancy for the pile cap is considered in the following manner: If the water table exists between 1/8 and 3/8 pile cap thickness measured from the bottom of the pile cap, then the half of the pile cap volume is used to calculate the buoyant force. If the water table exists above 3/8 of the pile cap thickness, then the entire pile cap volume is used to calculate the buoyant force. The user should select the water table elevation accordingly to include (or exclude) the buoyancy effect in the self-weight calculation of the pile cap. A convenient way to check buoyancy and self-weight calculations is to include only these loads, run the program, and then view the "Sum of Total Soil Spring Loads", Z direction in the output file.

Node Applied

Select the node to which a load is applied. Add and delete a nodal load.

Alternatively, click the Table button to edit the loads in a spreadsheet format.

If AASHTO load combinations are used, click the AASHTO Table button to edit the loads in a spreadsheet format.

Designate AASHTO load cases by selecting the type of load (Nodal loads can be added in addition to bearing loads).

Return to the Load Tab page.

Loads

140

Select whether or not pre-loading conditions (i.e. thermal stresses, construction loads, shoring, etc.) are present. For the pre-loading situation, the equilibrium loads are found from the preloading. Then, after equilibrium is established, the analysis uses the equilibrium conditions to calculate the solution for the load cases

Enter point loads in the x, y, and z directions, and moments about the x, y, and z axes.

Also, enter factors for self-weight and buoyancy (for non-AASHTO loads).

Check ‘Applied Displacement’ to specify a displacement rather than a load for a node.

Return to the Load Tab page.

Bearing Location Loads

The following information is used by piers with bearings locations. The information under the LOADBP header describes the concentrated loads applied to the bearing locations.

LOADBP PADNUM L= LC F= FX, FY, FZ, MX, MY, MZ T=TYPE B=DIR (one line per nodal load)

Where PADNUM

is the bearing number

LC

is the load case number

FX

is the force in the global X-direction

FY

is the force in the global Y-direction

FZ

is the force in the global Z-direction

MX

is the moment about the global X-axis

MY

is the moment about the global Y-axis

MZ

is the moment about the global Z-axis

141

TYPE

is the load type specified in AASHTO (ignore for non-AASHTO loads)

DIR

is the bearing row ("L" for left or "R" for right)

:

This section must end with a blank line.

Load Table Load Table

Edit the loads in the spreadsheet by selecting a text field to edit.

Alter the spreadsheet with the following options:

1. Table Format 2. Table Edit Options 3. Load Case Options

The "Load Table" is used to define nodal loads in a spreadsheet-style format. Static and dynamic loads are separated into two separate tables that can be toggled using the "Table Format" options.

Dynamic Loads Enter the load case, node, direction factors (1 or 0), and the load function.

142

Figure A77-a: Load Table in Dynamic Analysis Mode

Static Loads Enter the load case, node, and load values.

143

Figure A77-b: Load Table in Static Analysis Mode

Return to the Load Tab page.

Table Format

Select whether the table shows a "Single Load Case" or "All Load Cases".

Click the "Update and Sort" button to refresh the table.

Return to the Load Table page.

Table Edit Options

Insert and delete rows to and from the table.

Return to the Load Table page.

Load Case Options

Add and delete load cases to and from the table.

Choose to duplicate an existing load case.

Return to the Load Table page.

144

AASHTO Load Table AASHTO Load Table

Edit the loads in the spreadsheet by selecting a text field to edit.

Alter the spreadsheet with the following options:

1. AASHTO Table Format 2. AASHTO Table Edit Options 3. AASHTO Load Case Options

145

Figure A78: AASHTO Load Table

Return to the Load Tab page.

AASHTO Table Format

The AASHTO load cases are shown in the load tree. Click on the ‘+’ sign to expand the case. Bearing loads are shown first, followed by the nodal loads.

AASHTO Table Edit Options

146

With a load case expanded, right click the mouse on a nodal load to insert or delete loads. The ‘Add Load’ and ‘Remove Load’ buttons can also be used.

Bearing location nodes cannot be removed.

AASHTO Load Case Options

Load cases are added by selecting a load case from the load type list and then clicking the ‘Add Case’ button. Only certain load types can have multiple cases. Select a load case from the load tree and click the ‘Remove Case’ button to remove the load case.

Spring Tab Spring Tab

To add a spring to the pier, select node with the mouse in 3-D View window. Then click the 'Add' button. Enter spring values for the 6 degrees of freedom. Use the check boxes to apply the springs to each load case.

Edit the springs in the following areas:

1. Spring Stiffness 2. Spring Nodes

147

Figure A79: Spring Tab

Spring Stiffness

Enter the stiffness for each x, y, and z translation spring, and for each x, y, and z rotational spring.

Return to the Spring Tab page.

Spring Nodes

Click on a node in the 3-D view or select a node using the text box and click the "Add" button to add a node to the "Spring Node List".

Select the load case to apply the springs to from the "Apply to Load Case" list.

148

Also, use the "Del" button to delete a node from the list.

Return to the Spring Tab page.

Discrete Mass/Damper Tab Mass/Damper Tab

The Mass/Damper tab provides the capability of applying concentrated masses or dampers to any pile cap or pier node. To apply a concentrated mass or damper, click on the node in the 3D View window and then click the "Add" button to place the node in the node list. Concentrated mass values can be entered without concentrated damper values, and vice versa. Concentrated damper values can only be entered if "Damping" is enabled in the Dynamics tab.

Figure A80: Mass/Damper Tab

View Mass/Dampers in 3D Window

Mass/Dampers in 3D View

149

All concentrated masses and dampers are shown. Dampers are shown as a green dashpot. Masses are shown as a purple cube.

Figure A81: Concentrated Mass and Damper in 3D View (Thin Element Mode)

150

Retaining Tab Retaining Tab

Enter Retaining wall parameters for each layer. Each layer will cause a pressure to be applied to the wall. Each layer is divided into a number of sublayers. A minimum of 10 sublayers is recommended for each layer. The wall is modeled as a cantilever with its base located in the center of the pile cap. (For the case where the wall is offset from the center of the Pile Cap use the remove feature in the Pile edit window. The weight of the retained soil must be included as load on the footing or by increasing the footing concrete self weight. Soil weight is not automatically accounted for)

Enter the data for the retaining wall in the following fields:

1. Soil Layer 2. Wall and Layer Geometry 3. Soil Layer Data 4. Wall Load Data

151

Figure A82: Retaining Tab

Soil Layer

Select a soil layer to edit from the drop down menu, or add and remove a soil layer.

Return to the Retaining Tab page.

Wall and Layer Geometry

Enter the incline of the wall.

Enter the incline of the top layer, the ground water height, and the unit weight of the water.

152

Enter the thickness, and the number of layers to divide the individual soil layers into.

Figure A83: Retaining Wall Geometry

Return to the Retaining Tab page.

Retaining Wall Explanation

153

Figure: A1 Retaining Wall Explanation

Soil Layer Data Soil Layer Data

154

Choose between "Pressure at Rest" and the "Active Case" options, and then click the Layer Data button to specify the data.

Return to the Retaining Tab page.

Retaining Wall Soil Layer Data

Enter the following properties off the retained soil layer:

1. Cohesion 2. Soil Angle of Friction 3. Soil-Wall Angle Friction 4. Unit Weight of Soil 5. Saturated Unit Weight of Soil

Return to the Soil Layer Data page.

Wall Load Data Wall Load Data

Select the case number and click Surcharge.

Return to the Retaining Tab page.

Surcharge

155

Depending upon the type of surcharge selected, different parameters will be required.

1. No Surcharge a. No parameters 2. Uniform Surcharge a. The surcharge load 3. Line Load a. Wall distance b. Load intensity 4. Strip Load a. Wall distance b. Load width c. Load intensity

Return to the Wall Load Data page.

Bridge Data Edit Bridge Tab Bridge Tab

The Bridge Tab is used generate and modify substructures (pier foundations) and superstructures (bridge spans).

156

Figure A25: Bridge Tab

Substructure

Select a pier from the Substructure list or select "Add Pier " to add a new pier to the model. Click the "Del" button to remove a selected pier.

The Model Type can be either a General Pier or Pile Bent model. Both models are capable of having bearing locations, which are essential for connecting the piers using bridge spans.

The Global X Coord and Global Y Coord are used to layout each pier in the bridge model. By default, the origin of the first pier in the multiple pier model is at the corner of the pile cap.

The Rotation Angle specifies a pier rotation about the vertical z-axis. The pier rotation is specified as clockwise positive in the FB-MultiPier coordinate system and is typically used to model skew or radial piers on a curved alignment.

Select the number of Bearing Rows and specify if the span should be continuous. Specific boundary conditions can be selected and customized by clicking the Edit Supports button.

157

Superstructure

Select a Span to edit from the span combo box. The "C/C Length" indicates the span length from the center bearing line of one pier to the center bearing line of the next pier. Click the "Edit Span " button to edit the span section properties.

Edit Supports

Custom bearing connections can be specified by selecting a boundary condition from the combo box. Boundary conditions can be Released (free to move), Constrained (prevented from movement), or Custom (user-defined load-displacement curve).

There are two versions of this dialog that are displayed based on the number of bearing rows requested.

Single Row: Only a single option is available

158

Figure A26: Custom Bearing Connection Dialog for Single Row

Two Rows: Left and Right Rows are specified

Figure A27: Custom Bearing Connection Dialog for Two Rows

Click the "Edit Custom Bearings " button to define custom bearings using a load-displacement curve.

Edit Custom Bearings

Custom bearing behavior can be modeled using a load-displacement curve. This curve can be applied to any of the six degrees of freedom for a bearing connection. A maximum of 20 values can be used to define a custom bearing load-displacement relationship. Values should be entered from smallest to largest displacement. Click the "Add" button to add a new loaddisplacement curve. Click the "Del" button to remove an existing load displacement curve. Click the "Update Plot" button to refresh the load-displacement plot.

159

Figure A28: Custom Bearing Data Dialog

Edit Span

Enter the cross-section description properties for the bridge superstructure. The program uses these properties to model an equivalent beam that connects the centerline of two pier caps. The Begin Height and End Height parameters are used to offset the beam from the center of gravity of the pier cap to the center of gravity of the span.

160

Figure A29: Bridge Span Properties Dialog

Section Area is the entire span area in the transverse direction, including girders, roadway, and parapets. Transverse Area is the span profile area for wind load on the structure application (usually computed as: [girder depth + roadway depth + parapet depth] x span length).

161

Begin Height and End Height are measured from the c.g. of the pier cap to c.g. of the bridge span. Live Load Height is measured from the c.g. of the pier cap to the c.g. of the Live Load (i.e. at 6 ft above the roadway per AASHTO).

Span End Conditions are set independently for each side of the span. Different end conditions may exist based on the construction; FB-MultiPier can simulate these conditions by assigning various properties to the Transfer Beam.

• •

• • • • • • Diaphragm – properties for a rigid element.

• •

• • • • • • Non-Diaphragm - relaxed properties for a more flexible beam.

• •

• • • • • • Custom – User assigned custom properties (Must be selected to enable Custom Properties Button)

162

Figure A30: Variable Bridge Span Properties Dialog

The Variable Span Properties Table displays section properties for each element along the bridge section. Spans are divided into 10 elements of equal length. The 3D Bridge Window will show each element’s size in proportion to the inertia 3 axis entered.

Add Substructure

Figure A31: Add Substructure Dialog

163

Choose a structure type for the newly added or changed pier. Then, in the "Select Model" combo, select from a list of existing piers. This selected pier’s properties will be used for the newly created or changed pier.

Span End Condition

This dialog is accessible when the "Custom" option is selected for either the Begin or End span end condition, on the Bridge Span Properties dialog.

Figure A32: Span End Condition Dialog

164

Model View Windows Soil Edit Window Soil Edit Window

Right click in the soil edit window to bring up the view edit menu with the following options:

1. 2D Mouse Control--Hold the Control key and the left mouse button down to enable stretching a. With the key and button pressed down move forward to stretch up b. With the key and button pressed down move backward to stretch down 2. Pick Layer—Allows the user to pick a layer 3. Remove Layer—Delete the selected layer from the model 4. Add Layer—Add a new soil layer to the model 3.

5. 5. layers

5.

5.

5.

5.

5.

Split Layer—Split the current layer in to two

4.

6. 6.

6.

6.

6.

6.

6.

Reset View

5.

7. 7. 7. 7. 7. 7. 7. Copy Layer—Replace properties of selected layer with those of layer selected from submenu Note: Clicking the mouse scroll wheel button will toggle between the Picking mode and the 2D Mouse Control.

165

Figure A85: Soil Edit Window

The displayed pile shows the existing nodes currently in the pile. Nodes in the free length are displayed in red, while nodes in the soil are displayed in blue. The blues nodes (only) are clickable and selecting one will bring up the Printable Soil Graph dialog, showing the soil curve for the selected node. Please see Printable Soil Graph for more details.

Pile Edit Window Pile Edit Window

Right click in the pile edit window to bring up the view edit menu with the following options:

1.

1. 1.

1.

1.

1.

1.

1.

2D Mouse Control

a. Hold the left mouse button down and drag to pan the view b. Hold the Control key and the left mouse button down to enable zooming i. With the key and button pressed down move forward to zoom in

166

ii. With the key and button pressed down move backward to zoom out 2.

2. 2. 2. 2. 2. point/pile to add or remove a pile

2.

2.

Add/Remove Pile—Click on a grid

3.

3. 3. 3. 3. pile cap to remove it

3.

3.

3.

Add/Remove Cap—Click on a portion of the

4.

4. 4. Pile Data

4.

4.

4.

Pile Data/Batter—Click on a pile to edit the

5.

5. 5. 5. 5. 5. 5. copy properties from the highlighted pile

5.

Copy Pile Properties—Click on a pile to

6.

6. 6. 6. 6. 6. 6. the pile cap to edit the Cap Thickness

6.

Edit Cap Thickness—Click on a portion of

7.

7. 7. 7. 7. 7. "element" to edit the Spacing

7.

7.

Edit Grid Spacing—Click on a spacing

8.

8. 8. 8. 8. toggle through the soil sets

8.

8.

Assign Soil Sets—Click on a soil portion to

4.

4.

8.

9. PY Multipliers—Allows the user to view the PY multipliers in the pile edit window (to view go to the Soil Tab and click the Group button) 10. Numbering—Allows the user to view the pile numbers 11. Reset View—Returns the view back to the default 12. Help

167

Figure A86: Pile Edit Window

Zoom Feature Tutorial

Pile Data

Adjust the arrangement of the piles using the following options:

Select the pile number to edit in the "Pile Number" scroll box. Choose the cross section type from the list. Enter the batter of individual piles as the horizontal distance over the vertical distance.

168

Figure A87: Pile Batter

Select a pile and soil set to apply to the current pile.

Return to the Pile Edit Window page.

Edit Cap Thickness

Enter the "first" thickness of the cap (not the actual thickness), which allows the user to simulate different types of connections—very thin for a more pin-like connection, or thick for a more rigid connection.

Enter the "second" of the cap, which is the actual thickness to simulate the weight of the cap.

Return to the Pile Edit Window page.

Custom Grid Spacing

169

Enter the spacing of the row/column selected.

Alternatively, edit the grid spacing in a spreadsheet format by pressing the Spacing Table button.

Figure A88: Custom Pile Grid Spacing Dialog

Add a new row or column at the mid point of the column or row selected by pressing the "Split Row/Column" button, or delete a row or column by pressing the "Delete Row/Column" button.

Return to the Pile Edit Window page.

Bridge Plan View Window 3D View Window 3D View Window

Right click in the 3D view window to bring up the view edit menu with the following options:

170

1. 3D Mouse Control a. Hold the left mouse button down and drag to rotate the view b. Hold the left mouse button and the shift key down and drag to pan the view c. Hold the Control key and the left mouse button down to enable zooming i. With the key and button pressed down move forward to zoom in ii. With the key and button pressed down move backward to zoom out 6.

3. 3.

3.

3.

3.

3.

3.

Picking Node Mouse Control

7.

4. 4. 4. 4. 4. 4. 4. Picking Element Mouse Control—Allows the user to select items in the view to edit in certain dialogs a. Pick end nodes in the extra members dialog b. Pick the loaded nodes in the load dialog c. Pick the node to apply springs to in the spring dialog

d. View the coordinates of the node in most dialogs 3. Remove Pier Cap Element a. Click on pier cap element to remove 4. Turn the following options on or off: a.

a.

a.

a.

a.

a.

a.

a.

Piles

b.

b.

b.

b.

b.

b.

b.

b.

Caps

c.

c.

c.

c.

c.

c.

c.

c.

Nodes

1) 1)

1)

1)

1)

1)

1)

1)

All Nodes

2) 2)

2)

2)

2)

2)

2)

2)

Pier Nodes

3) 3)

3)

3)

3)

3)

3)

3)

Span Nodes

4) 4)

4)

4)

4)

4)

4)

4)

All Shell Nodes

5) 5)

5)

5)

5)

5)

5)

5)

Bearing Locations

6) 6)

6)

6)

6)

6)

6)

6)

Pile Cap Nodes

7) 7)

7)

7)

7)

7)

7)

7)

Pile Nodes

8) 8)

8)

8)

8)

8)

8)

8)

Column Nodes

9) 9)

9)

9)

9)

9)

9)

9)

Cantilever Nodes

10) 10)

10)

10)

10)

10)

10)

10)

Pier Cap Nodes

171

d.

d.

d.

d.

d.

d.

d.

d.

Pier

e.

e.

e.

e.

e.

e.

e.

e.

Loads

f.

f.

f.

f.

f.

f.

f.

f.

Springs

g.

g.

g.

g.

g.

g.

g.

g.

Dampers

h.

h.

h.

h.

h.

h.

h.

h.

Masses

i.

i.

i.

i.

i.

i.

i.

i.

Soil

j.

j.

j. j. j. Numbering

j. j. j.

k.

k.

k. k. k. Axes (Local)

k. k. k.

l.

l.

l.

l.

l.

l.

l.

Axes (Global)

m. m. m.

m.

m.

m.

m.

m.

Pier Data

n.

n.

n.

n.

n.

n.

Thin Elements

n.

l.

n.

5. Views a.

a. a. the front

a.

a.

a.

a.

a.

XZ Plane—View the model from

b.

b. b. the side

b.

b.

b.

b.

b.

YZ Plane—View the model from

c.

c. c. c. c. to the default setting

c.

c.

c.

Reset View—Return the view back

d.

d.

d.

d.

d.

Help—Shows 3D View controls

172

d.

d.

d.

Figure A84: 3D View Window

Element Data Dialog

The 'Element Data Dialog' is a quick way to reference the properties of any pier element, pile element or extra member element in the model. To launch the dialog, right-click in the 3D View window. This will launch the window's popup menu. Make sure the window is in 'Thin Elements' mode (this menu item should have a checkmark next to it). Then select the menu item 'Picking Element Mouse Control'. Then click an element in the model. The dialog will display, showing the element's data, including element number, location in the model, dimensional data, and material properties. To change the selected element, simply click another element.

173

Fig. E1: Element Data Dialog

Program Results Pile Results Pile Results

Use the following windows to view the results of the analysis:

1. Pile Selection 2. Plot Display Control 3. Graphs

Pile Selection

174

Select the piles to view in the Graphs.

Figure A92: Pile Selection Window

Return to the Pile Results page.

Zoom Feature Tutorial

Plot Display Control

Choose the type of data to be displayed in the graphs:

Structure: Shear 2 Shear 3 Moment 2 Moment 3 Axial Demand/Capacity Ratio Soil (Not Available for Piers): Soil Axial

175

Soil Lateral X Soil Lateral Y Soil Torsional Displacement (Not Available for Piers): Displacement 2 Displacement 3 Rotational About 2 Rotational About 3

Click "Select all Maximum And Minimum Values" to automatically select the members with the maximum/minimum values across all load cases. The only curves that display in the plot windows when this option is selected are the maximum and minimum values.

For AASHTO loads, select the limit state to see the maximum load combination for that limit state.

For a time step analysis, select a member force combo box item to display the maximum member force, location, and corresponding time step.

This window shows the depth and pile number of the maximum and minimum values of the selected piles.

Click on one of the plot windows to display the maximum and minimum values.

Return to the Pile Results or the Pier Results page.

Graphs

Graphs are plotted corresponding to the colored piles on the Pile Selection view.

176

Figure A93: Pile Results Graphs

Right click a selected graph and select the option ‘Printable Graph’ to open the printable graph dialog.

Return to the Pile Results page.

Printable Forces Dialog

This dialog is reached by right clicking in any plot window that contains data on the Pile Results Page.

177

Figure A94 : Pile Printable Forces Dialog This dialog displays the forces plots of each pile/column/pier cap that is selected on the Pile/Pier Results Forces dialog, as well as a table listing of the forces in numeric form at each node along the member.

Graph Options: - Customize: customize the appearance of the graph, i.e. change the font size, curve colors, graph range, etc. - Save as Bitmap: save the graph (not the entire dialog) as a bitmap (.bmp) file - Print: Print the graph. Clicking this option will open the graph as a bitmap in your computer's picture viewer (for example, "Window Picture and Fax Viewer"). >From here, the graph can be printed. This will allow the graph to be printed without the print dialog displaying over the graph. (To print the entire dialog, click the 'Print' button at the bottom of this dialog).

Table Options: Print: prints the graph and its contents. bottom of this dialog).

(To print the entire dialog, click the 'Print' button at the

Save Data: saves the table data to a text file.

*If more than one pile/column if graphed, the member with the maximum value will be displayed in the graph title. For example, (max at Pile 1).

178

**The colors used to plot the curves are the identical colors used on the Pile/Pier Forces Dialog.

Printable Forces Tutorial

Pier Results Pier Results

Use the following windows to view the results of the analysis:

1. Pier Selection 2. Plot Display Control 3. Graphs

Pier Selection

Select the piers to view in the Graphs.

Figure A95: Pier Component Selection Window

179

Return to the Pier Results page.

Zoom Feature Tutorial

Graphs

Graphs are plotted corresponding to the colored piles on the Pier Selection view.

Figure A96: Pier Results Graphs

Right click a selected graph and select the option ‘Printable Graph’ to open the printable graph dialog.

Return to the Pier Results page.

Printable Forces Dialog

This dialog is reached by right clicking in any plot window that contains data on the Pier Results Page.

180

Figure A97: Column Printable Forces Dialog

This dialog displays the forces plots of each pile/column/pier cap that is selected on the Pile/Pier Results Forces dialog, as well as a table listing of the forces in numeric form at each node along the member.

Graph Options: - Customize: customize the appearance of the graph, i.e. change the font size, curve colors, graph range, etc. - Save as Bitmap: save the graph (not the entire dialog) as a bitmap (.bmp) file - Print: Print the graph. Clicking this option will open the graph as a bitmap in your computer's picture viewer (for example, "Window Picture and Fax Viewer"). >From here, the graph can be printed. This will allow the graph to be printed without the print dialog displaying over the graph. (To print the entire dialog, click the 'Print' button at the bottom of this dialog).

Table Options: Print: prints the graph and its contents. bottom of this dialog).

(To print the entire dialog, click the 'Print' button at the

Save Data: saves the table data to a text file.

181

*If more than one pile/column if graphed, the member with the maximum value will be displayed in the graph title. For example, (max at Pile 1). **The colors used to plot the curves are the identical colors used on the Pile/Pier Forces Dialog.

Printable Forces Tutorial

Pier Cross Section Table The Pier Cross Section Table allows the user to enter and view most pier cross section data in a single table. This makes double checking the data very easy. Each table column represents one cross section. The properties available in the table depend upon the cross section shape, behavior, type of steel, etc. For example, a round cross section would only have the 'Diameter' dimension enabled, and not the 'Width' and 'Depth' dimensions.

Tips for using the table:

1. For cross section orientation, click the 'Graphic' button in the 'Shape' field. This displays the cross section shape (not drawn to scale), with the 2-3 axis as reference. 2. If 'Material Properties' fields are not enabled, this is most likely due to a lack of steel reinforcement in the cross section. Steel must be present in order to enable these fields. To do so, click the 'Edit Steel' button in the 'Reinforcement' field, and enter steel data as necessary. Then return to the table and the necessary material property fields will be enabled. 3. To taper a cross section, check the appropriate 'Taper' checkbox. This will create another column in the table, so that cross section data can be entered for each end of the pier component. Example: column bottom, column top. 4. To create custom Stress/Strain Curves, select "Custom Stress/Strain" in the 'Material Properties' field. Then click the 'Custom Curves' button in the 'Custom Curves' field. 5. For quick access to directions on using the table, click the "Help >>" button. 6. When printing the table, to make the table more easily fit on a single page, hide the 'Help' section on the right side of the table, by clicking the 'Help' button, so that the arrows point to the right (Help >>).

182

Figure P1: Pier Cross Section Table Linear

183

Figure P2: Pier Cross Section Table NonLinear

184

Pile Interaction Interaction Diagrams

View interaction diagrams for the piles or the pier elements.

Choose the type of diagram to view from the drop-down list in the tool bar:

1. Biaxial moment interaction diagram 2. Interaction diagram (2 axis) 3. Interaction diagram (3 axis)

Select the members and segments to display on the interaction diagram from the following:

1. Pile or Pier Selection 2. Segment Selection 3. Interaction Diagram

Pile Selection

Select the pile to view its interaction diagram.

185

Figure A98: Pie Selection Window

Return to the Interaction Diagrams page.

Zoom Feature Tutorial

Pile Segment Selection

Select the pile member segment to view its interaction diagram.

186

Figure A99: Pile Segment Selection Window Piles with multiple cross sections differentiate between segments by displaying each segment with a different color/pattern. The legend to the right will provide basic cross section information for each segment. Return to the Interaction Diagrams page.

Pile Element Selection

Select the pile element from the model to view its interaction diagram.

187

Figure A100: Pile Element Selection Window

Return to the Interaction Diagrams page.

Zoom Feature Tutorial

Interaction Diagram

View the interaction diagram for the selected segment.

188

Figure A101: Interaction Diagram

Return to the Interaction Diagrams page.

Pier Interaction Pier Selection

Select the pier element to view its interaction diagram.

189

Figure A102: Pier Component Selection Window

Return to the Interaction Diagrams page.

Zoom Feature Tutorial

Pier Segment Selection

Select the pier member segment to view its interaction diagram.

190

Figure A103: Pier Component Segment Selection Window

Return to the Interaction Diagrams page.

Pier Element Selection

Select the pier element from the model to view its interaction diagram.

191

Figure A104: Pier Component Element Selection Window

Return to the Interaction Diagrams page.

Zoom Feature Tutorial

3D Results 3D Results

View the three-dimensional results of the analysis in the following windows:

192

1. 3D Display Control 2. 3D Results Window 3. Result Forces Dialog

3D Results Window

View the results of the analysis. Elements that have a demand/capacity ratio exceeding 1.0 are shown with a red (highlight) marker.

193

Figure A105: 3D Results Window (Bridge View)

Right click in the 3D view window to bring up the view edit menu with the following options:

1. 3D Mouse Control a. Hold the left mouse button down and drag to rotate the view b. Hold the left mouse button and the shift key down and drag to pan the view c. Hold the Control key and the left mouse button down to enable zooming i. With the key and button pressed down move forward to zoom in

194

ii. With the key and button pressed down move backward to zoom out Zoom Feature Tutorial 2. Picking Mouse Control – Allows the user to select items in the view to edit in certain dialogs a. Pick end nodes in the extra members dialog b. Pick the loaded nodes in the load dialog c. Pick the node to apply springs to in the spring dialog

d. View the coordinates of the node in most dialogs 3. Picking Forces Control – Allows the user to view result forces for selected element. 4. Piles 5. Caps 6. Nodes a. All Nodes b. Pier Nodes c. Pile Nodes d. Pile Cap Nodes e. Bearing Nodes f. Transfer Beam Nodes 7. Pier 8. Loads 9. Node Numbering 10. Element Numbering a. Connector Elements b. Structure Elements c. Pile Elements 11. Element Highlighting a. Connector Elements b. Bearing Connector Elements c. Pile Elements d. Column Elements

195

e. Pile Cap Elements f. Pier Cap / Bent Cap 12. Axes 13. Plastic Hinge Zones 14. Undisplaced Model 15. Bridge View – Display the full bridge structure 16. Reset View – Return the view back to the default setting

Return to the 3D Results page.

3D Results Dynamic Options

The 3D Display Control is a toolbar option that allows the user to animate a displaced shape plot. Click the play button on the left to begin animation. Click the pause button on the right to stop the animation. Use the slider to fine-tune the time step selection. The actual time is shown below the time step value. This option is currently only available for 3D results mode.

Figure A106: Dynamic Results Animation Control Dialog

The Results Time Plot allows the user to see the variation of displacement with time for a selected node. This option is only available in the 3D results mode. Click the "Plot" button in the 3D Results mode to show the graph.

196

Figure A107: Results Time Plot Dialog

Result Forces Dialog

This option is accessed via the following: -Right click in the 3D Results Window, and select "Picking Forces Control". -Then click on any pile or pier element in the 3D Results Window. (Pile cap elements and bridge span elements are not included in this feature). -The selected element will become highlighted, and the dialog will launch, displaying all relevant forces in the selected element.

197

Figure A108: Result Forces Dialog showing Column forces

*Element # (in Column) is the 1-based index of the element within the column, beginning at the column base. **Element # (in Pile) is the 1-based index of the element within the pile, at the pile head. ***Element # (in Model) is the 1-based index of the element in the model. This element number can be referenced in the .out file.

Element Forces Tutorial

3D Display Control 3D Display Control

Control and view the display data numerically in the following fields:

1. Display Control 2. Node Information

198

Figure A109: 3D Display Control Window

The "Results Plotting" section handles the graphical display of dynamic results.

There are two types of results plots: 1.

1. 1. 1. 1. 1. 1. 1. Time vs. Displacement. This includes graphs for X Translation, Y Translation, and Z Translation.

199

2.

2. 2. 2. 2. 2. Rotation, Y Rotation, and Z Rotation.

2.

2.

Time vs. Rotation. This includes X

Select the node you want to plot the results for. Then use the "Results Plotting" combo box to select the desired graph. Then click the "Plot Results" button.

Return to the 3D Results page.

Display Control

Select the output to view in the Display Window from the following:

1. Displaced Shape—Shows a displaced wire-frame model 2. Displacement Contour—Distinguishes high displacement areas a. X Translation b. Y Translation c. Z Translation d. X Rotation e. Y Rotation f. Z Rotation 3. Stress Contour—Distinguishes areas of high stress concentrations a. M1 b. M2 c. M12 d. S13 e. S23 f. S1 g. S2 h. S12 4. Mode Shape—Eigenvectors used in modal analysis

200

5. Pier Max and Min Forces —Highlights Max and Min locations of selected stress a. Displacement X b. Displacement Y c. Displacement Z d. Rotation About X e. Rotation About Y f. Shear 2 g. Shear 3 h. Moment 2 i. Moment 3 j. Axial k. D/C Ratio l. Allow Multiple Forces – see Max Min Forces Dialog 6. Pier Max and Min Forces —Highlights Max and Min locations of selected stress a. Displacement X b. Displacement Y c. Displacement Z d. Rotation About X e. Rotation About Y f. Shear 2 g. Shear 3 h. Moment 2 i. Moment 3 j. Axial k. D/C Ratio l. Soil Axial m. Soil Torsional n. Soil Lateral X o. Soil Lateral Y p. Allow Multiple Forces – see Max Min Forces Dialog

201

Return to the 3D Display Control page.

Node Information

View the data for a node in the following areas:

1. Node Number—Select the node to view 2. DOF—Displays the number of degrees of freedom for the selected node 3. Translation—Displays the translation in the X, Y, Z directions of the selected node as a result of the loading 4. Rotation—Displays the rotation about the X, Y, Z directions of the selected node as a result of the loading 5. Nodal Coordinates—Displays X, Y, Z coordinates of the selected node prior to loading

Return to the 3D Display Control page.

Max Min Forces Dialog

This option is accessed via the following: -Select the "Pier Max and Min Forces" or "Pile Max and Min Forces" on the 3D Results Dialog. >From the menu that is displayed, select the desired force. -If "Allow Multiple Forces" is selected, the Max and Min Forces dialog will display.

* if more than one force is selected, each element that contains a maximum or minimum force will be highlighted in the 3D Results Window. ** if a single element contains both the max and the min force (common when all forces of a certain type are 0.00), the text "MaxMin" will display next to that element. *** if a single element contains more than one maximum force (or more than one minimum force), the element's color will match the selected force that is closest to the bottom of the "Max and Min Forces"

202

dialog. For example, an element contained the maximum Shear2 force, and the maximum Axial force, the element would be colored to match the Axial force.

Figure A110A: Max and Min Forces Dialog for Piles (Left) Figure A110B: Max and Min Forces Dialog for Piles (Right)

Max Min Tutorial

XML Report Generator XML Report Generator

203

The XML Report Generator is an Internet Explorer based interactive data retrieval system. Based on the XML output created by FB-Pier or FB-MultiPier the report generator presents the user with a menu of available data. The selected options are then presented in an expandable menu format (below left). The requested information is then displayed in a separate report window (below right).

Figure A111: XML Report Generator

The XML Report Generator can be run outside of the FB-MultiPier program. All of the report generation files are located in the ModelReport folder found inside the program directory. Double-clicking on FB-MultiPier-Report.htm file will launch the report generator (provided that Internet Explorer is registered as the default web browser). A dialog box will prompt the user for the name of the XML data file. Javascripting must be enabled in order to display the data reports. Most browsers have Javascripting enabled, but it can be disabled under the browser security settings. Check the computer Internet Options for further details. The report generator can create cross section drawings using SVG graphics. Viewing these images requires the Adobe SVG Viewer which is a free plug-in for Internet Explorer. If the viewer is not present the graphics option will not be include in the menu. The Adobe SVG Viewer can be downloaded from their website. http://www.adobe.com/svg/viewer/install/main.html

204

Results Viewer Results Viewer To use the Results Viewer go to Control > View Analysis Data > Results Viewer. The Viewer will bring up the .out file with the Header List on the left and the Output Results on the right. By selecting a header from the Header List, the Output Results will scroll to that location in the output file. If you have selected a header, which may have more than one location in the output such as multiple pile, pier or load case information, you can scroll to the next header by clicking the ‘Next’ button. Once you have selected a header, the mouse scroll wheel will be active in the Output Results window.

Toolbar Options

- ‘Available List’ will provide all available headers for the output file you are viewing.

- ‘Custom List’ allows you to select specific headers that you would like to view. After selecting the headers you click the ‘Select Headers’ button to build your custom list.

- ‘Clear List’ will clear all selected headers in the ‘Custom List’.

- Copy, Cut and Paste are standard windows commands. To use the right click Copy, Cut and Paste you must select your text and then right-click outside the Output Results window.

- ‘Find’ allows you to select any text and is case sensitive.

- ‘Find Next’ will find the next text entered in Find if available.

205

Figure: VR1 Results Viewer

General Modeling Column Connection to the Pile Cap

The loads are transferred from the pier column to the pile cap and then to the foundation. The normal way would be that the load from the pier column is applied at the base node of the column where it connects to the pile cap. This would cause stress concentrations at that area. It would be more realistic if the load from the column to the pile cap is spread to several nodes. FB-MultiPier is currently spreading

206

the load to the four adjacent nodes to the pier column base node (see Fig. H1). Therefore we avoid the stress concentrations.

This process is done internally by the program, based on the coordinates of the column base node the program finds the four nodes adjacent to that and it adds ‘’connector’’ elements between those and the base node. This way the load is also transferred. The connector elements that are created are "rigid" elements generated by the program by assigning to them very high values of material properties.

The stiffness in the connector elements is based on the properties of the columns and its and it is defaulted to 1000 times that. The end conditions at the connectors are set so there is no moment transfer at the ends of the connectors. Therefore the connectors give the moment effect of columns without the localized moments at the ends of the connectors.

The elements that are created, or better say the nodes that the ‘’connector’’ elements frame into are shown in the output file in the paragraph ‘’PIER MEMBER CONNECTIVITY’’. Depending on the location of the column base node the ‘’adjacent nodes’’ may change.

Figure H1: Column Connection to Pile Cap

Taper Modeling

207

FB-MultiPier allows for the modeling of tapered columns, pier caps and pier cantilever elements (Figure H2). The taper can be either linear or parabolic. The user is required to enter the properties at the ends of each element (column, pier cap, pier cap cantilever) and also the number of sections in each element. The program then discretizes each element into the number of specified sections and generates a series of elements each of which having varying cross section properties to define the paper (Figure H3). The axis of the parent element (i.e. column etc) remains the same (Figure H4). During the analysis, the analysis engine treats each of the sections as individual elements with the specified material properties and the results are provided for each of them.

Figure H2: Solid View of Model

208

Figure H3: Engine Model Discretization (Solid View) based on taper input data

209

Figure H4: Engine Model (Thin Element View) of Structure

Bridge Span Overview

The deck of the bridge and its connection to the supporting pier is modeled with a combination of elements shown in the figure H5 below. The superstructure (Span) element is modeled with a series of linear discrete elements. With either constant or varying (tapered) cross sections. These element properties are input by the user, and are intended to simulate the behavior of the bridge deck.

210

Since the span element is located at a distance from the bearings and essentially the pier cap centerline, FB-MultiPier generates and uses a vertical rigid link element. This element is required to be rigid and therefore FB-MultiPier internally assigns its properties. These properties are calculated based on those of the span element to ensure the rigidity of the vertical rigid link.

Figure H5: Bridge Span Components The transfer beam is the last element to complete the bridge span modeling. The transfer beam is used to connect the bearings together and it therefore dictates the load path from the span element to the supporting pier. The properties that are assigned to the transfer beam are such that they can simulate different span end conditions.

The bearing elements are used to simulate the response of the bearings on the pier cap and they have six degrees of freedom at each end. Each degree of freedom can either be ‘constrained’, ‘released’ or it can have ‘custom’ properties. The ‘constrained’ condition implies that the bearing will behave much like a rigid link in that direction. The ‘release’ condition simulates the case when the bearing provides no resistance in that particular

211

direction. Finally, the response of the bearing in a particular direction can be determined by user defined load displacement curve.

Uplift Bearing – Future Development The program recognizes the fact that when a bearing physically rests on the pier cap it cannot displace downwards independently from the pier cap. It is, however, possible (based on the actual construction) to move upwards with no restriction (i.e. the deck falls off the bearing). Since the program acknowledges the fact the ‘release’ support condition is not available in the Z direction (vertical) of the degrees of freedom. FB-MultiPier instead provides a ‘uplift’ bearing which can be used to simulate the case where the deck can lift from the bearing but it cannot ‘go though’ it.

Span End Conditions Based on the construction the spans may have different end conditions; FB-MultiPier can simulate these conditions by assigning various properties to the Transfer Beam. The ‘Diaphragm’ condition assigns such properties that the Transfer Beam will behave as a rigid element. The ‘Non-Diaphragm’ condition relaxes the values of the properties to allow a more flexible beam. Finally, the user is able to assign custom properties for the Transfer Beam to simulate other conditions.

The span end conditions must be assigned at both sides of the span independently using the ‘Edit Span’ window.

212

Node Numbering

Fig N-1 Node Numbering

213

Span Length Calculation

214

215

Fig S-1 Span Length Calculation

Preliminary Soil Values

Bridge Span Modeling Deck Modeling

There are six components used when modeling the deck in FB-MultiPier: 1) The Pier Cap is modeled as an Discrete element at centerline. 2) The Offset Rigid Links are used to model the connection from the bearing to the Pier Cap in the case of two rows of bearings where the bearings are some distance from the centerline of the Pier Cap. 3) The Bearings are modeled as six springs to represent the response of the bearing in all degrees of freedom. The Bridge Spring Element properties are either based on custom user input or are generated by the program based on the Span end conditions. 4) The Transfer Beam transfers the deck load via the rigid vertical link to the bearings. The Transfer Beam properties are either based on custom user input or are generated by the program based on the Span end conditions.

216

5) The Vertical Rigid Link transfers the load from the Span (Deck) to the Pier Cap. This element is used to account for the eccentricity of the centerline of the bridge deck from the centerline of the pier cap. 6) The Span (Deck) element is used to simulate the behavior of the bridge deck. This is modeled as a series of discrete elements (default = 9) with properties specified by the user.

Figure I1: Deck Modeling Components

The Span (Deck) properties represent the actual deck and are provided by the user.

Note: The deck is always linear.

217

Properties of the Vertical Rigid Link match the axes between the Span (S) and the Vertical Rigid Link (VL). The properties of VL are based on those of the span and the goal is to give similar stiffness terms as the span.

Figure I2: Axis for Vertical Rigid Link and Span

 LVL  = 1000 × I2 ×    LS 

3

Eqn. i1

IVL 3

Eqn. i2

I2VL =

Eqn. i3

 4E  LVL  JVL = 1000 × I2 ×     G  LS 

Eqn. i4

 LVL  AVL = 12000 × I3 ×  3   LS 

218

85 A L3 VL LS

Transfer Beam Properties

The transfer beam is used to model the end conditions of the span and to transfer the load to the bearings. The transfer beam’s properties are dependant on the properties of the vertical rigid link. Stiff Transfer Beam: Soft Transfer Beam: Custom:

Use properties of vertical rigid link Use properties of vertical rigid link divided by 1000 User defined properties

Figure I3: Axis for Transfer Beam and Vertical Rigid Beam

Eqn. i5

 LTB  ATB = 12  3  I3VL  L VL 

219

AVL L3 TB 12 LVL

Eqn. i6

I3TB =

Eqn. i7

 LTB  I2TB = I2VL    LVL 

Eqn. i8

JTB =

3

4E I2VL LTB × G LVL

Rigid Link Properties

The properties of the Rigid Link (RL) are based on those of the Pier Cap (PC). The rigid link should be rigid compared to the pile cap.

220

Figure I4: Axis for Offset Rigid Link and Transfer Beam

Eqn. i9

ARL =

2400 × I2PC × LRL L3 PC  LRL  ×    LPC 

Eqn. i10

I3RL = 2000 × I3PC

Eqn. i11

APC L3 RL I2PC = 85 × LPC

Eqn. i12

JRL = 8000 ×

3

E I3PC LRL G LPC

Bearing Pad Properties

The properties of the bearings will be calculated in three ways: 1) Based on properties of the Transfer Beam (TB) 2) Based on properties of the Rigid Links (RL) 3) Based on user defined custom curve

When there is fixity the program will use the larger of the first two options.

221

When there is no fixity (Release) then the program is using "EWEAKSPRING" which is defaulted to 1E-05. The Spring element that is used has a 12x12 stiffness matrix.

Method 1 - Bearings based on transfer beam properties

Figure I5: Axis for Bearing and Transfer Beam

Eqn. i13

S (1,1) =

ATB E LTB

Eqn. i14

S ( 2,2 ) =

24E I2TB L3 TB

Eqn. i15

S ( 3,3) =

24E I3TB L3 TB

Eqn. i16

S ( 4,4 ) =

JG LTB

222

Eqn. i17

S ( 5,5) =

8E I3TB LTB

Eqn. i18

S ( 6,6 ) =

8E I2TB LTB

Method 2 - Bearings based on rigid link properties

Figure I6: Axis for Bearing and Offset Rigid Link

Eqn. i19

S (1,1) =

12E I2RL L3 RL

Eqn. i20

S ( 2,2 ) =

ARL E LRL

Eqn. i21

S ( 3,3) =

12E I3RL L3 RL

223

Eqn. i22

S ( 4,4 ) =

4E I3RL LRL

Eqn. i23

S ( 5,5) =

JRL G LRL

Eqn. i24

S ( 6,6 ) =

4E I2RL LRL

Bridge Span Dead Load

This dialog shows the program-generated dead load from the Bridge Span self weight, based upon tributary span lengths. Prior to version 4.12b of FB-Multipier, these loads were not displayed in the interface, though they were used in the Analysis. This dialog is only available for Bridge models. For single pier models, the program does not generate span dead load. To display the Bridge Span Dead Load Dialog, click the "Span Dead Load" button on the Load Table.

Backwards Compatibility For input files created prior to version 4.12b, and existing bearing loads are added to the new program-generated Dead Load. For example, if the user

224

had applied a 100 kip load to each bearing location, and the programgenerated bridge span dead load is 50 kips at each bearing, then the interface will now display a load of 150 kips at each bearing. This load of 150 kips will be used in the Analysis. If the intent of the user is to have a 100 kip load on each bearing, the user

should use the Load Page or Load Table to change the load at each bearing to 100 kips. It is strongly recommended that the user visit the Load Page or Load Table to ensure the loading has been transferred correctly.

225

Figure. BR-1: Bridge Span Dead Load Dialog Non AASTO

Non AASHTO

During the analysis, the self weight factor will be applied to the span dead load. Thus, these loads as they are displayed on this dialog and throughout the interface, have not yet been factored. The self weight factor applies only to the dead load portion of loading

226

at a bearing location. For example, suppose the program-generated span dead load is 50 kips on each bearing, and the user changes this load to 60 kips. If the user has input a self weight

factor of 1.25, then the load used in the analysis would be (50 kips * 1.25) + 10 kips, or 72.5 kips. This is the value displayed in the 'Analysis Force Z' column of this dialog.

Helpful Hints: If the user does not wish to have the program automatically generate the span dead load, one option is to input a span unit weight of 0.0, on the Bridge Span Properties Dialog. Another option is to input a self weight factor of 0.0, on the Load Page or Load Table. However,

this self weight factor is applied to all pier components (piles, columns, pier cap, bridge spans, etc).

227

Figure. BR-2: Bridge Span Dead Load Dialog AASTO

AASHTO In Aashto mode, in LRFD, the span dead load is displayed in the load case "Components and Attachments" (DC); in LFD, the span dead load is displayed in the load case "Dead Load" (D). The Analysis will factor these loads using the given DC (or D) factors. Thus, these loads as they are displayed in the interface, have not yet been

228

factored.

Transfer Beam Details regarding the "Transfer Beam" which is used to connect the bridge superstructure (which is modeled using linear elastic beam elements) to the substructure via bearings.

The "Transfer Beam" is an elastic beam element that transfers superstructure loads to the bearings. Currently all loads from the superstructure are applied directly to the bearings on the transfer beam, and continuity effects due to a continuous superstructure are calculated as the analysis is conducted. The next version of this program will allow for loads to be applied directly to the superstructure. It is imperative that neoprene bearings are modeled because their stiffness provides for the best and most realistic, distribution of forces between super and substructure. This is important for loads applied in both horizontal and vertical directions to the transfer beam. For example: in order to obtain an even distribution of Dead Load forces the vertical long term neoprene bearing stiffness should be included (use the custom bearing feature) otherwise the Dead Loads will "migrate" to the bearings that are closest to the stiffest parts of the pier cap (as a bearing located over a column). The custom bearing stiffnesses are very easy to input and typically require just 3 lines of data to describe the linear stiffness of these bearings.

A paper in the August 2000 Journal of Bridge Engineering, "Effect of Bearing Pads on Precast Prestressed Concrete Bridges" provides stiffness values for typical bridge neoprene pads. The publication "Construction and Design of Prestressed Concrete Segmental Bridges", by Jean Muller and Walter Podolny , page 245, provide an excellent reference for calculating neoprene bearing stiffness and also discusses the need to use the long term shear modulus for sustained loads. Note in figure TR-1 that the node on the Transfer Beam and the corresponding node on the pier cap are, so to speak, "master and slave nodes" that share the same coordinates in space but are linked by 6 springs that control the movement between super and substructure.

229

The stiffness of the Transfer Beam can be input by the Engineer or for preliminary design the Engineer may elect to use the stiff or soft Transfer Beam option provided by the program.

A future option we plan to develop at BSI is a preload option that would allow one to apply DL or other "built in" loads to the structure before the transfer beam is engaged. These built in loads, as is often the case with Segmental Bridges, would thus exist in addition to any other loads being applied.

230

Figure TR-1: Transfer Beam

231

The node numbering system for superstructure nodes, including Transfer Beam nodes, is depicted above. The sequence is as follows per bridge span: node 1 is located at the base of the left elevation beam; node 2 is located at the top of the left elevation beam; the bridge deck is divided into 10 elements of equal length, with a node separating each element (nodes 3 through 11); node 12 is located at the top of the right elevation beam; node 13 is located at the base of the right elevation beam. The number and location of the remaining superstructure nodes depend on the number of bearing locations. Node 14 is the first bearing location on the left rigid transfer beam. There is one transfer beam node per bearing location (nodes 14 through 19 as depicted in figure TR-1). The right transfer beam nodes then follow (nodes 20 through 25 as depicted in figure TR-1).

Wind Generator Details regarding the use of the Wind Generator with the Bridge option.

The Wind Generator, which is available on the AASHTO page provides a convenient and rapid generation of wind forces applied to the bridge superstructure and live load. These forces are displayed as vectors in the GUI and are applied to the bearing locations on the transfer beam. The values of the wind forces are best seen in the AASHTO load table, where they can also be modified. The wind forces generated are calculated based upon tributary superstructure areas and, as with self weight of superstructure, these forces are redistributed during the analysis if the superstructure is continuous.

The wind forces generated can be manipulated in a number of ways including modifying the basic wind pressures from the defaulted Code values found in the Generator.

Some wind forces are not generated and must be manually added to the Wind on Structure (WS) load cases. These are wind on substructure and the upward wind force on superstructure. The wind on substructure is applied by the Engineer by applying calculated un-factored loads directly to the substructure nodes. The upward wind on

232

superstructure should be applied as loads to the bearings. In previous versions of this program wind on substructure was also generated and applied at the bearings along with the wind on superstructure forces. Applying the wind directly to the substructure provides a more accurate solution that the previous methodology, where these forces were generated by the program and then concentrated at the bearing locations.

233

Bridge Span Element Numbering

234

Fig B-1 Bridge Span Element Numbering

Setup Options Expanding Memory

The FB-MultiPier Engine can be adjusted to allow larger pile system solutions. If the problem is to large for the current settings the engine will generate a error message like: STORAGE EXCEEDED BY ******** UNITS Not enough memory is available for the analysis To change the available memory settings goto Control -> Program Settings -> Analysis Settings

You can correct this from the Program Settings Dialog in the Control menu in the interface. Set the ‘Memory for Current Analysis’ to a larger value than is currently used, repeating until the error message does not appear. Older computer may not have enough memory to analyze large problems.

Previous version of the program (v4.08 and earlier) report the same problem with a error message like:

Not enough Memory You can correct this from the Program Settings Dialog in the control menu in the interface as mentioned above.

Program Settings

235

Figure A12: Program Settings Dialog

To clarify the two different Analysis Settings: ‘Memory for Current Analysis’ is the amount of memory used when the current input file is analyzed and this value will be saved with input data. ‘Memory for New Problem’ is the amount of memory used with each new problem created.

FB-Pier License Installation License File

236

FB-MultiPier operates using a license file to determine its status. All shipped versions run in Demo mode as the default. The program can be "unlocked" into various modes including full version and student version, networked or stand-alone. This unlocking can be done by hand, through phone contact with the Bridge Software Institute ( http://bsi-web.ce.ufl.edu ) or automatically through an internet connection to the BSI web server. The program requires a license file to be installed. This license file is linked to the computer on which it is installed. NOTE: You must have administrator rights on Windows NT or Windows 2000 to install FBMultiPier or the license file on a server.

The following describes the modes and processes required: Stand-Alone

A stand-alone or fixed license version is locked to run on a single machine and only that machine. The license file is installed on the individual machine.

Network Version

A network version is a floating license version that allows a fixed number of machines to run the program at any one time. For example, a three-seat installation allows three computers to run the program at the same time. The program is actually installed on any number of machines. For example, you can install the program on 20 computers in your network. However, only three of the 20 can use the program at the same time.

This installation requires a network server that shares a directory with all the computers wishing to run FB-MultiPier. The shared directory is where the license file is installed. All client machines must have read and write permissions for the shared directory in order for the program to run.

There is a separate install program for installing the license file on the server.

237

If your network installation has multiple servers, you will need to purchase multiple server versions.

Updating the license

Any installed version can have its permissions changed by entering encrypted numbers into the license file. This is done by choosing the Control->Update license option from the main menu. The update can be done by hand or automatically through the Internet.

E-mail/Fax/Phone License Update This option is for installations that do not have an Internet connection. To do this installation, call the BSI support number (check the web for the phone number) and you will be stepped through the process. Numbers from your computer need to be given to the BSI representative and we can Fax or E-mail the encoded numbers you will need to type into the program.

Internet License Update

This option requires the computer on which you are installing the license file be connected to the Internet. Then, all numbers are communicated through the Internet and the license updated automatically. The computer can either be a stand-alone system or the network server for a multiple seat license.

Transfer License

There is a built in function that allows you to transfer you license to another machine. This allows you to move the license file from your current server or workstation to a new machine.

Troubleshooting

The license file (both for servers and individual workstations) is locked to a machine based on hardware components contained in the machine. If you change or modify your hardware (drives, motherboards etc) your installation may not function. To do this, you should first transfer the license, then modify your hardware, and then re-install the license on the machine.

Novell systems: Be sure that the directory where the license file is saved is accessible to any user. The user must have read, write, modify, erase and create rights for that directory.

238

License Update Tutorial

FB-MultiPier License Installation Help

Before updating the program license for the first time, the FB-MultiPier program will run in demo mode. While running in demo mode, the model size is limited to a 5x5 pile group and the program execution is limited to 30 days. After purchasing the program, these limitations can be removed by using the License Configuration Wizard. To update the software license at any time, select Update Software License from the Control menu while viewing the intro Logo window. Doing so brings up the License Configuration Wizard. The initial License Configuration Wizard screen shows four options for updating the software license. The options are shown below:

Figure G1

License Update Tutorial

239

Update a License on a Stand Alone Workstation

This option is used for a single installation of the software that does not rely on network to run the program. A license of this type is individually purchased per machine. Click the Next button to continue. The next screen presents two methods for updating the software license. The first method allows the user to update the license by phone/fax. The second method is the preferred method, which allows the user to update the software license via an Internet connection. This method is preferred since it is completely automated, assuming that a user account has been established in advance and that the user can connect to the Bridge Software Institute (BSI) web server. The user account will be created when downloading the FB-MultiPier program.

Figure G2 FB-MultiPier utilizes a license file to determine the program configuration. This license file must be updated by one of the two methods. If neither option is feasible, please contact the BSI for assistance.

License File Update by Phone/Fax This option requires a phone call to the BSI. To update a license by phone/fax, select Update by Phone/Fax and click the next button to continue. The next screen shows a series of edit boxes for entering license data. The Session Code and Machine ID need to be given to the BSI representative. After validating the user’s account information and status, the BSI representative will then supply the user with a series of numerical codes that will modify the configuration of the license file. If the numerical codes are entered correctly, the program will be unlocked and will run without any limitations. If any of the numerical codes are entered incorrectly, the wizard will prevent the user from advancing to the next screen. License Update Tutorial Click Next after entering the numerical codes.

240

Figure G3 The Update Complete screen will then be shown after successfully entering the numerical codes. In order to apply the changes to the program configuration, the FB-MultiPier program needs to be restarted. Clicking the Finish button will update and automatically close the program. The program will now run in an unlocked state. License Update Tutorial

Update/Install a License on a Network Server

This option is used for a single installation of the software on a network server. This license update is identical to stand alone workstation update, except that the license is configured on the network server. This option would be used to run the program directly on the server to take advantage of the server hardware configuration (i.e. more memory, hard disk space, etc.). A license of this type is individually purchases per machine. Select Update a License on a Network Server from the initial screen and follow the steps outline for Updating a License on a Stand Alone Workstation.

241

Figure G7

License Update Tutorial

Set Client Path for a License File on a Network Server

This option is used by the network client computer after a server license file has been configured and successfully installed on the network server (see LicServe Wizard). When a floating network license is purchased, the limiting factor is the number of network seats. The FB-MultiPier program can be installed on any number of client machines, however, the number of clients that can run the program at one time is limited by the number of network seats purchased. In order for the client machine to run the program using this scenario the client must locate the license file that has already been installed on the network server. Once this path has been established it will be saved so that the client machine will automatically find the license file each time the program is run.

242

Figure G8 Click the Next button to continue. The next screen asks the user to browse to the license file path on the network server. The user can either type the path or preferably click the Browse button to locate the file. The license file is named "FB-MultiPier.lf". Click the Browse button, locate the license file on the network server, and click Open to continue. You must browse through the network to locate the license file. You can not use a mapped drive letter.

243

Figure G9 Click Next after locating the license file on the network server. The Update Complete page is now shown. In order to apply the changes to the program configuration, the FB-MultiPier program needs to be restarted. Clicking the Finish button will update and automatically close the program. The program will now run in an unlocked state.

Figure G10

Transfer License to a Different Computer

This option is used to transfer a valid software license to another computer if the user no longer wishes to have the license on the current computer. Please note that selecting this option will invalidate the license file on the current machine. Also, this option is only valid for a stand along workstation installation of FB-MultiPier. Floating network installations are not applicable since the license is stored on the network server. To proceed, select Transfer License to a Different Computer and click the Next button.

244

Figure G11 Because this process can not be reversed, the user must check the box to confirm the remove the license from the current computer before proceeding. Doing so will enable the Next button. Click the Next button to remove the license. License Update Tutorial

245

Figure G12 The next screen informs the user that the license has been successfully removed. A verification code is displayed on the screen (and written to the file "LicRemoval.txt" in the application directory). This code must be given to a BSI representative in order to complete the license transfer process and activate the license on another computer.

Figure G13 Click the Next button to continue. The Update Complete page is now shown. In order to apply the changes to the program configuration, the FB-MultiPier program needs to be restarted. Clicking the Finish button will update and automatically close the program. The program will now run in an unlocked state.

Toolbar Icons DESCRIPTION OF TOOLBAR ICONS The buttons in the toolbar at the top of the screen control the access to different modules within the program. Some of the menu items can also be accessing using the buttons instead for convenience. The purpose of each button in the toolbar is described below.

Figure A1: Toolbar Icons

246

Figure A2: File Option Icons

Figure A3: Model Data and Analysis Icons

Figure A4: Analysis Results Control Icons

Figure A5: Pier and Load Case Menus

247

Figure A6: 3D Control Bar Icons (if activated)

General Pier Wizard

The General Pier Wizard creates a general pier problem using detail specified information.

Figure A12: General Pier Wizard

248

By entering the information requested at each step the user can create a customized general pier model in a short time.

Batch Analysis Batch Mode

A batch of input files can be analyzed interactively in Batch Mode.

Figure A91: Batch Mode Dialog

Check the "Include" box to analyze the input file.

Select the memory size for each input file. Most normal size models only require 8MB of memory. Larger models may require more memory. The program will provide a notification if the

249

memory size is exceeded. At this time, FB-MultiPier does not automatically determine the memory requirements in advance of the analysis.

The Completion Status indicates a successful or unsuccessful analysis for each model.

Retrieving input files:

Select "Open Existing Batch File" to retrieve an existing set of input files.

Select "Add Input File(s)" to add input files to a new or existing batch file. One or more files can be added at a time by using the Ctrl key while selecting files in the Open file dialog.

Run mode:

Select "Run Without Interruption" to analyze all input files without pausing for modeling errors or convergence failures.

Select "Pause on Analysis Failure" to have the program pause to display modeling errors or convergence failures a particular model.

Running FBPier_eng in Batch Mode

The FB-MultiPier engine can be run in a batch mode. This allows a number of input files to be run sequentially. The input files need to be created by the graphics program (FB-MultiPier) as normal and saved. Then, the engine can be run using a batch file or any other scripting language. If you wish to use a DOS type batch, you can do the following:

1) 1) 1)

1)

1)

1)

1)

1)

Use Notepad to edit a file

2) 2) 2)

2)

2)

2)

2)

2)

The lines of the batch file are:

250

"C:\program files\BSI\FBMultiPier\FBPier_eng.exe" I:\my documents\FB-MultiPier\test.in O:\my documents\FB-MultiPier\test.out

There can be as many lines as required for the number of input files. The format is as follows:

The first thing on the line is the location of the executable. This includes the full path to the .exe file. In addition, if there are spaces in the path name, the entire executable must be enclosed in quotes.

Second is the input file, designated by I: Again, the full path must be included. Quotes should not be used around the input file path. Third is the output file name designated by O: Again, the full path must be included. Quotes should not be used around the output file path. There can also be a memory allocation change on the line if more memory is required. The format is m:xx, where xx is the number of megabytes (MB) to use in the analysis. (i.e. m:64) The default value is 8MB.

3) 3) 3) 3) 3) 3) name, the extension must be .BAT).

3)

3)

Save the file as run.bat (run is an arbitrary

4) 4) 4) 4) execution.

4)

4)

Double click on the run.bat file to start

4)

4)

As an example, here is a batch file that will run the program for three input files.

"C:\program files\BSI\ FBMultiPier\FBPier_eng.exe" I:\my documents\FB-MultiPier\test1.in O:\my documents\FB-MultiPier\test1.out "C:\program files\BSI\ FBMultiPier\FBPier_eng.exe" I:\my documents\FB-MultiPier\test2.in O:\my documents\FB-MultiPier\test2.out "C:\program files\BSI\ FBMultiPier\FBPier_eng.exe" I:\my documents\FB-MultiPier\test3.in O:\my documents\FB-MultiPier\test3.out

Soil-Pile Interaction Soil-Pile Interaction

251

Input line 17 characterizes both the axial and lateral soil-pile interaction. The axial soil-pile interaction is modeled through hyperbolic T-Z curves. The lateral soil-pile interaction is modeled with nonlinear p-y curves. The user has the option of picking from one of six different P-Y models. Four of the p-y models are the same as those given in FHWA's COM624P manual (Wang and Reese, 1993).

Axial Soil-Pile Interaction Lateral Soil-Pile Interaction Torsional Soil-Pile Interaction Pile Group Interaction Soil Properties

Return to the Soil Layer Models page.

Group Interaction

When a group of piles are subject to a vertical or lateral load (i.e. wind, earthquake, etc.) their vertical or lateral resistance is generally not equal to the sum of the individual pile resistance. Generally the group resistance is less than the individual pile resistance and is a function of pile location within the group, and pile spacing.

Consider lateral loading of the variable groups (3x3, 4x3, to 7x3) in dense sand shown below:

Experimental testing (centrifuge) on pile groups has resulted in the following shear distribution in each of the individual rows:

Table B1: Average Pile Shear (kN) - Medium dense Sand (Dr = 55%) Layout

3x3

4 x 3

5 x 3

6 x 3

7 x 3

Aver age

Lead Row

2 4 5

2 9 4

2 9 4

3 0 2

2 8 5

284

2nd

1

2

2

2

2

206

252

Row 3rd Row

7 8

0 5

2 2

0 5

2 2

1 4 2

1 5 1

1 6 0

1 7 8

1 7 8

167

1 4 2

1 5 1

1 4 2

1 5 1

148

1 4 2

1 4 2

1 4 2

142

1 4 2

1 4 2

142

1 4 2

142

4th Row 5th Row 6th Row 7th Row

Group

1 6 6 4

2 3 7 5

2 9 0 9

3 3 3 6

3 7 9 0

1 8 9 8

2 3 9 8

2 8 4 3

3 2 7 0

3 6 9 7

1 4

1

2. 3

2

2. 5

(Measured)

Group

(Predic ted)

Error (%)

Note that the individual row contributions, with the exception of the trail row, appear to be only a function of row position. Also, using the average for the row (with exception of trail row) does a good job of predicting the measured group response. Consequently, the approach recommended by Brown and Reese (1988) with P-Y multipliers has been implemented in the code.

253

The following P multipliers are recommended for lateral loading at 3D pile spacing:

0.8, 0.4, 0.3, 0.2, 0.2, …..0.3 where 0.8 is the lead row and 0.3 is the trail row value

For 5D pile spacing the following P multipliers are recommended:

1.0, 0.85, 0.7, 0.7, …, 0.7 where 1.0 is the lead row and 0.7 is the trail row value.

These multipliers generally represent group efficiencies of 70-75% for 3D spacings and 95% for 5D pile spaced groups. Also, the multipliers were found to be independent of soil density (sands).

NOTE: The program will apply the PY multipliers to the correct pile rows (lead to trail) based on the direction the piles move. The PY multipliers are always given in trail to lead order. This does NOT depend on the direction of the applied load.

In the case of battered piles (A frame) as shown below:

Cross-Sectional View Applied Lateral Load

Plan View

0.88 m (34.5 in) 0.44 m (17.3 in) 1.9 m (6.23 ft)

D = 0.43 m (17 in)

3D

8 11.25 m (36.9 ft)

1

0.43 m (17 in)

3D

3 D Spaced Group Layout 11.25 m (36.9 ft)

4 1

EI=72.1 MN-m 2 (2.51x10 10 lb-in 2)

D = .43 m (17 in)

5D 5D

5 D Spaced Group Layout Reverse Batter

Forward Batter

Figure B1

Centrifuge Tests were conducted on both 3D and 5D groups shown in loose and dense sands. Presented is one of the comparisons of plumb vs. battered response:

254

Lateral Deflection (in) 0

1

2

3 240

2.0

Battered, 3 Forward - 6 Reverse

Lateral Load (MN)

160 1.2

Fixed Head Plumb

120 0.8

80 Free Head Plumb

0.4

Pile Spacing - 3D Dr - 55%

0.0 0

20

40

60

80

Lateral Load (tons)

200

Battered, 6 Forward - 3 Reverse

1.6

40

0 100

Lateral Deflection (mm)

Figure B2

Based on the centrifuge results the same multipliers are recommended for battered (A frame) as plumb pile groups. Presently there is little, if any data on other batter layouts.

Axial Efficiency The program also has an axial group efficiency factor. This is a factor that effects the force displacement in the axial direction. The axial efficiency factor is found from the soil tab page, under the group button. For more information, see Sayed (1992).

Soil Resistance Due to Pile Rotation

255

This option is used for the program to calculate and apply rotational springs to the pile nodes in the ground. These springs are based on the axial resistance of the piles (skin friction) as well as the rotation of the piles. It is particularly important in soil layers where the piles can develop large values of skin friction. Calculation of bending strains At each location along the length of the pile, the total strain consists of an axial and a bending component. Of interest is the bending strain, εb at any given section of the shaft,

εb = Eqn.b1

ε1 − ε 2 2

where: ε1 and ε2 are the values of the strain on the opposite sides of the shaft. Figure B3 shows in detail how the bending strains are obtained from the measured strains.

Figure B3: Total, axial and bending strains on cross-section.

Soil’s Lateral Resistance P(F/L) Form Bending Moments and Skin Friction The difference in the moment at two different elevations is caused by soil’s lateral (P force/length) and axial force (T force/length) resistance at the soil-shaft interface. The contribution to moment in the case of the latter is a function of shaft diameter, and the soil’s T-Z curve as well as the rotation of the shaft. Figure B4 shows the contribution of T to the Moment Equilibrium for the resulting Shear, V at a cross-section, Eqn.b2

V = dM/dz

Consequently, from lateral force equilibrium, Figure B4, the soil lateral P (force/length) is found as P = dV/dz = d2 M/dz2

Eqn.b3

256

If the side shear, T (Figure B4), is taken into account, then moment equilibrium results: dM/dz = V + TD/∆z

Eqn.b4 or Eqn.b5

dM/dz = V + Ms

Figure B4: Forces acting on a shaft element of length dz.

where:

M = moment on the cross-section Ms = moment per unit shaft length from the side shear force, T

Evoking horizontal force equilibrium, Eqn. b6

P = dV/dz

Substituting Eqn. b5 into Eqn. b6, then the soil lateral resistance, P, is obtained: Eqn.b7

P = d2M/dz2 – d(Ms)/dz

Evident from Eqn.b7 vs. Eqn.b3, the side shear on the shaft will reduce the soil’s lateral resistance, P, calculation. The moment/unit length, Ms, of the side shear is obtained from the T-Z curve for the soil. The value of T requires the displacement, Z, at a point on the shaft.

Moment Due to Side Shear, Ms Lateral loading causes a rotation of the shaft at any given cross section. The shaft rotation is resisted through skin friction, T, and lateral soil resistance, P, acting on the sides of the shaft. In the case of the unit skin friction, a Moment/length resistance, Ms , may be computed at any cross-section. The value of Ms is a function of the unit skin friction at the periphery of the shaft, which varies around the shaft’s circumference. To estimate the moment due to side shear (Ms), the shaft cross section was divided into slices as shown in Figure B5. Ri is the distance from the center of shaft to the center of slice i. For example R1, is the distance from the center of the shaft to the middle of slice 1.

257

Figure B5: Shaft cross-section divided into slices to calculate Ms .

The value of shear stress, τi, is a function of vertical displace ment, Zi, which is a function of the rotation, θ, and the distance from the center of cross-section to the center of the slice, Ri. If Z1 is the average axial displacement of slice 1 and τ1 (obtained from T-Z curve knowing z1) and C1 the arc length of slice 1 then the side shear force/unit length, T1, acting on slice 1 is given by T1 = τ1.C1

Eqn.b8

The moment per unit shaft length about O, Ms1, is found by multiplying T1 by the distance to the cross-section centroid, R1, as Ms1 = T1.R1 = τ1.C1.R1

Eqn.b9

The total moment per unit length may be found by summing the moments acting on all the slices:

Ms =

∑τCR i

i

i

1

Eqn.b10 where:

n

n = number of slices

Soil Properties Soil Properties

Following are the important soil properties required as input parameters. Young's Modulus Poisson's Ratio

258

Shear Modulus Angle of Internal Friction Undrained Strength Subgrade Modulus Water Table

Young's Modulus

The following recommendation is given by Kulhawy and Mayne (1990) for Young's Modulus, E, for sands:

Normally Consolidated Clean Sands:

E (psf) = 20,000 N60

Over Consolidated Clean Sands:

E (psf) = 30,000 N60

Sand with fines:

E (psf) = 10,000 N60

where N60 is the corrected SPT blow count.

Poisson's Ratio

The following typical values may be used for the Poisson's ratio ν for soils:

259

ν

= 0.2 to 0.3 for sand = 0.4 to 0.5 for clay or a spatial average, for the values of ν over depth may be used for soils consisting of both sand and clay.

Shear Modulus

The shear modulus, G of soils, is a function of soil type, past loading, and geological history. It is recommended that G be obtained from insitu tests such as dilatometer, CPT and SPT.

G can be computed from Young's Modulus , E and Poisson's ratio , ν, from the following correlation: Eqn. b11

G=

E 2 (1 + ν )

In the case of no insitu data is available the following guide is provided: Eqn. b12

Eqn. b13

G=

G=

0.5* k * z (1 + ν )

50* Cu (1 + ν )

for sand

for Clay

where

k=

soil modulus (F/L3) z=

depth below ground surface (L)

Cu =

undrained shear strength (F/L2)

or a spatial average, for the values of GM should be used for any soil profile.

260

Angle of Internal Friction

Angle of internal friction, φ', can be computed from SPT N values using the following empirical correlation:

N’ φ’

Eqn. b14

25-30

4

10

30

50

27-32

30-35

35-40

38-43

N ' = CN N

Where C N = correction for overburden pressure

FHWA 96 uses the correction by Peck, et al. (1974):

Eqn. b15

 20   1915.2  CN = 0.77 log10   = 0.77 log10    σ 'v (tsf )   σ 'v (kPa ) 

valid only for σ’v ≥ 0.25 tsf (24 kPa) (Bowles, 1977)

Normalizing for atmospheric pressure (pa): (1 atm = 101.3 kPa = 1.06 tsf )

Eqn. b16

 pa  CN = 0.77 log10  20   σ 'v 

Larger values should be used for granular material with 5% or less of fine sand and silt. For numerical implementation, the average correlation can be expressed as Eqn. b17

ε'= a N' + b

261

where

N’

a

b

0 - 10

0.50

27.5

10 - 30

0.25

30.0

30 - 50

0.15

33.0

50 -

0

40.5

Undrained Strength

Estimates of undrained shear strength, cu can be made using the correlations of qu with SPT Nvalues (see the figure below). Eqn. b18

cu =

qu 2

qu = unconfined compressive strength

262

30

SPT Blow Count, N

25

Sower's: Clay of low plasticity and clayey silt

20 Terzaghi & Peck 15 10 Clay of high plasticity

5

Clay of medium plasticity 0 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Unconfined Compressive Strength, qu (tsf) Figure B6: Correlations between SPT N-value and Unconfined Compressive Strength

Subgrade Modulus

Subgrade modulus, k (F/L3) of cohesionless soil can be estimated from empirical correlations. For sand, use SPT N-value to find φ Figure B7 and Figure B8 to find k.

Figure B7

263

100

N UM B E R S O N C UR VE S IN D IC A T E E F F E C T IVE O VE R B UR D EN P R E S S UR E

40 psi

80

60

20 psi

40

0 psi

20

0 0

20

40

60

80

100

Dr (%) R E LA T IVE D EN S IT Y

φ

VE R Y LO O S E

28 o

LO O S E

29 o

M E D IUM

30o

D EN S E

36 o

VE R Y D EN S E

41o

45o

Figure B7: SPT Blow Count vs. Friction Angle and Relative Density

Figure B8

264

V ER Y LO OS E

300

M ED IU M D EN S E

LO OS E

V ER Y D EN S E

D EN S E

250 S A N D A B OV E THE W A TER TA B LE

k ( lb / inch

3

)

200

150

100

S A N D B ELO W THE W A TER TA B LE

50

0 0

20

40

60

80

100

Dr (%)

Figure B8: K vs. Relative Density

Lateral Soil-Pile Interaction Lateral Soil-Pile Interaction

For the lateral pile-soil interaction, the user has the option of picking from 1 of 6 different p-y models which are selected through the SOIL parameter. Followings are the available P-Y models. O'Neill's Sand Sand of Reese, Cox, and Koop O'Neill's Clay Matlock's Soft Clay Below Water Table Reese's Stiff Clay Below Water Table Reese and Welch's Stiff Clay Above Water Table Limestone (McVay)

265

User Defined

O'Neill's Sand

SOIL=1, is O'Neill (1984) recommended p-y curve for sands:

Eqn. b19

 kz p = η Apu tanh   Aη pu

η

where

   y  

= a factor used to describe pile shape; = 1.0 for circular piles;

A

= 0.9 for cyclic loading; = 3-0.8 z/D 0.9 for static loading;

D

= diameter of pile;

pu

= ultimate soil resistance per unit of depth;

k

= modulus of lateral soil reaction (lb/ft3 or N/m3).

The ultimate soil resistance pu in equation b19 is determined from the lesser value given by equations b20 and b21. Eqn. b20

pu = γ z  D ( K p − K a ) + zK p tan φ tan β 

Eqn. b21

pu = γ Dz ( K p 3 + 2 K 0 K p 2 tan φ + tan φ − K a )

where z depth in soil from ground surface;

γ

= effective unit weight of soil;

Ka

= Rankine active coefficient; = (1 - sin φ )/(1 + sin φ );

266

=

Kp

= Rankine passive coefficient; = 1/ Ko

Ka

;

= at-rest earth pressure coefficient;

= 1 - sin φ;

φ

= angle of internal friction;

β

= 45o + φ/2 .

The p-y relationship given in equation b19 depends on the soil parameters k (lb/in3 or N/m3) and φ (deg), which may be obtained from insitu SPT data. For sand, use SPT to find φ (Figure B10) and φ to find k (F/L) (Figure B11).

A comparison between O'Neill's p-y curve for sand and Reese et. al. (1974) curve (SOIL=2) is shown in figure B9 for φ=35, k=150 lb/in3, and γbuoyant =52.6 lb/ft3 at a depth of 25 ft. Evident from the figure, O'Neill's curve fits Reese's initially, but differs for Pu (generally the case).

P-Y Curves (at 25 ft) 14 12

P (kips/in)

10 8 6 O'Neill 4

Reese

2 0 0

0.5

1

1.5

Displacement (in)

Figure B9: Comparison of O’Neill’s and Reese, Cox, and Koop’s P-Y Curves

267

100

N UM B E R S O N C UR VE S IN D IC A T E E F F E C T IVE O VE R B UR D EN P R E S S UR E

40 psi

80

60

20 psi

40

0 psi

20

0 0

20

40

60

80

100

Dr (%) R E LA T IVE D EN S IT Y

φ

VE R Y LO O S E

28 o

LO O S E

29 o

M E D IUM

30o

D EN S E

36 o

VE R Y D EN S E

41o

Figure B10: SPT Blow Count vs. Friction Angle and Relative Density

268

45o

V ER Y LO OS E

300

LO OS E

M ED IU M D EN S E

V ER Y D EN S E

D EN S E

250 S A N D A B OV E THE W A TER TA B LE

k ( lb / inch

3

)

200

150

100

S A N D B ELO W THE W A TER TA B LE

50

0 0

20

40

60

80

100

Dr (%)

Figure B11: K vs. Relative Density

Sand of Reese, Cox, and Koop

SOIL=2, Reese, Cox, and Koop (1974) developed p-y curves for static and cyclic loading of sands based on an extensive testing of pipe piles in Texas. The p-y curve is shown below and a complete description of curve is available in FHWA's COM624P (1993) manual. User must supply the soil's angle of internal friction , φ , subgrade modulus, K, and the sand's buoyant unit weight, γ ' .

269

x = x4 x = x3

x = x2

p pu

x = x1

m

m pm

k pk

u

yu

ym

yk

x=0

k sx

3b/80

b/60 y

Figure B12: P-Y Curves for Static and Cyclic Loading of Sand (after Reese, et al, 1974)

O'Neill's Clay

SOIL=3, is O'Neill's P-Y method for static and cyclic loading of clays. Shown in the figures below are both the static and cyclic curves. The user must supply the clay's undrained strength , c, the strain (in/in) at 50% failure, ε50 and 100% of failure ε100 from an unconfined compression test.

270

RATIO OF SOIL RESISTANCE, P/ PU

1.0

P = 0 .5 P U PU

FOR X ≥ XCr

0.5

P PU

0.0

P PU

= 0 .5 ( YY ) 0 . 387 C

1

10 RATIO OF DEFLECTION,

= 0 .5 F C

X Xr

Y YC

RATIO OF SOIL RESISTANCE, P/ PU

Figure B13: O'Neill's Integrated Method for Clay (b) Cyclic Loading Case

P = PU

FO R X ≥ X Cr

1.0

P PU

= 0 .5 ( YY ) 0 . 387 C

0.5

P PU

0.0

1

6

= FS + (1 − FS )

20 RATIO OF DEFLECTION,

X X Cr

Y YC

Figure B14: O’Neill’s Integrated Method for Clay (b) Static Loading Case

Matlock's Soft Clay Below Water Table

271

SOIL=4 is Matlock's (1970) p-y representation of soft clays below the water table. The p-y curves for both the static and cyclic response are shown below. The user must supply the soil's unit weight, γ, undrained strength, c, and the strain, ε50 at 50% of the failure stress in an unconfined compression test. A complete description of the curves are given in the FHWA's COM624 manual, as well as recommended soil values.

1.0

P PU

 p   y    = 0 .5   pu   y 50 

0.5

0.0

8.0

1.0

1/ 3

y y 50

Figure B15-a: P-Y Curve for Soft Clay Below Water Surface (Static Loading)

For x ≥xr, (depth where flow around failure governs)

1.0

0.72 P PU

0.5

0.72 XX

r

0.0 1

272

3

y y 50

15

Figure B15-b: P-Y Curve for Soft Clay Below Water Surface (Cyclic Loading)

Reese's Stiff Clay Below Water Table

SOIL=5 is Reese et al. (1975) p-y model for stiff clays located below the water table. The p-y curves for both the static and cyclic response are shown below. The user must supply the soil's subgrade modulus, k, unit weight, γ, undrained strength, c, the strain, ε50 at 50% of the failure stress in an unconfined compression test, and the average undrained strength cavg for the whole clay layer. A complete description of the curves are given in the FHWA's COM624 manual, as well as recommended values if no triaxial tests are performed.

p = A c p c (1 −

Ac pc

y − 0 .45 y p 0 .45 y p

0 .25

)

Soil Resistance, p ( l b / in )

CYCLIC

Esc = −

Esi = k cx

0.085pc y50

y p = 4 .1 A c y 5 0

y 50 = ε 50 b 0.45 yp

0.6 yp

1.8 yp

Deflection, y ( in )

Figure B16: Reese et al (1975) Cyclic P-Y Curve for Stiff Clay Located Below the Water Level

273

S TATIC

Soil Resistance, p (lb/in.)

y

P = 0 .5 P c ( y ) 0 . 5 50

P offset = 0 .055 p c (

y − A s y 50 1 . 25 ) A s y 50

0.5Pc

E ss = −

0 .0625 p c y 50

Esi = k s x 0

Asy50

y50

6Asy50

18Asy50

Deflection, y (in.) Figure B17: Reese et al (1975) Static P-Y Curve for Stiff Clay Located Below the Water Table

Reese and Welch's Stiff Clay Above Water Table

SOIL=6 is Reese and Welch's (1975) p-y model for stiff clays above the water table. The p-y curves for both the static and cyclic response is shown below. The user must supply the soil's unit weight, γ, undrained strength , c, the strain, ε50 at 50% of the failure stress in an unconfined compression test, and the average undrained strength cavg for the whole clay layer. Since this model is a function of the number of load cycles, the variable, KCYC on line 7 of the input is used. A complete description of the curves is given in the FHWA's COM624 manual, as well as recommended values if no triaxial tests are performed.

274

p = pu

pu

y 1 p = 0.5( s ) 4 pu y 50

p ys

16 y50

Figure B18-a: Welch and Reese (1972) Static P-Y Curve for Stiff Clay Above Water Table

pu N1

N3

N2

yc = ys + y50 . C . logN3 yc = ys + y50 . C . logN2

yc = ys + y50 . C . logN1 p yc

16 y50

16 y50

+

+ 9.6 (y50 ) logN2

9.6 (y50 ) logN1

16 y50

+ 9.6 (y50 ) logN3

Figure B18-b: Welch and Reese (1972) Cyclic P-Y Curve for Stiff Clay Above Water Table

P-Y Resistance for Florida Limestone (McVay)

275

The data for the PY curves presented below is based on the report "Development of Modified T-Z curves for large diameter piles/drilled shafts in limestone for FBPIER"(McVay et. Al. (2004)). The data for the back computed curves were obtained from 12 lateral load tests performed in the centrifuge with diameters of 6 and 9 ft, embedment (L/D) of 2, 3, and 4 and rock strengths of 10 and 20 tsf. (The report recommends that full scale field tests be employed to validate the curves presented). Each lateral load test gave multiple P-Y curves, which were averaged to obtain a representative curve. Presented in Figure B20 are back-adjusted P-Y curves for all twelve-centrifuge tests with side shear considerations; i.e., two shaft diameters (6’ and 9’), three embedment lengths (L/D = 2, 3, and 4) and two rock strengths (10 tsf and 20 tsf). Also shown in the figure are the predicted

P-Y curves for soft and stiff clay models.

Figure B20: P-Y curves from 12 lateral tests corrected for side shear. Evident from the figure, even though the lateral resistance is normalized with rock strength and diameter, there is quite a bit of variability in the P-Y curves. Therefore the curves were normalized even further to be represented by a single trend-line. The P values are normalized with qu0.15 D0.85. Figure B21 shows the normalized P-Y curves for Florida Limestone corrected for side friction. Note that the curves are valid for all the experimental results (i.e., 6’ and 9’ diameter shafts, different rock strengths, etc.). Note also that the P-Y curves are unit dependent. That is for the English system, the rock unconfined compressive strength (qu), the shaft diameter and rock’s lateral resistance, P must be in ksf, feet and kips/ft, respectively. For the Metric system, the rock unconfined compressive strength (qu), the shaft diameter and rock’s lateral resistance, P must be in KN/m2, m and KN/m, respectively. The normalized curves can be obtained by the following equations:

Eqn.b23

276

y P = 13750.D 0.85 qu 0.15 ( ) D

0<

y ≤ 0.004 D

Eqn.b24

where:

y   P = D 0.85 qu 0.15 1083( ) + 51 D  

0.004 ≤

y ≤ 0 .1 D

D = Pile diameter qu = Unconfined Compressive strength y = Pile Displacement

Figure B21: Normalized P-Y curves corrected for side shear.

Limestone (McVay no 2 - 3 Rotation)

When a shaft that is embedded in rock strata is laterally loaded then the lateral response at any elevation along the shaft length is a function of the lateral resistance of the rock and the side shear (skin friction) that is developed at the shaft/rock interface. The commonly used back calculated PY curves do not account for the contribution of the side shear explicitly. Rather the skin friction contribution is implicitly accounted for in the method of back calculating the P-Y curves. However as the diameter of the shaft becomes larger together with the high shear stress that is developed at the shaft/rock interface this effect can become very significant and the explicit determination of the side shear contribution may be justified. Such effort will involve the inclusion of the side shear contribution to the lateral response mechanism of the soil and thus it will reflect in the P-Y curves. Figure 1 shows a free body diagram of an element of the shaft of

277

length dz. Based on force equilibrium we can calculate the lateral response of the soil per shaft unit length either neglecting or including the contribution the side shear forces. If the contribution of side shear T, is included in the calculation then we see that there is a moment Ms due to the side shear.

Ms = TD/dz

This will result in a lateral force dP which actually reduces the total lateral resistance.

dP = - d(Ms)/dz

The skin friction in the shaft interface causes the reduction. The latter suggests that for large diameter drilled shaft field tests in stiff rock, the back computed P-Y curve which neglects the effects of the side shear may be un-conservative.

Figure 1: Forces acting on a shaft element of length dz

FB-MultiPier can generate two types of P-Y curves for the Florida limestone to allow the user to either include or exclude the effect of the side shear contribution during the analysis. This option is activated when choosing "Soil Resistance due to Pile Rotation about 2 and 3 axes" from the soil

278

page, under Soil Layer Models Lateral. When the analysis is requested to include the side shear contribution to the lateral response mechanism then the program calculates the additional term dP. If on the other hand the option is not selected then the effect of side shear is not calculated. Based on the discussion above the user should use this feature with the necessary caution and only where the use is justified. That is when this option is chosen then care must be taken so that the appropriate P-Y curve is used.

Limestone (McVay): No 2 – 3 Rotation is an option for Soil Layer Model Lateral.

Figure: M1 Limestone (McVay 2 – 3 Rotation

Soil Resistance due to Pile Rotation about 2 - 3 axes may be selected or deselected on this dialog.

279

Figure: M2 Limestone (McVay 2 – 3 Rotation) Soil Properties

User Defined

See the section labeled "User defined P-Y data" of soil information of the input file.

Sand (API)

280

API Sand Model (Refer to Section G.8.6 API RP2A LRFD) • •









• • • • • • from Figure G.8-2 API RP2A LRFD.





γsoil, total unit weight of soil





k, subgrade modulus: a value can be chosen

• • • • • • • • φ, angle of internal friction that is used to compute C1, C2, and C3, coefficients. The graphs provided in Figure G.8-1 API RP2A LRFD are curve-fitted as a function of φ.

Note: based on total unit weight of soil input, an effective unit weight of soil, i.e., γ'soil = γsoil - γwater. is computed and subsequently used to compute overburden pressure and ultimate lateral resistance.

Clay (API)

API Clay Model (Refer to Section G.8.2 API RP2A LRFD) • •













c, undrained shear strength of soil

• •













γsoil, total unit weight of soil

• • • • • • • • εc, strain at one-half the max stress on laboratory undrained compression tests of undisturbed soil samples. Note: (1) Effective unit weight is internally computed for Equation G.8-1 of API RP2A LRFD

(2) a dimensionless empirical constant ‘J’ used in Equation G.8-1 of API RP2A LRFD is set equal to a value of 0.5 , which is recommended for Gulf of Mexico clay soils.

Axial Soil-Pile Interaction Axial Soil-Pile Interaction

281

Axial pile capacity is comprised of side friction and tip resistance. Respective component forces are obtained from the following curves:

Axial T-Z Curve for Side Friction Axial T-Z(Q-Z) Curve for Tip Resistance

Driven Pile Sand (API)

API Sand Model (Refer to G.4.3 API RP2A LRFD) • •













γsoil, total unit weight of soil

• • • • • • • • φ, internal friction angle that is used to approximate δ, friction angle between the soil and pipe wall, e.g., δ = φ − 5 deg. • • • pressure











K, dimensionless coefficient of lateral earth

• •











f ult, ultimate (limiting) unit skin friction



Note: based on total unit weight of soil input, an effective unit weight of soil, i.e., γ'soil = γsoil - γwater, is calculated for effective overburden pressure, which is subsequently used to compute the skin friction using Equation G.4-5 of API RP2A LRFD.

Driven Pile Clay (API)

Axial Load Transfer (T-Z) Curves

API Clay Model (Refer to G.4.2 API RP2A LRFD) • •













c, undrained shear strength of soil

• •













γsoil, total unit weight of soil

282

Note: based on total unit weight of soil input, an effective unit weight of soil, i.e., γ'soil = γsoil - γwater, is calculated for effective overburden pressure, which is subsequently used to compute a variable used in Equation G.4-3 of API RP2A LRFD.

Axial T-Z Curve for Side Friction Axial T-Z Curve for Side Friction

Axial T-Z curves for modeling the soil-pile interaction are categorized for the following cases: Driven Piles Drilled and Cast Insitu Piles/Shafts Axial Skin Friction for Limestone (McVay) User Defined

Driven Piles

The axial T-Z curves used in modeling the pile-soil interaction along the length of the driven pile is shown in following figure (McVay, 1989) and given as

Eqn. b25

Z=

( rm − β ) + β ( rm − ro )   ln  Gi  ( ro − β ) ( rm − β )( ro − β ) 

τ o ro 

where

Eqn. b26

rτ β= o o τ

f

At a particular location on the pile/shaft, τ0 is the shear stress being transferred to the soil for a given z displacement, where r0 is the radius of the pile/shaft and r m is the radius out from the pile/shaft were axial loading effects on soil are negligible, assumed equal to pile length times (1-

283

soil's Poisson's ratio) times the ratio of the soil's shear modulus at the pile's center to the value at its tip. The user must supply Gi, the initial shear modulus of soil, ν Poisson's ratio of soil, and τf, the maximum shear stress between the pile and soil at the depth in question. Evident from the equation above, the side springs are highly nonlinear.

Figure B22: Axial T-Z Curve for Pile/Shaft

Axial Skin Friction for Florida Limestone (McVay)

The following data is based on tests which were performed on 6’ diameter shafts embedded 18’ (L/D = 3) into the rock and are described in the report "Development of Modified T-Z curves for large diameter piles/drilled shafts in limestone for FBPIER"(McVay et. Al. (2004) ). All of the plots, Figures B23 – B25 show the load–dis place ment data which mobilize significant axial resistance with small displacements (i.e., 80% capacities at 0.5% of diameter). Axial load tests in lower strength 5 tsf rock, proved unattainable, because the rock mass fractured from the shaft to the boundaries of the bucket.

284

Figure B23: Axial load vs. displacement in 10 tsf strength rock

Figure B24: Axial load vs. displacement in 20 tsf strength rock.

Figure B25: Axial load vs. displacement in 40 tsf strength rock.

285

The load applied at the top of each shaft was subsequently converted into shear stress (skin friction, fs) on the shaft/rock interface by dividing by the shaft area. Styro-foam was placed at the shaft tip so the entire load was transferred to the rock through skin friction. Plots of fs vs. axial displacement (T-Z curves) for each strength rock are shown in Figure B26.

Figure B26: T-Z curves for 10, 20 and 40 tsf rocks.

From the T-Z curves, the ultimate unit skin frictions were established from the horizontal tangents. Ultimate unit skin friction of 53 psi, 92 psi and 160 psi, were found for rock strengths of 10 tsf, 20 tsf, and 40 tsf, respectively. Shown in Figure 5.5 are the normalized T-Z curves (Fig. B26): fs values were normalized with respect fsmax (ultimate unit skin friction) and vertical displacement, Z, was normalized with respect to D (diameter).

286

Figure B27: Normalized T-Z curves for synthetic rock.

The three normalized curves are quite similar and can be represented by a single curve (shown in bold line), with the following equations:

fs Eqn. b27

f s max fs

Eqn. b28

f s max fs

Eqn. b29

where:

f s max

= 0.96R 0.33 0 = R = 0.5

= 0.86R 0.16 0.5 = R = 3

=1 3=R

R = z/D*100. fs = skin friction fsmax = ultimate unit skin friction

Kim (2001) analyzed data from 33 axial load tests (Osterberg) from various bridge sites throughout Florida and recommended the normalized T-Z curve for the natural Florida Limestone given in Figure B28. A comparison of Kim’s normalized T-Z curve with the synthetic rock curve, Figure B27 is also shown in Figure B28. Evident from the figure there is a very good agreement between the normalized TZ behavior of the natural limestone and the synthetic rock.

287

Figure B28: Comparison of normalized T-Z curves.

User Defined

See the section labeled "User defined T-Z data" of soil information of the input file.

Drilled and Cast Insitu Piles/Shafts Drilled and Cast Insitu Piles/Shafts

The T-Z curves used for drilled and cast insitu piles/shafts are based in the recommendations found in Wang and Reese (1993). They are based in the trend lines and are computed for each node. Trend lines of stress transfer for axial end bearing and side resistance are provided for the following materials: Sand

288

Clay Intermediate Geomaterial

Sand

Valid for φ ≥ 30° Eqn. b30

f sz = Kσ z' tan φ = β σ z' ≤ 2.0 tsf (191.5 kPa )

Eqn. b31

β = 1.5 − 0.135 z ( ft )

Eqn. b32

0.25 ≤ β < 1.2

valid for depths ranging from 5 to 87.5 ft (1.5 to 26.7 m)

The immediate settlements are computed using non-linear t-z springs, with the shape presented in following Figure B29. The equations are provided but it should be referred that there is a considerable scatter around the trend line.

Side friction mobilization (trendline) Eqn. b33

fs / fs max = - 2.16 * R 4 + 6.34* R3 - 7.36* R 2 + 4.15* R for R ≤ 0.908333

Eqn. b34

fs / fs max = 0.978112

for R > 0.908333

where

Eqn. b35

R=

y3 *100 D

289

Figure B29:: Trend Lines for Drilled Shaft Side Friction in Sand

Clay

Eqn. b36

f sz = α z cu ≤ 2.75 tsf (263 kPa )

From ground surface to depth of 5 ft (1.5 m)

unless tests prove otherwise

α=0

Bottom 1 diameter of drilled shaft or 1 stem diameter above top of bell α = 0 All other points along the sides of the drilled shaft

α= 0.55

The immediate settlements are computed using non-linear t-z springs, with the shape presented in following Figure B30. The equations are provided but it should be referred that there is a considerable scatter around these trend lines.

290

Side friction mobilization (trendline) fs/fsmax = 0.593157*R/0.12

for R ≤ 0.12

fs/fsmax = R/(0.095155+0.892937*R)

for R ≤ 0.74

fs/fsmax = 0.978929-0.115817*(R-0.74)

for R ≤ 2.0

fs/fsmax = 0.833

for R > 2.0

where

Eqn. b37

R=

y3 *100 D

Figure B30: Trend Lines for Drilled Shaft Side Friction in Clay

Intermediate Geomaterial

The design of drilled shafts founded in intermediate Geomaterials is directly from FHWA's Load Transfer for Drilled Shafts in Intermediate Geomaterials .

291

Intermediate Geomaterials are characterized as one of the following 3 Types:

1. (Type 1)

Argillaceous geomaterials: Heavily overconsolidated clay, clay shale, saprolite and mudstone.

2. (Type 2)

Calcareous Rock: Limestone and Limerock

3. (Type 3)

Very Dense Granular Geomaterials: residual, completely decomposed rock, and glacial till.



• •











Note:

Types 1 and 2 are considered to be cohesive materials with an undrained strength, qu in the range of 0.5 to 5.0 Mpa.

Type 3 is primarily cohesionless and has Nspt from 50 to 100

Method 1 proposed by FHWA's Load Transfer for Drilled Shafts in Intermediate Geomaterials, for Type 1 and 2 materials has been coded herein.



• • • • • 5.0 Mpa; Recovery > 50 %;





Valid for IGM Type 1 and 2; 0.5 < qu <



• • • • • or very long sockets (L/D>20);





Appropriate for very short sockets (L/D 10

if Bb > 50 in (1.27 m):

Eqn.b39

qbr =

50 1.27 qb = qb Bb (in) Bb (m)

The immediate settlements are computed using non-linear Q-z springs, with the shape presented in Figure B32 shown below. The equation is provided but is should be referred that there is a considerable scatter around the trend line.

296

End bearing mobilization (trendline) Eqn.b40

qb / qb max = - 0.0001079* R 4 + 0.0035584* R3 - 0.045115* R 2 + 0.34861* R

Figure B32: Trend Lines for Drilled Shaft End Bearings in Sand

Clay

Eqn. b41

qb = N c cub ≤ 40 tsf (3.83 MPa )

Eqn. b42

  L  N c = 6 1 + 0.2    ≤ 9  Bb   

unless tests prove otherwise

where cu = average undrained shear strength of the clay (computed 1 to 2 diameters below the shaft) for Bb > 75 in (1.90 m)

297

Eqn. b43

qbr = Fr qb

Eqn. b44

Fr =

2.5 ≤ 1.0  a Bb (in) + 2.5b 

 L  a = 0.0071 + 0.0021  ≤ 0.015  Bb 

b = 0.45 cu (ksf )

0 .5 ≤ b ≤ 1 .5

Immediate Settlements (trendline) The reference curve is presented in the following Figure. The marks represent the values proposed by Wang and Reese (1993) and the solid line is the adopted curve. It should be observed that a considerable scatter is present around the curve.

Reference curve (trendline) Eqn. b45

qb / qb max = 1.1823E - 4* R5 - 3.7091E - 3* R 4 + 4.4944 E - 2* R3 - 0.26537 * R 2 + 0.7843 for R ≤ 6.5

Eqn. b46

qb / qb max = 0.98 for R > 6.5

298

Figure B33: Trend Lines for Drilled Shaft End Bearings in Clay

Intermediate Geomaterial

The design of drilled shafts founded in intermediate Geomaterials is directly from FHWA's Load Transfer for Drilled Shafts in Intermediate Geomaterials.

Intermediate Geomaterials are characterized as one of the following 3 Types:



1. (Type 1) and mudstone.

Argillaceous geomaterials: Heavily overconsolidated clay, clay shale, saprolite

2. (Type 2)

Calcareous Rock: Limestone and Limerock

3. (Type 3) glacial till.

Very Dense Granular Geomaterials: residual, completely decomposed rock, and

• •











Note:

Types 1 and 2 are considered to be cohesive materials with an undrained strength, qu in the range of 0.5 to 5.0 Mpa.

299

Type 3 is primarily cohesionless and has Nspt from 50 to 100

Method 1 proposed by FHWA's Load Transfer for Drilled Shafts in Intermediate Geomaterials, for Type 1 and 2 materials has been coded herein.



• • • • • 5.0 Mpa; Recovery > 50 %;





Valid for IGM Type 1 and 2; 0.5 < qu <



• • • • • or very long sockets (L/D>20);





Appropriate for very short sockets (L/D 0)

BV

is the depth of a rectangular void. If BV>0, then the void is rectangular and the DV value is used for the width of the void.

PREST

is the prestressing stresses after release & all losses for standard sections only(AASHTO 9.15.1, 9.16.2) (REAL) PREST=0 for non-prestressed (i.e. reinforced concrete) ISTNOPT

is the standard section option (INTEGER)

ISTNOPT=1 means use FDOT standard reinforcement for input width as shown below (INTEGER) Note: WIDTH MUST BE one of the values from a) through f) from Figures F6-a or F6-b ISTNOPT=2 means describe the reinforcement in the section for the nonlinear analysis of nonstandard rectangular piles. (Use next lines) SW

is the unit weight of the pile, used for self-weight calculations. If SW>0, self-weight is included in the analysis.

NOTES

1. All strands are equally spaced. 2. d' is cover distance to center

d' d'

(b) 14"x14" As=0.167sq in (8) d'=3.5"

(a) As=0.115sq in d'=3.5"

f’c = 6 ksi, Ec = 4415 ksi, Es = 29000 ksi Prestress after losses = 145ksi ultimate strand stress = 270 ksi Prestressing stress after release and all losses (PREST) = 145 ksi

(d) 20"x20" As=0.153sq in d'=3.5"

(e) 24"x24" As= 0.167sq in d'=3.5"

(c) 18"x18" As=0.153sq in d'=3.5"

(f) 30"x30" As=0.167sq in (28) d'=3.5"

Figure F6-a: Standard FDOT Prestressed Concrete Pile Sections (English)

370

NOTES

1. All strands are equally spaced. 2. d' is cover distance to center of strands.

d' d'

(a).305 m x .305 m As=.0000742 sq m(8) d'=.089 m

(b) .355 m x .355 m As= .00010774 sq m (8) d’=.089 m

f’c = 41e3 kPa, Ec = 30.42e6 kPa, Es = 200e6 kPa Presstress after losses = 1.0e6 kPa ultimate strand stress = 1.86e6 kPa Prestressing stress after release and all losses (PREST) = 1.0e6 kPa

(e).610 m x .610 m As= .0001077 sq m (24) d'=.089 m

(d) .510 m x.510 m As=.00009871 sq m(20) d'=.089 m

(c) .455 m x .455 m As=.00009871sq m (16) d'=.089 m

(f) .760 m x .760 m As=.00010774 sq m (28) d'=.089 m

Figure F6-b: Standard FDOT Prestressed Concrete Pile Sections ( meters, kN)

NOTES 1. All strands are equally spaced. 2. d' is cover distance to center of strands.

d' d'

(a) 305 mm x 305 mm As=74.2 sq mm (8) d'=89 mm

(b) 355 mm x 355 mm As=107.74 sq mm(8) d'=89 mm

f’c = 4.13e-02 kN/mm2, Ec = 30.4 kN/mm2, Es = 200 kN/mm2 Prestress after losses = 1.0 kN/mm2 ultimate strand stress = 1.86 kN/mm2 Prestressing stress after release and all losses (PREST) = 1.0 kN/mm2

(d) 510 mm x 510 mm As=98.71sq mm (20) d'=89 mm

(e) 610mm x 610mm As= 107.7 sq mm (24) d'=89 mm

(c) 455 mm x 455 mm As=98.71sq mm (16) d'=89 mm

(f) 760mm x 760mm As=107.74sq mm (28) d'=89 mm

371

Figure F6-c: Standard FDOT Prestressed Concrete Pile Sections (millimeters, kN)

For nonlinear Analysis of Nonstandard Square/Rectangular Piles, used with NLOPT=2, KTYPE=2, and ISTNOPT= 2

NG=NGRPS HPI= IHPILE M=BMETH X=MINSPACE Z=TYPE AS, Y, Z, PREST N=N1 D=D1

repeat NGRPS times

Where NGRPS

is the # of groups of bars/strands(INTEGER)

IHPILE

is the H-pile option. IHPILE = 1 for H-pile embedded in the concrete, else IHPILE = 0

BMETH

0=Custom 1=Percentage

MINSPACE

Minumum spacing between two bars

TYPE

Bar Type Number

AS

is the bar or strand areas (REAL)

Y

is the local Y coordinate for bar or strand (REAL)

Z

is the local Z coordinate for bar or strand (REAL)

PREST is the prestressing stress in the strands after all losses (REAL) N=N1 D=D1

is code to generate multiple bars in (INTEGER)

N=N1 D=2

means generate N1 bars/strands in the local Y direction as follows: first bar is at coordinates Y,Z if N1 = 2, second bar is at coordinate -Y,Z if N1 > 2, then second bar is at coordinate -Y,Z and remaining N1-2 bars/strand are equally spaced between first two bars/strands

N=N1 D=3

means generate N1 bars/strands in the local Z direction as follows: first bar is at coordinates Y,Z if N1 = 2, second bar is at coordinate Y,-Z

372

if N1 > 2, then second bar is at coordinate Y,-Z

and remaining N1-2 bars/strand are equally spaced between first two bars/strand

Figure 3. Permissable Nonstandard Rectangular Piles

Concrete, Mild Steel, Prestessed Steel and Void

Concrete, Mild Steel, H-pile and Void

Figure F7: Permissible Nonstandard Rectangular Piles

EXAMPLE INPUT

Z(3) XS Y(2) YS

5 @ 3" = 15" Figure F8: Example Rectangular Pile for Input

373

Rectangular Pile (WIDTH=20" and DEPTH = 15") with 12 strands As=0.08 each spaced as shown and prestressed to 175 ksi. W=20 D=15 V=0 N=2

NG=4 HPI=0 0.08, 4.5, 6.0, 175 N=4 D=2 0.08, 4.5, -6.0, 175 N=4 D=2 0.08, -4.5, 2.0, 175 N=2 D=3 0.08, 4.5, 2.0, 175 N=2 D=3

For Piles the orientation of the local Y-Z axis to that of the global XS, YS axes are shown in figure above.

For Nonlinear Analysis of Round Piles, used with NLOPT=2 and KTYPE=1

NL=NLAY D=DP TH=DS V=DV HPI=IHPILE T=TR IC=ICONF [PREST, NBS, D=DSI, A=ASI] S=SW

repeat NLAY times

where NLAY

is the number of circumferential steel layers

DP

is the outer diameter of pile (REAL)

DS

is the thickness of the outer steel shell (REAL)

DV

is the diameter of the void (REAL) DV = 0 for no void and tubular steel sections

IHPILE

is the h-pile option. IHPILE = 1 for h-pile embedded in the concrete, else IHPILE = 0

TR

TR=1 for spiral reinforcement with a φ? factor of 0.75 (REAL) TR=2 for tied reinforcement with a φ factor of 0.70 (REAL)

ICONF is the confined concrete option. ICONF=0 for none.

374

ICONF=1 for spiral only. ICONF=2 for shell and spiral conferment. NBS

is the number of bars in the layer (INTEGER)

PREST is the effective prestressing stress in the strands for the layer (REAL) PREST=0 for no prestressing

SW

NBS

is the numbers of bars/strands in the layer (INTEGER)

DSI

is the diameter of the centerline of the steel layer (REAL)

ASI

is the area of each steel bar/strand in the layer (REAL) is the unit weight of the pile, used for self-weight calculations. If SW>0, self-weight is included in the analysis.

375

Figure 2d. Permissable Circular Piles

Concrete, Mild Steel, Prestessed Steel and Void

Concrete,Mild Steel, H-pile , and Void

Concrete, Mild Steel,

Steel Shell and Void

Steel Shell

Figure F9: Permissible Circular Piles

If the pile is prestressed, then neither tubular steel nor H-pile sections are allowed. If mild steel is present along with prestressing strands, the prestressing stress on the concrete is reduced due to the area of mild steel, and the strain in the concrete due to the prestressing is assumed to be shared with the mild steel.

EXAMPLE INPUT

376

3" 2"

1"

22" Figure F10: Sample Circular Pile for Input 22" diameter circular pile. 1" thick outer steel shell, 2 layers of reinforcing steel with 8 #7 bars in each layer.

NL=2 D=22.0 V=0.0 TH=1.0 HPI=0 8 N=7 C=3 8 N=7 C=5.875

For steel H-piles used with KTYPE=3 or HP=1 in either circular or square sections Two lines are required:

OR=ORIENT

line 1

[D=DEPTH U=WEIGHT] sections

line 2, for standard H-pile

or [D=DEPTH TW=WEB B=WIDTH TF=FLANGE]

line 2, for user defined sections

Where ORIENT

is the orientation of the H-pile.

377

ORIENT=2 for web parallel to the Local Y axis, or 3 for web parallel to the local Z-axis. (INTEGER) DEPTH is the depth of the H-pile in inches (REAL). (Use the nominal depth for standard sections) is the standard unit weight of the H-pile in lb/ft3 (REAL)

WEIGHT WEB

is the web thickness in inches (REAL)

WIDTH is the flange width in inches (REAL) FLANGE

is the flange thickness in inches (REAL)

Note: For metric examples H-pile dimensions will be soft converted to metric units.

After the cross section data is input, SIX additional lines defining the pile system are required

Figure 2e. Allowable H-pile Orientaions B

D Z(3)

B

Z(3)

XS, Y(2)

D XS, Y(2)

YS

OR=2 Figure F11: Allowable H-Pile Orientations

EXAMPLE INPUT

378

YS

OR=3

Z(3)

30”

XS Y(2)

YS

3"

6 @ 4" = 24"

3"

Figure F12: Sample Mild Steel and H-pile Layout

Square Pile with 14 mild steel bars As=1 each spaced as shown with an embedded 14 x 117 H-pile.

W=30 V=0 N=2 NG=2 HPI=1 1.0 12 12 0 N=7 D=2 1.0 12 -12 0 N=7 D=2 OR=2 D=14 U=117

For Nonlinear Analysis of Oblong Piers, used with NLOPT=2 and KTYPE=4 NOTE: This type is ONLY available for pier elements NOT for piles.

R= OR RW=RWIDTH D=DIAM T=VT V=DV B=WV S=WDEN

where OR RWIDTH DIAM

is 2 or 3 and defines orientation, see Figure 1.8 (INTEGER) is the width of rectangular portion (REAL) is the diameter of semi-circular ends (REAL)

379

VT (INTEGER)

is void type, 1 or 2, see Figure 1.8. VT may be 1 or 2 for OR = 2 or 3

DV

is the diameter of the void for VT=1 (DV=0 for no void)

DV

is the depth of the void parallel to DIAM for VT=2 (DV=0 for no void)(REAL) WV

is the width of the void parallel to RWIDTH for VT=2 (WV= 0 for no void)(REAL)

WDEN

is the self weight of the concrete

Reinforcement specification (Rectangular middle is similar to steel generation for rectangular sections)

NG=NGRPS AS, Y, Z, PREST N=N1 D=D1

repeat NGRPS times

Where NGRPS

is the # of groups of bars/strands (INTEGER)

AS

is the bar or strand areas (REAL)

Y

is the local Y coordinate for bar or strand (REAL)

Z

is the local Z coordinate for bar or strand (REAL)

PREST is the prestressing stress in the strands after all losses (REAL) N=N1 D=D1

is code to generate multiple bars in (INTEGER)

N=N1 D=2

means generate N1 bars/strands in the local Y direction as follows: first bar is at coordinates Y,Z if N1 = 2, second bar is at coordinate -Y,Z if N1 > 2, then second bar is at coordinate -Y,Z and remaining N1-2 bars/strand are equally spaced between first two bars/strands

Reinforcement specification: (Semi-circular ends are similar to steel generation for circular sections.)

380

NL=NLAY PREST, NBS, D=DSL, A=ASI

repeat NLAY times

where NLAY

is the number of circumferential steel layers (INTEGER)

NBS

is the number of bars in the layer (INTEGER)

PREST is the effective prestressing stress in the strands for the layer PREST=0 for no prestressing (REAL) NBS

is the numbers of bars/strands in the layer (total for both semicircular ends.

DSL

is the diameter of the centerline of the steel layer (REAL)

ASI

is the area of each steel bar/strand in the layer (REAL)

Note: If mild steel is present along with prestressing strands, the prestressing stress on the concrete is reduced due to the area of mild steel, and the strain in the concrete due to the prestressing is assumed to be shared with the mild steel.

RWIDTH

Z(3) DIAM

XS, Y(2) DV YS

OR = 2, VT = 1 Figure F13: Allowable Horizontal Oblong Orientation

381

DIAM

DV

XS, Y(2)

WV

RWIDTH

Z(3)

YS

OR = 3, VT = 2

Figure F14: Allowable Vertical Oblong Orientation

Required for all types: Input for free length, number of sub-elements, axial efficiency and pile head fixity

F=FLNG H=KFIX S=NSUB A=AXEFF G=GAP C=KBCAP line 1

or E=ECAP H=KFIX S=NSUB A=AXEFF G=GAP C=KBCAP

Where

382

pile configuration

FLNG

is the length of pile between the pile cap and the ground surface, the free length. It can be zero. If < 0, the cap is analyzed as a buried cap.

ECAP

is the elevation of the pile cap. This is assumed at the top of the pile heads, which is the same as the centroid of the pile cap. Since the pile cap is modeled using a shell element, the pier column base, the pile heads and the neutral axis of the pile cap all meet in the same location. This modeling does NOT account for the thickness of he pile cap in the geometry of the system (it is included in the behavior). KFIX

is for the pile head fixity into the cap (INTEGER) KFIX=0 for pinned pile head KFIX=1 for fixed pile head

NSUB

is the number of sub-elements the length of pile between the pile cap and the ground surface, Z, is to be divided into for the non-linear analysis only. (INTEGER). Typical values for NSUB vary between 10 to 15 (NSUB ensures adequate cracking and failure analysis over the large Z [free length] distances) KBCAP is the option for soil-springs on the pile cap KBCAP=0 for no springs KBCAP=1 for 4 vertical springs under each cap element and 3 horizontal springs on the sides in contact with the soil KBCAP=2 for 9 vertical springs under each cap element and 3 horizontal springs on the sides in contact with the soil

AXEFF

is the axial efficiency. This is a reduction or increase of the axial force that the soil can support. (MUST be > 0)

GAP

is the gap between the bottom of the pile cap and the ground surface. Must be positive, a zero or negative gap is ignored. Used in conjunction with the KBCAP parameter.

Input for the number of piles in the X and Y directions

NPX, NPY

pile configuration line 2

Where NPX

is the # of piles in X direction (INTEGER)

NPY

is the # of piles in Y direction (INTEGER)

The piles are generated in the order given in Figure F15:

383

7

4

8

5

9

X

DY2

6

Y spacing values DY1 1

Y

2

3

DX1 DX2 X spacing values

Figure F15: Pile Numbering and Spacing

For Pile Spacing in the X-direction

The pile system may have even or uneven spacing in the X direction. If only ONE value is given (DX1), then the spacing is uniform. Otherwise, values MUST be given for each distance between every row of piles. There must be NPX-1 values given for uneven spacing.

DX1, DX2,...

pile configuration line 3

Where DX1

is the spacing between the first and second row of piles in the X direction. (REAL)

DX2

is the spacing between the second and third row of piles in the X direction. (REAL)

Pile Spacing in the Y-direction

The pile system may have even or uneven spacing in the Y direction. If only one value is given (DY1), then the spacing is uniform. Otherwise, values MUST be given for each spacing value between every row of piles. There must be NPY-1 values given for uneven spacing.

DY1, DY2,...

Where

384

pile configuration line 4

DY1

is the spacing between the first and second row of piles in the Y direction. (REAL)

DY2

is the spacing between the second and third row of piles in the Y direction. (REAL)

Input for P-Y multipliers in the X-direction

P-Y multipliers used for the x direction given in order from trail to lead row of piles (Figure F16). Multipliers have to be specified for existing rows only. The program assigns the values in the correct order depending upon the resultant loads in the x direction.

PYMX1, PYMX2, ...

pile configuration line 5

Where PYMX1 PYMX2

is the multiplier for the trail row (REAL) is the multiplier for the second row (REAL)

Direction of load

Trail Pile

Lead Pile

PYM1

PYM3 PYM4 PYM2

Figure F16: PY multiplier definition

Input for P-Y multiplies in the Y-direction

P-Y multipliers used for the y direction given in order from trail to lead row of piles. Multipliers have to be specified for existing rows only. The program assigns the values in the correct order depending upon the resultant loads in the x direction.

385

PYMY1, PYMY2,...

pile configuration line 6

Where PYMY1

is the multiplier for the trail row (REAL)

PYMY2

is the multiplier for the second row (REAL)

Multiple Pile Sets

This section allows for the definition of multiple pile cross sections to be defined. This allows for different pile cross sections in a group. Each cross section is referred to as a set. A set of cross sections can be assigned to any pile in the group. The following data tells which pile cross section set to use for each pile. Only sets greater that 1 (the default set to use) need to be specified.

PILESET

The next line can be repeated for as many pile as need to be specified.

PILEx

PSETx

(repeat for each pile of set greater than 1)

Where PILE

is the pile number to which the cross section set is applied.

PSET

is the pile cross section set number to apply to this pile.

Example:

PILESET 1

2

(pile # 1 of pile set #2)

2

2

(pile # 2 of pile set #2)

386

3

2

(pile # 3 of pile set #2)

6

3

(pile # 6 of pile set #3)

Pile Batter Information

This input specifies the batter of the piles. There can be as many lines as required. Each line can use the Ni or Pi method of applying the batter for multiple piles but not both. This section can be skipped if there are no battered piles. NOTE: the self-weight of the pile is corrected for a battered pile.

BATTER N1, N2, N3, X=XB, Y=YB or

P=P1, P2, P3,...PN X=XB Y=YB

Where N1

is the battered pile number ( zero for no more battered piles) for generation, it is the first pile number in series (INTEGER)

N2

is the last pile number in series. (defaults to N1) (INTEGER)

N3

is the pile number increment in the series (defaults to 1) (INTEGER)

Pi

is a list of the piles to which the current batter is specified.(INTEGER)

XB

is the battering in x-direction specified as a slope (Figure 8, example 0.33 in./in.) (REAL)

YB

is the battering in the y-direction. (REAL)

Battered piles can be defined in one of several ways. The simplest approach is to list each pile that is battered with its corresponding batter angle. This is of the form "N1 X=XB Y=YB". To decrease the number of input lines, the pile numbers can be generated as in a FORTRAN do loop. The format "N1,N2,N3 X=XB" applies the given batter to the piles starting at N1 and going to N2 with the increment of N3. Thus "5,14,3 X=0.25" applies an X batter of H=3/L=12 (Figure 8) to the piles 5,8,11,14. Another method of applying batter to multiple piles is to list all the pile numbers at which the batter is applied in the form "P=P1,P2,P3,... X=0.25". To apply the same batter as before we could write "P=5,8,11,14 X=0.25".

387

Pile

L

H

Slope = H/L

Figure F17: Battered Pile with Slope Defined

Missing Pile Data

This data is used to specify any removed piles. If none are removed, skip this section.

MISSING NMPIL

Where NMPIL

is the number of missing piles from the pile group (INTEGER). This value may be zero.

Specify missing piles by x-row, y-row pile coordinate system. The coordinate system of the pile rows is shown in Figure 6. One line is used for each missing pile. Repeat the following lines NMPIL times.

IXORD, IYORD

repeat NMPIL times

Where IXORD

is the x row location of missing pile (INTEGER)

IYORD

is the y row location of missing pile (INTEGER)

388

X-Row 1

X-Row 2

X-Row 3

Y-Row 3

X

Y-Row 2 Missing Pile Y-Row 1

(3,2)

Y Figure F18: Missing Pile Coordinate System Definition

Soil Information

This section is used to specify the soil properties.

SOIL NSET=SOILSETS, L=NLAYERS, R=NLAYER1, NLAYER2, … C=KCYC, S=NNSPT, W=WT, O=OBURDEN, W=WFREQ, P=NDYFLG, B=TB, X=LS1, LS2,… (all on one line)

Where SOILSETS

is the number of soilsets.

NLAYERS

is the total number of soil layers to be given (INTEGER).

NLAYER1,… is the number of layers in each soilset. KCYC

is for the cyclic response of soil (INTEGER). KCYC=0 for a static soil response. KCYC=N modifies P-Y curves to account for cyclic application of loads with N number

of events. NNSPT

is the number of points in the SPT sounding.

WT is the water table elevation used in conjunction with the SPT boring log table (in graphical interface). OBURDEN interface).

is the overburden option used in conjunction with the SPT boring log table (in graphical

389

0: Don’t include overburden. 1: Include overburden. WFREQ

is the frequency of loading (rad/sec) (Used to create pseudo dynamic p-y curves from static curves for static loads only)

NDYFLG

= 0 nonreversible p-y multipliers = 1 reversible p-y multipliers = 2 sets p-y multipliers to 1.0 after first peak

TB

is the flag for user input at top and bottom soil layers = 0 uniform properties specified for layer = 1 properties specified for top and bottom of layer

LS1

is the flag to indicate the lateral model Limestone (McVay) is present in the soil set and has at least one soil layer, of any type, beneath it. This is written once per soil set. The ‘1’ in LS1 indicates this flag belongs to soil set 1, and so on. = 0 no layers exist beneath Limestone (McVay), or no layer of Limestone (McVay) exists. = 1 at least one layer, of any soil type, exists beneath a layer of Limestone (McVay)

Soil property input lines (repeat NLAYER times) This input specifies the soil properties. When using the default curves, soil layers are defined with a pair of lines. The first line of the pair provides the soil properties at the top of the layer, the soil type, and depth of the layer. The second line of each pair provides the soil properties at the bottom of the layer. Properties inside the layer are found by linear interpolation between the top and bottom of the layer. A total of 2*NLAYER lines are required. When using user defined curves, six lines are required per layer. Zero values must be given if that property is not used by the soil model chosen.

φ, RK, γ, Cu, ε50 or qu(Limestone), ε100 or Cavg ,or K, G, ν, τf , or Fsmax, THICKNESS, LSM, ASM, TSM, SURFACE TYPE, qu(IGM) or fsmax, CORE RECOVERY, Em, Em/Ei, qt, E=ETOP, EBOT, B=PBOT, T=PTOP N=N50 L=SLR V=SWVS F=SFDF M=NSMOD J=RSDAMP line one

φ, RK, γ, Cu, e50 or qu(Limestone), e100 or Cavg, or K, G, ν, τf S=Stype, A=TANDB or Fsmax

line two

Where

φ

is the angle of internal friction (REAL)

390

RK

is the soil modulus k (REAL)

γ

is the total unit weight of the soil (REAL)

Cu

is the undrained shear strength (REAL)

ε50

is the major principal strain @ 50% maximum deviator stress in a UU triaxial compression test (REAL)

or qu(Limestone) is the unconfined compressive strength of limestone

ε100 (REAL)

is the major principal strain @ failure in a UU triaxial compression test (SOIL=3)

or Cavg

is the average undrained shear strength for the soil layer (REAL) (SOIL=5 & 6)

Or K

K is the Dimensionless Coefficient of Lateral Earth Pressure (REAL) (SOIL=10)

G

is the shear Modulus of the soil (REAL)

ν

is Poisson's ratio of the soil (REAL)

τf

is the vertical failure shear stress on pile-soil interface (REAL)

or Fsmax

Fsmax is the Ultimate Side Friction (REAL) (SOIL=10)

THICKNESS is the thickness of the soil layer (REAL) LSM

is the Lateral Soil Model. It selects one of seven different lateral P-Y curves (INTEGER) 1 = Sand (O'Neill, 1984) requires φ, RK, γ 2 = Sand (Reese,Cox,Koop, 1974) requires φ, RK, γ 3 = Clay (O'Neill) requires Cu, ε50, ε100, γ 4 = Clay - Soft clay below water table; (Matlock, 1970) requires γ, Cu, ε50 5 = Clay - Stiff clay below water table; (Reese, 1975) requires RK, γ, Cu, ε50 , Cavg 6 = Clay - Stiff clay above water table; (Reese, 1975) requires γ, Cu, ε50 , Cavg 7 = user defined P-Y curve for lateral soil response. Requires four additional lines of input (2 for top and 2 for bottom of layer). 8 = Limestone (McVay) 9 = Limestone (McVay) No 2-3 Rotation 10 = Sand (API)

391

11 = Clay (API) ASM

is the axial soil model. There are 5 allowable axial soil models. 1 = Driven Pile (McVay et al, 1989) requires G, ν, τf 2 = Drilled Shaft on Sand (O’Neill et al, 1996) requires γ 3 = Drilled Shaft on Clay (O’Neill et al, 1996) requires Cu 4 = Drilled Shaft on Intermediate Geo Material IGM (O'Neil) requires Surface Type, qu, Core Recovery, E m , E m /Ei 5 = user defined T-Z curve. Requires four additional lines of input (2 for top and 2 for bottom of layer) 6 = Driven Pile Sand (API) 7 = Driven Pile Clay (API)

TSM

is the torsional soil model. 1 = Hyperbolic Model requires Gi, τf 2 = user defined T-θ curve. Requires four additional lines of input (2 for top and 2 for bottom of layer)

Surface Type is the bore hole surface type type 4

ASM

1 = Rough surface 2 = Smooth surface qu(IGM) type 4

is the unconfined compressive strength for intermediate geomaterial

ASM

or fsmax

is the ultimate unit skin friction

Core Recovery is the IGM core recovery in percentage type 4

ASM

Em

is the IGM mass modulus

E m /Ei type 4

is the ratio of IGM mass modulus to intact material modulus

ASM

qt type 4

is the split tensile strength (used only rough surface and Florida Limestone)

ASM

ETOP

is the elevation at the top of this soil layer

EBOT

is the elevation at the bottom of this soil layer

PTOP

is the elevation of the piezometric head at the top of the layer

PBOT

is the elevation of the piezometric head at the bottom of the layer

392

ASM type 4

Stype

is the soil layer type (used for graphical interface only) 0 = Cohesionless 1 = Cohesive 2 = Rock

N50

is the number of cycles necessary to degrade the soil by 50%.

SLR

is the rate of loading for slow cyclic loading.

SWVSi

is the shear wave velocity for each soil layer.

SFDF

is the fully degraded soil factor.

NSMOD

0 = (default) - no soil gap, soil loads and unloads on the same curve. 1 = gap model, soil forms a gap when unloading parallel to initial stiffness in either tension or compression.

RSDAMP

is the force proportional soil damping factor (lateral only) (e.g. 0.01 applies 1% of the lateral soil force as a damping force)

TANDB

specify both Top and Bottom soil layer properties for the select layer. 0 = Use one set of properties per layer 1 = Specify top and bottom properties

User defined P-Y data - ONLY FOR LSM=7 User defined soils require FOUR additional lines of input.

(Two lines define the P-Y curve for the top of the layer and two lines for the bottom of the layer. )

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10 P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

Where Yi

is the ith Y value on the user specified P-Y curve.

Pi

is the ith P value on the user specified P-Y curve.

393

The user defined curves are specified by a set of TEN points. The above two lines need to be repeated once for the top of the layer, and a second time for the bottom of the layer (linear interpolation in between)

User defined T-Z data - ONLY FOR ASM=5 User defined axial soil model requires FOUR additional lines of input.

(Two lines define the T-Z curve for the top of the layer and two lines for the bottom of the layer. )

Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10

Where Zi

is the ith Z value on the user specified T-Z curve.

Ti

is the ith T (axial stress) value on the user specified T-Z curve.

The user defined curves are specified by a set of TEN points. The above two lines need to be repeated once for the top of the layer, and a second time for the bottom of the layer (linear interpolation in between)

User defined T-θ data - ONLY FOR TSM=2 User defined torsional soil model requires FOUR additional lines of input.

(Two lines define the T-θ θ curve for the top of the layer and two lines for the bottom of the layer. )

θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10 T1,T2, T3, T4, T5, T6, T7, T8, T9, T10

Where

θI

is the ith θ value on the user specified T-θ curve.

Ti

is the ith T (torque) value on the user specified T-θ curve.

394

The user defined curves are specified by a set of TEN points. The above two lines need to be repeated once for the top of the layer, and a second time for the bottom of the layer (linear interpolation in between)

Pile Tip Soil Data After all layer data is supplied, the soil tip data is input

Gi , ν, Qult, 1 or

NSPT, 0, 0, 2 or

Cub, 0, 0, 3 or

Emtip, 0, 0, 4 or phi, EndCond, Eb, 6 or Cub, EndCond, 0, 7

Where Gi

is the shear modulus of the soil (TipSM =1)

NSPT

is the uncorrected SPT value at the tip elevation (TipSM=2)

Cub

is the undrained shear strength at the tip elevation (TipSM=3)

Emtip

is the IGM mass modulus at the tip elevation (TipSM=4)

ν

is the Poisson’s Ratio at tip elevation (TipSM=1)

Qult

is the axial bearing failure load (force) acting on the pile tip (T.S.M.=1)

phi

is the angle of internal friction (REAL)

EndCond

is the pile end condition (pipe piles only)

395

0 = not plugged (pipe piles only) 1 = plugged (pipe piles only) Eb

is the ultimate unit end bearing 1 = Driven Pile (Mcvay et al, 1989) requires Gi, ν, Qult

Tip Soil Model:

2 = Drilled Shaft on Sand (O'Neil et al, 1996) requires NSPT 3 = Drilled Shaft on Clay (O'Neil et al, 1996) requires Cub 4 = Drilled Shaft on Intermediate Geo Material (O'Neil) requires Emtip 5 = user defined Q-Z curve. Requires two additional lines of input 6 = Driven Pile Sand (API), requires phi, EndCond (for pipe piles), and Eb 7 = Driven Pile Clay (API), requires Cub, EndCond (for pipe piles)

User defined Q-Z data - ONLY FOR TIP SOIL MODEL=5 The user defined tip soil model requires TWO additional lines of input.

Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10

Where Zi

is the ith Z value on the user specified Q-Z curve.

Qi

is the ith Q value on the user specified Q-Z curve.

The user defined curves are specified by a set of TEN points.

SPT data is defined as follows…

ELEV, NSPT

396

(one per line)

Where ELEV

is the elevation where the blow count was recorded

NSPT

is the blow count

SPT values are used by the graphical interface to the compute internal friction (φ) angles for sand soil layers. The SPT values are currently not used by the engine.

Multiple Soil Sets

Multiple soil sets are used to define unique soil profiles for a particular pile (or piles) in a pile group. In the input file after the SOIL header,

SOIL

NSET= NSSET L= NLAYER C= KCYC S= NNSPT R= NSSEG1, NSSEG2, NSSEG3...

Where NSSET

is the number of soil sets

NLAYER

is the total number of soil layers

KCYC

is for cyclic response of soil KCYC=0 for a static soil response KCYC=N modifies P-Y curves to account for cyclic application of loads with N number of events

NNSPT

is the number of points in the SPT sounding

NSSEGx

is the number of layers in soil set x (must specify for each soil set)

(Soil properties for each soil layer)

397

SOILSET

PILEx

SSETx

(repeat for each pile of soil set greater than 1)

Where PILEx

is the pile number to apply soil set x

SSETx

is the soil set number (x)

Example:

SOILSET 1

2

(pile # 1 of soil set # 2)

2

2

(pile # 2 of soil set # 2)

3

3

(pile # 3 of soil set # 3)

The following assumptions are made concerning the use of multiple soil sets: Buoyancy calculations for the pile cap are based on the water table elevation for the first soil set. Bearing capacity calculations for buried pile caps or pile caps in contact with the top soil layer are based on the soil properties for the first soil set.

Structural Information

INPUT FOR VARIOUS TYPES OF STRUCTURES The following lines are for the differing types of structures available for analysis. This section can be skipped if no structure is used. There are four different allowable types of structures. These are indicated by the following headers: STRUCTURE, MAST, SOUND, RETAIN. The user can only select one type of structure.

The STRUCTURE header is for the standard pier structure

398

STRUCTURE N=N1 S=S1, S2, S3… H=H1 O=O1 C=C1 B=B1, B2 W=W1 \ A=NUMLM, NUMPR J=NLOPT T=TC, CANT [V=NPAD(L), POFF(L), PSPC1(L), PSPC2(L)… PSPCn(L), NPAD(R), POFF(R), PSPC1(R), PSPC2(R)… PSPCn, NROW

or P=NPAD(L), PUNF(L), POFF(L), NPAD(R), PUNF(R), POFF(R), NROW ] \ R=RH1, RH2, RH3 F=KFLOOD E=SPELEV D=CONT

Cantilever Pier Extra Beams

(all one line)

Pier Cap B = 32,1

W= 5 0

1 (local pier cap axis)

NUMLM=2

2

C= 3

H= 15 0

1

X

3 2

(local column axis)

O= 7 Y 5

S= 10 0 Figure F19: Structure Geometry

399

Figure F20: Pier Cap Superelevation

When using the STRUCTURE header, a minimum of three material property lines are required. The first is for the column, the second is the pier cap and the third is for the center section of the pier cap. After the three material lines, any additional properties (NUMPR) and then additional members (NUMLM) should be given. Superelevation is modeled by specifying a slope for the pier cap. When applying superelevation, the leftmost column height remains the same while all other column heights are automatically adjusted by the program.

The BENT header is for the pile bent structure

BENT B=B1, B2 W=W1 J=NLOPT T=TC, CANT [V=NPAD(L), POFF(L), PSPC1(L), PSPC2(L)… , NPAD(R), POFF(R), PSPC1(R), PSPC2(R)… PSPCn, NROW

or P=NPAD(L), PUNF(L), POFF(L), NPAD(R), PUNF(R), POFF(R) NROW ] (all one line)

400

Figure F21: Pile Bent Geometry

When using the BENT header, a minimum of two material property lines are required. The first is for the pier cap and the second is for the center section of the pier cap.

The MAST heading is used for high mast lighting/sign type structures.

MAST N=N1 H=H1 C=C1 B=B1, B2 W=W1 A=NUMLM, NUMPR T=TC, CANT J=NLOPT F=KFLOOD

401

Cantilever Pier

Single Column

W= 5 0

C= 3

H= 15

X

Y

Always Centered Figure F22: Mast Geometry

When using the MAST header, a minimum of two material property lines are required. The first is for the column, the second is for the mast/sign portion. Next comes any additional properties (NUMPR) and then additional members (NUMLM).

The SOUND header is for use when sound walls are required.

SOUND S=S1 H=H1 A=NUMLM, NUMPR J=NLOPT F=KFLOOD

402

Width Wind Pressure

X

Real System Y Figure F23: Sound Wall Geometry

The sound wall is modeled as a single cantilever in the center of the pile cap. The properties represent a given width (S1) of the wall. One material property line is required when using the SOUND header. The properties represent the single column. Following this line should be any additional properties (NUMPR) and then any additional members (NUMLM).

This header is needed if retaining walls are used. The retaining wall is modeled by a cantilever representing a section of the wall. The soil layers behind the wall must also be defined. The soil layers are used to apply load to the structure.

RETAIN S=S1 H=H1 J=NLOPT

403

line load

Width

layer 3

X

layer 2 layer 1

THICK

Y

Figure F24: Retaining Wall Geometry

The following line defines the soil layers behind the wall

O=IOPTI S=ISURG L=NLAYE

line 1

Where IOPTI

is equal to 1 for pressure at rest is equal to 2 for active case computed with Coulomb expression

ISURG is 0 for no surcharge is 1 for uniform surcharge is 2 for line load is 3 for strip load NLAYE is the number of layers

This line defines the basic soil geometry

404

A=THETA S=BETA H= HWATE G=GWATE Q=Q1, Q2, Q3

line 2

Where THETA

is the inclination of the back of wall measured clockwise from horizontal plane (degrees)

BETA

is the inclination of ground slope behind wall measured counterclockwise from the horizontal plane (degrees)

HWATE

is the Z coordinate of ground water level (reference is top of pile cap)

GWATE

is the unit weight of water

Q1, Q2, Q3

are parameters for surcharge definition If ISURG = 0

Q1, Q2, Q3 are not used

If ISURG = 1

Q1 = uniform surcharge

If ISURG = 2

Q1 = line load intensity Q2 = Horizontal distance of line load from back of wall

If ISURG = 3

Q1 = Intensity of load Q2 = Horizontal distance of load from back of wall Q3 = Width of strip load

Soil Layer Property Lines (one line for each layer, NLAY)

T=THICK S=NSLAY P=COHES, PHI, DELTA G=GAMMA, GASAT (one line per layer, the bottom layer being layer #1)

Where THICK

is the layer thickness

NSLAY

is the number of sub-layers in which the layer will be divided

COHES

is the cohesion of the soil

PHI

is the friction angle of soil (degrees)

DELTA

is the angle of friction soil/wall (degrees)

GAMMA

is the unit weight of the soil

GASAT

is the saturated unit weight of the soil

405

One material property line is required when using the RETAIN header. Then any additional properties and extra members.

The definition of the parameters for all structures are given below.

Where N1

is # of columns of the bridge bent supported on the pile group (INTEGER)

S1, S2, S3…

is spacing of the pier columns. For retaining walls and sound walls, S1 is the wall width. (REAL)

H1

is height of the pier columns (REAL,)

O1

is offset of the pile cap from the column (REAL)

C1

is # of column nodes (INTEGER)

B1

is # of pier cap nodes (Figure F21) (INTEGER)

B2

is # of pier cap cantilever nodes (Figure F21) (INTEGER)

NPAD(L)

is the number of bearing locations (left row of bearings)

POFF(L)

is the offset from the first bearing location (left row of bearings)

PSPCx(L)

is the bearing location spacing value (left row of bearings)

NPAD(R)

is the number of bearing locations (right row of bearings)

POFF(R)

is the offset from the first bearing location (right row of bearings)

PSPCx(R)

is the bearing location spacing value (right row of bearings)

PUNF(L)

is the uniform bearing location spacing (left row of bearings)

PUNF(R)

is the uniform bearing location spacing (right row of bearings)

PUNF

is uniform spacing between bearing locations, same for all locations (REAL)

For a single row of bearing locations, the left and right row parameters should be the same. W1

is cantilever length of top of bent (REAL)

NUMLM

is number of extra beam elements (Figure F21) (INTEGER)

NUMPR

is number of extra beam properties (INTEGER)

TC

is # of segments for tapered column (INTEGER), equal to zero for no tapered columns. This overrides C1

406

TCANT

is # of segments for tapered cantilevers (INTEGER), equal to zero for no tapered cantilevers. This overrides B2

NLOPT

selects the non-linear option for the pier structure analysis NLOPT=1 for linear material NLOPT=2 for nonlinear material NLOPT=3 for linear material where interaction diagram are generated

RH1

is the depth of the pier cap at the cantilever base

RH2

is the depth of the pier cap at the center of the pier cap

RH3

is the depth of the pier cap at the cantilever tip

KFLOOD

is the flag to tell if the column (if under the water table) is flooded or not. If flooded, the buoyancy will use the net area. If not flooded, it will use the gross area (net=area-void).

SPELEV

is the pier cap superelevation slope (+ or -) beginning at leftmost pier column. Expressed as a decimal (not a percent).

CONT

is the bridge span continuity option (over the pier) 0 for discontinous spans (does not transfer moment)(default) 1 for continous spans (transfers moment)

NROW

is the number of bearing rows on the pier cap 1 for a single bearing row 2 for two rows of bearings (default)

Specify the number of tapered sections with CANT. If the RH1, RH2, and RH3 properties are missing (zero by default) then a linear taper will be used. The bearing locations are specified based on the following figure.

407

Figure F25: Positioning Two Rows of Bearings

MATERIAL PROPERTY LINES

The next lines specify the cross-sectional properties of the pier column and pier cap. A total of 1,2 or 3 + NUMPR properties (extra beam members) are required. The material properties are input beginning with material # 2 (Figure F25) onward: pier columns, pier cap, center pier cap (Figure F25), and extra beams, respectively for a general pier structure. The extra beam (Figure F25) properties have the same format and may be given individually or lumped together. To simulate no connection between piers, use very small values for I, E, G, J, and A for the center pier cap material (Figure F25). For linear properties, use the following single lines for each property.

Linear Property Line

I=I3,I2 J=J1 A=A1 E=E1 G=G1 L=LEN W=WIDTH K=SHAPE

Where I3

is the Moment of Inertia for axis 3 of the frame element (REAL)

I2

is the Moment of Inertia for axis 2 of the frame element (REAL)

J1

is Torsional Moment of Inertia of the frame element (REAL)

408

A1

is Area of c/s of the frame element (REAL)

G1

is Shear Modulus of the frame element (REAL)

LEN

is the component length. Not currently used in the analysis. Reserved for future program expansion.

WIDTH

is the section width. Not currently used in the analysis. Reserved for future program expansion.

SHAPE

is the cross-section shape. 1: Circular 2: Rectangular 3: H-Pile 4: Oblong

Nonlinear property lines (Same as for Piles)

For nonlinear structures with interaction diagrams (NLOPT=2 or 3) These lines are almost identical to the input for the piles. See pile input for definitions of terms.

For the default stress strain curves (MATOPT=1) M=MATOPT C=FPC, EC S=FY(1), FSU(2), FY(3), FY(4), ES(1), ES(2), ES(3), ES(4) K=KTYPE

or For user specified stress strain curves (MATOPT=2) M=MATOPT S=KSTEEL(1), KSTEEL(2), KSTEEL(3), KSTEEL(4) K=KTYPE

Stress-Strain Curve for Concrete, used with NLOPT=2 or 3 and MATOPT=2 NC=NPCC, SIGC(1), SIGC(2),,,

line 1

EPSC(1), EPSC(2),,,

line 2

Stress-Strain Curve for Mild Steel, used with NLOPT=2 and MATOPT=2 and KSTEEL(1) = 1 S1=NPSC, SIGS(1), SIGS(2),,,

line 1

409

EPSS(1), EPSS(2),,, y=εεy

line 2

Stress-Strain Curve for Prestressing Steel, used with NLOPT=2 and MATOPT=2 and KSTEEL(2) = 1

S2=NPSC, SIGS(1), SIGS(2),,,

line 1

EPSS(1), EPSS(2),,,

line 2

Stress-Strain Curve for H-pile Steel, used with NLOPT=2 and MATOPT=2 and KSTEEL(3) = 1

S3=NPSC, SIGS(1), SIGS(2),,,

line 1

EPSS(1), EPSS(2),,, y=εεy

line 2

Stress-Strain Curve for Tubular Steel, used with NLOPT=2 and MATOPT=2 and KSTEEL(4) = 1

S4=NPSC, SIGS(1), SIGS(2),,,

line 1

EPSS(1), EPSS(2),,, y=εεy

line 2

For Nonlinear Analysis of Square/Rectangular Piers, used with NLOPT=2 or 3 and KTYPE=2 W=WIDTH D=DEPTH V=DV P=PREST N=ISTNOPT

For nonlinear Analysis of Nonstandard Square/Rectangular Piers used with NLOPT=2, KTYPE=2, and ISTNOPT= 2

NG=NGRPS HPI= IHPILE M=BMETH X=MINSPACE Z=TYPE AS, Y, Z, PREST N=N1 D=D1

410

repeat NGRPS times

For Nonlinear Analysis of Round Piles, used with NLOPT=2 and KTYPE=1

NL=NLAY D=DP TH=DS V=DV HPI=IHPILE IC=ICON, T=TR [PREST, NBS, D=DSI, A=ASI]

repeat NLAY times

One of the next four lines is necessary for ICON ? 1(hoop or spiral steel is present)

FYH=FYHOOP HS=HOOPS N=NHOOP

or FYH=FYHOOP HS=HOOPS D=DHOOP

or FYS=FYSPI SP=SPIRS N=NSPI

or FYS=FYSPI SP=SPIRS D=DSPI

For steel H-piles used with KTYPE=3 or HP=1 in either circular or square sections Two lines are required:

OR=ORIENT [D=DEPTH U=WEIGHT] sections

line 1 line 2, for standard H-pile

or [D=DEPTH TW=WEB B=WIDTH TF=FLANGE] sections

line 2, for user defined

411

Center Pier Cap Material # 1

Pier Cap and Cantilever Material # 3

Pier Columns Material # 2

Extra Beams Material #4 (for all, or 5,6,7 .... etc.)

Piles or Shafts

Figure F26-a: Material Property Identification

Prop. 4

Prop. 5 (Center)

Prop. 3

Prop. 2

Figure F26-b: Tapered column only - material numbers

412

Prop. 3

Prop. 4 (Center)

Prop. 6

Prop. 5

Prop. 2 Figure F26-c: Tapered cantilever only - material numbers

Prop. 4

Prop. 5 (Center)

Prop. 7

Prop. 3 Prop. 6

Prop. 2

Figure F26-d: Tapered column and cantilever material numbers

EXTRA MEMBER LINES ( Only Required if NUMLM 0 )

The next set of lines define any extra beams used in the superstructure. NUMLM lines are required to define node numbers and material numbers for each extra beam. The nodes connecting the extra beams must be in the pile cap or in the Pier. The material number must correspond to one defined in material properties. The user has the option of using any previously defined material property (ex. # 3, Pier Cap properties) for the extra beams or defining new ones (material # 5, 6, etc.) in increasing sequential order.

INODE, JNODE M=MATNUM

413

Where INODE

is the first node of the extra beam

JNODE

is the end node of the extra beam

MATNUM

is the material number to use for the element

TAPERED COLUMN AND CANTILEVER SECTIONS

Columns and Cantilever Pier Cap sections can be set to tapered (non-prismatic) by setting TC and/or TCANT to values greater than 0. When material properties, linear or non-linear, are set for tapered sections, 2 sets of properties [base and top (tip)] are required instead of the one set required for prismatic sections. Figures F26 and F27 and sample inputs, below, illustrate the addition of tapered column and cantilever properties to the input file.

Cantilever

Pier Cap

b Column Top CrossSection Properties (prop. b)

Column Taper Sections [TC = 3]

Pile Cap a

Figure F27: Addition of tapered Column properties

414

Column Base CrossSection Properties (prop. a)

When tapered column properties are set, the Column Base properties are set on Material Property Line #1, and the Column Top properties are set on Material Property Line #2. All subsequent structure properties are set on one line # higher than as specified in MATERIAL PROPERTY LINES.

A sample input for a structure with linear properties and tapered columns is given below. The structure also has two extra members, with one extra member property. For reference purposes, the material property lines are numbered and labeled in italics.

STRUCTURE N= 2 S= 72.0 H= 120.0 O=90.0 C= 4 B= 1,2 W= 60.0 A= 2,1 J= 1 T= 3,2

1

I= 1000.0,1000.0 J= 5000.0 A= 500.0 E= 4400.0 G= 1830.0

(prop. a)

2

I= 900.0,900.0

J= 4000.0 A= 400.0 E= 4400.0 G= 1830.0

(prop. b)

3

I= 700.0,700.0

J= 3000.0 A= 350.0 E= 4400.0 G= 1830.0

4

I= 700.0,700.0

J= 3000.0 A= 350.0 E= 4400.0 G= 1830.0

5

I= 100.0,100.0

J= 500.0

A= 50.0

E= 4400.0 G= 1830.0

Material Property Lines (MPL’s) 1 and 2 list properties for the Column base and top, respectively. MPL 3 lists properties for the Pier Cap, and MPL 4 lists properties for the Center Pier Cap (defaulted to the same values as Pier Cap properties). MPL 5 lists the extra members’ properties.

415

Cantilever Tip CrossSection Properties (prop. d)

d

Column

c

Cantilever Base CrossSection Properties (prop. c)

Pier Cap Cantilever Taper Sections [TCANT = 2]

X Z Pile Cap

Figure F28: Addition of tapered Cantilever properties

If the Cantilevers are prismatic [TCANT = 0], Cantilever properties default to the Pier Cap Material properties. For a tapered Cantilever Pier Cap, the Cantilever Base properties are set on Material Property Line #4, and the Cantilever Tip properties are set on Material Property Line #5, unless tapered column sections have also been set (see example below), in which case the properties are set on Material Property Lines #’s 5 and 6, respectively. Any extra member properties are set on two line #’s higher (or three line #’s higher, if columns are tapered as well) than as specified in MATERIAL PROPERTY LINES.

A sample input for a structure with linear properties and tapered cantilevers is given below. The structure also has two extra members, with one extra member property. For reference purposes, the material property lines are numbered and labeled in italics.

STRUCTURE N= 2 S= 72.0 H= 120.0 O=90.0 C= 4 B= 1,2 W= 60.0 A= 2,1 J= 1 T= 3,2

1

I= 1000.0,1000.0 J= 5000.0 A= 500.0 E= 4400.0 G= 1830.0

2

I= 700.0,700.0

J= 3000.0 A= 350.0 E= 4400.0 G= 1830.0

3

I= 700.0,700.0

J= 3000.0 A= 350.0 E= 4400.0 G= 1830.0

416

4

I= 400.0,400.0

J= 1200.0 A= 100.0 E= 4400.0 G= 1830.0

(prop. c)

5

I= 300.0,300.0

J= 1000.0 A= 90.0

E= 4400.0 G= 1830.0

(prop. d)

6

I= 100.0,100.0

J= 500.0

E= 4400.0 G= 1830.0

A= 50.0

Material Property Line (MPL) 1 lists properties for the Column. MPL 2 lists properties for the Pier Cap, and MPL 3 lists properties for the Center Pier Cap (defaulted to the same values as Pier Cap properties). MPL’s 4 and 5 list the Cantilever Pier Cap base and tip properties, respectively. MPL 6 lists the extra members’ properties. For the output, the material properties are listed starting with property #2. Property #2 is for the column. If the column is tapered, the base is property #2 plus as many of the next ones required to get one property for each section in the column (TC). Next comes the beam property, then the center beam. If the cantilever is tapered, then TCANT properties will be next. Finally only additional (extra members) properties will be last.

Hammerhead Piers with Parabolic Tapered Pier Caps

Under the STRUCTURE header.

STRUCTURE N=N1 S=S1 H=H1 O=O1 C=C1 B=B1, B2 W=W1 A=NUMLM, NUMPR J=NLOPT T=TC, CANT [V=NPAD, POFF, PSPC1, PSPC2, …. or P= NPAD, PUNF, POFF]

R=H1, H2, H3

(all one line)

Where H1

is the depth of the pier cap at the cantilever base

H2

is the depth of the pier cap at the center of the pier cap

H3

is the depth of the pier cap at the cantilever tip

Specify the number of tapered sections with CANT. If the H1, H2, and H3 properties are missing (zero by default) then a linear taper will be used.

417

Figure F29: Parabolic Cantilever Taper

Column Information

This section allows the user to perform a biaxial bending analysis for a single column. This is done internally by taking a single pile and treating it as a single column. The single column has the ability to put springs at the top and bottom of the column. It also allows loads at the top and bottom. The column properties are input as normal pile properties. No load or structure inputs are used. A total of five lines are required in addition to the pile property data.

COLUMN S = S1, S2, S3, S4, S5, S6 S = S1, S2, S3, S4, S5, S6

top of column bottom of column

L = LF, LL, LI

F = FX, FY, FZ, MX, MY, MZ

top of column

L = LF, LL, LI

F = FX, FY, FZ, MX, MY, MZ

bottom of column

Where

418

S1

is the tip spring resistance in the global X direction

S2

is the tip spring resistance in the global Y direction

S3

is the tip spring resistance in the global Z direction

S4

is the rotational spring resistance about the global X-axis

S5

is the rotational spring resistance about the global Y-axis

S6

is the rotational spring resistance about the global Z-axis

LF

is the first load case number in the generation sequence that the load will be applied in.

LL

is the last load case number in the generation sequence that the load will be applied in.

LI

is the increment for the generation sequence between load cases LI and LL.

FX

is the magnitude of the load in X direction

FY

is the magnitude of the load in Y direction

FZ

is the magnitude of the load in Z direction

MX

is the magnitude of the moment about X axis

MY

is the magnitude of the moment about Y axis

MZ

is the magnitude of the moment about Z axis

The first S= line is for the top of the column. The second S= line is for the bottom of the column. The first F= line is for the top of the column. The second F= is for the bottom of the column.

Concentrated Nodal Loads

These are load input lines. As many lines as needed can be used. One line must be supplied for each loaded joint and each load condition. This can be skipped if no concentrated nodal loads are applied. This can happen in the case of mast or sound walls where wind load is applied or in retaining walls where soil pressure is applied. Note, torsion in the pile cap can only be applied where piles are located.

In the input file after the LOAD header,

419

LOAD

NF, NL, NI L=LC F=FX, FY, FZ, MX, MY, MZ T=TYPE

(one line per nodal load)

Where NF

is the starting node number

NL

is the ending node number

NI

is the node numbering increment

LC

is the load case number

FX

is the force in the global X-direction

FY

is the force in the global Y-direction

FZ

is the force in the global Z-direction

MX

is the moment about the global X-axis

MY

is the moment about the global Y-axis

MZ

is the moment about the global Z-axis

TYPE

is the load type specified in AASHTO (ignore for non-AASHTO loads) LRFD Loads: TYPE = DC

Dead load of components

DD

Downdrag

DW

Dead load of wearing surfaces and utilities

EH

Horizontal earth pressure load

EV

Vertical earth pressure load

ES

Earth surcharge load

LL

Live load

IM

Impact

CE

Vehicular centrifugal force

BR

Vehicular braking force

PL

Pedestrian live load

LS

Live load surcharge

420

WA

Water load and stream pressure

WS

Wind load on structure

WL

Wind load on live load

FR

Friction

TU

Uniform temperature

CR

Creep

SH

Shrinkage

TG

Temperature gradient

SE

Settlement

EQ

Earthquake

IC

Ice load

CT

Vehicular collision force

CV

Vessel collision force

LFD Loads: TYPE = D

Dead load

LL

Live load (AASHTO Type "L")

IM

Impact (AASHTO Type "I")

E

Earth pressure

B

Buoyancy

WS

Wind load on structure (ASSHTO Type "W")

WL

Wind load on live load

LF

Longitudinal force from live load

CF

Centrifugal force

R

Rib shortening

S

Shrinkage

T

Temperature

EQ

Earthquake

SF

Stream flow pressure

421

ICE

Ice pressure

Wind Load Generation The following information is used by the wind load generator in the graphical interface:

WIND N=NMWIND A=ANGLE1, ANGLE2, ANGLE3, ANGLE4, ANGLE5

S=SSAREA, SSWIND, SSWARM C= CPARET, CPAREL, CPWIND P=CLARET, CLAREL, CLWIND, CLWARM

(Wind load on structure--All on one line)

And

V=LTLENG, LTWIND, LTFARM

(Wind load on live load)

SSWINDT SSWINDL PIERWINDT PIERWINDL LTWIND LLWIND

(for 0 degrees)

SSWINDT SSWINDL PIERWINDT PIERWINDL LTWIND LLWIND

(for 15 degrees)

SSWINDT SSWINDL PIERWINDT PIERWINDL LTWIND LLWIND

(for 30 degrees)

SSWINDT SSWINDL PIERWINDT PIERWINDL LTWIND LLWIND

(for 45 degrees)

SSWINDT SSWINDL PIERWINDT PIERWINDL LTWIND LLWIND

(for 60 degrees)

SSWINDT SSWINDL PIERWINDT PIERWINDL LTWIND LLWIND

(for 75 degrees)

Where NMWIND

is the number of wind load cases (WSx and WLx count together as one case) A maximum of 5 wind load cases can be generated automatically.

ANGLEx

is the skew angle of the wind in degrees measured from the transverse axis. (angles can vary between 0 and 75°, in increments of 15 degrees)

422

SSAREA

is the transverse area of superstructure

SSWIND

is the transverse wind intensity on superstructure (not currently used)

SSWARM

is the transverse wind force moment arm from the center of the pier cap to the center of gravity of the superstructure

CPARET

is the transverse area of the pier cap

CPAREL

is the longitudinal area of the pier cap

CPWIND

is the transverse wind intensity at the level of the pier cap (not currently used)

CLARET

is the transverse area of the columns

CLAREL

is the longitudinal area of the columns

CLWIND

is the transverse wind intensity at the level of the columns (not currently used)

CLWARM

is the transverse wind force moment arm from the base of the columns to the center of gravity of the columns. This parameter is computed by the program for Pile Bent models (using the water table or ground surface elevation).

LTLENG

is the transverse length of the live load

LTWIND

is the transverse wind intensity on the live load (not currently used)

LTFARM

is the transverse wind force moment arm from the center of the pier cap to the center of gravity of the live load

SSWINDT

is the transverse wind pressure on the superstructure (at each angle)

SSWINDL

is the longitudinal wind pressure on the superstructure (at each angle)

PIERWINDT

is the transverse wind pressure on the pier (at each angle)

PIERWINDL

is the longitudinal wind pressure on the pier (at each angle)

LTWIND

is the transverse wind line load on the live load (at each angle)

LLWIND

is the longitudinal wind line load on the live load (at each angle)

Parameters with a strikethrough font are not currently used. These parameters were used by the previous wind load generator (based on the AASHTO-LRFD 1997 Interim Revisions).

423

Note: This section must end with a blank line.

The wind load generator calculations are as follows:

Wind Load on Structure (WS)

• • • location), Ftrans

Ftrans =









Transverse load (per bearing

ssarea ⋅ sswindt + cparet ⋅ pierwindt + claret ⋅ pierwindt ⋅ clwarm ÷ colheight number of bearing locations

• • • location), Flong

Flong =













Longitudinal load (per bearing

ssarea ⋅ sswindl + cparel ⋅ pierwindl + clarel ⋅ pierwindl ⋅ clwarm ÷ colheight number of bearing locations

• • • • • • • • locations are determined using a rigid beam and spring model

Vertical loads at the bearing

• • • • (per bearing location), Mx

Moment about the global x axis

Mx =









ssarea ⋅ sswindl ⋅ sswarm number of bearing pads

Note: Since the wind load on the column is applied at the centroid (and not the pier cap), ratio of clwarm/colheight is used to reduce the wind load in order to apply it at the level of the pier cap.

424

Wind Load on Live Load (WL)

• • • location), Ftrans

Ftrans =









Transverse load (per bearing







Longitudinal load (per bearing

ltleng ⋅ ltwind number of bearing locations

• • • location), Flong

Flong =







ltleng ⋅ llwind number of bearing locations

• • • • • • • • locations are determined using a rigid beam and spring model

Vertical loads at the bearing

• • • • (per bearing location), Mx

Moment about the global x axis

Mx =









ltleng ⋅ llwind ⋅ ltfarm number of bearing pads

Spring Properties

This set of lines specifies springs, which may be placed on the piers, pier cap or pile/shaft cap. They are generally used to simulate the bridge superstructure. These lines may be skipped if there are no springs.

425

SPRING NS

Where NS

is the number of spring elements (INTEGER) (zero identifies no springs)

A total of NS lines, one for each spring is required to define the spring stiffness. If NS=0, no stiffness lines necessary.

NN

S =KX, KY, KZ, KXX, KYY, KZZ

Where NN

is the node the spring element is connected to(INTEGER)

KX

is the stiffness of the spring in X direction (REAL)

KY

is the stiffness of the spring in Y direction (REAL)

KZ

is the stiffness of the spring in Z direction (REAL)

KXX

is the stiffness of the spring for rotation about X axis (REAL)

KYY

is the stiffness of the spring for rotation about Y axis (REAL)

KZZ

is the stiffness of the spring for rotation about Z axis (REAL)

LC, SFlag

1 line is used for each load case

Where LC

is the specified Load Case

SFlag

is the flag to include Spring values with specified Load Case 0 = do not include springs 1 = include springs

426

Pile Cap Properties

These two lines specify the properties for the pile cap which is identified as material # 1 in Figure F26-a.

CAP E=E1 U=U1 T=T1

Where E1

is Young's modulus of the Pile Cap elements (REAL)

U1

is Poisson's ratio of the Pile Cap elements (REAL)

T1

is Thickness of the Pile Cap elements (REAL)

Specify thickened cap elements:

Additional lines can be input directly after the cap property line to specify that a particular element have a different thickness than the one specified above. This can be done using the following line (repeated as many times as necessary):

ROW, COL T=THICK, SELTHK

Where ROW

is the row number of the pile cap element

COL

is the column number of the pile cap element.

THICK

is the thickness to use for the stiffness calculations for this element

SELTHK

is the thickness to use for the self-weight calculations.

Removed Pile Cap Element

427

Pile cap elements can be removed (similar to pier cap elements). The elements can be removed to create separate pile cap structures. The following data is required:

REMOVE

XLOC, YLOC

Where XLOC is the element index in the X direction to be removed

YLOC is the element index in the Y direction to be removed

Removed Pier Cap Element

Pier cap elements can be removed (similar to pile cap elements). The elements can be removed to create separate pier structures. The following data is required:

RMBEAM

NSPAN, NELEM

Where NSPAN

is the span number in which the element is to be removed

NELEM

is the element number in the span to remove

428

Bearing Connection

The following information is used by with multiple pier generation. The information under the PADBC header describes the bearing location to superstructure connectivity. This information is provided per pier.

PADBC L=LEFTPAD S= FX, FY, FZ, FRX, FRY, FRZ O=OFFSET

Or R=RIGHTPAD S= FX, FY, FZ, FRX, FRY, FRZ O=OFFSET

Where LEFTPAD

is the bearing location index number in left row of bearing locations

RIGHTPAD

is the bearing location index number in right row of bearing locations

FX

is the fixity for the local x-direction

FY

is the fixity for the local y-direction

FZ

is the fixity for the local z-direction

FRX

is the fixity for rotation about the local x-axis

FRY

is the fixity for rotation about the local y-axis

FRZ

is the fixity for rotation about the local z-axis For all six directions: 0 for released (free), 1 for constrained Values greater than 1 indicate the custom connection material property number. This custom connection is described by a load-displacement relationship. See PADPROP header.

OFFSET

is the bearing offset (measured from the centerline of the pier cap to the center of the bearing). This value must be greater than zero when two rows of bearings are used.

: This section must end with a blank line.

For a single row, the left and right bearing parameters should be the same.

429

Figure F30: Bearing Connection Layout for One and Two Rows

Point Mass

This section allows the addition of point masses to a structure.

MASS

The next line specifies the mass to be added to a node for each of the six global directions. There is one header per pier.

NS,NF,NI M=MX,MY,MZ,MRX,MRY,MRZ

Where NS

is the starting node to add the mass to.

NF

is the final node to add the mass to.

NI

is the increment to generate additional node numbers at between NS and NF at which to add mass.

MX

\

MY

|

430

MZ

} are the mass values for the translational and rotational X,Y,Z directions

MRX

|

MRY

|

MRZ

/

This section must end with a blank line.

Point Dampers

This section allows the addition of point dampers to a structure. Point dampers are not allowed for modal analysis.

DAMP

The next line specifies the dampers to be added to a node for each of the six global directions. There is one header per pier.

NS,NF,NI C=MX,MY,MZ,MRX,MRY,MRZ

Where NS

is the starting node to add the dampers to.

NF

is the final node to add the dampers to.

NI

is the increment to generate additional node numbers at between NS and NF at which to add dampers.

MX

\

MY

|

MZ

} are the dampers values for the translational and rotational X,Y,Z directions

MRX

|

MRY

|

431

MRZ

/

You can NOT add concentrated masses or dampers to the pile nodes.

This section must end with a blank line.

Dynamic Load Function Application

LOADYN

The next lines specify the load function and its point of application. There is one header per pier.

There can be as many of these lines as required to specify all loaded nodes and DOF for this load function. If the F= portion is NOT specified, ALL active DOF will be loaded.

NF,NL,NI L=LCN F=L1,L2,L3,L4,L5,L6 M= MODEXF D=FUNC

Where NF

is the first node in a generation sequence for which the DOF specification is used.

NL

is the last node in a generation sequence for which the DOF specification is used.

NI

is the increment for generating node numbers between NF and NL for which the DOF specification is used. NL and NI can be left blank if no generation is desired.

LCN

is the load case number

Li

is the state at which the ith DOF can have, either loaded or NO load. Therefore Li can have ONLY the two following values; Fi = L is for loaded. Fi = N is for NO load.

MODEXT

432

is the flag for modifying the external force (0-no, 1-yes). The flag works in conjunction with a user-defined subroutine in the program that modifies the external forcing function at each time step in response to an outside excitation (currently a barge).

FUNC

is the load function number to apply (default is 1)

Post Processing Formats POST PROCESSING FILE FORMATS

FB-MULTIPIER writes many results files that are used by the post processing plotting program to display the results. The following is a list of the files and their contents. NOTE: Each list constitutes a sequential record in the file. Unless otherwise noted, the FORTRAN convention of variables I-N are four byte integers, (A-H,O-Z) are four byte reals. Numbers appended to the file extensions indicate the pier numbers (i.e. PLF2 is the Geometry and Control Information for Pier #2).

*.MPR Multiple Pier Generation *.PLS

Pier to Superstructure Connectivity

*.PLF

Geometry and Control Information

*.PIL

Pile Data

*.AXL Axial Forces for Beam Element *.MOM Maximum Moments in Beam Element *.STR

Stresses of Pile Cap

*.SLI

Capacity Information

*.VMD Shear and Moment Results *.NCV Analysis Convergence Information *.EIG

Mode Shape and Frequency Information

*.ASH AASHTO Load Combination Results

Multiple Pier Generation

433

File: name.MPR

This file contains information for generating multiple piers and bridge spans.

numPiers

Where numPiers

is the number of bridge piers

pierCoordX, pierCoordY, pierRot

Where pierCoordX

is the nodal x-coordinate for the pile cap origin (for that pier)

pierCoordY

is the nodal y-coordinate for the pile cap origin (for that pier)

pierRot

is the rotation angle about global z-axis (for that pier)

Pier to Superstructure Connectivity

File: name.PLS

This file contains information for the bearing row to bridge span connectivity (per pier).

nodesLeft, nodesRight, spanNodeLeft, spanNodeRight, spanNodeLeftHeight, spanNodeRightHeight

Where

434

nodesLeft

is the number of connection nodes for the left bearing row

nodesRight

is the number of connection nodes for the right bearing row

spanNodeLeft

is the connector node number for the begin of bridge span

spanNodeRight is the connector node number for the end of bridge span spanNodeLeftHeight

is the elevation above the pier cap (c.g.) for the begin of bridge span

spanNodeRightHeight

is the elevation above the pier cap (c.g.) for the end of bridge span

(If there is a left row of bearings – i.e. nodesLeft > 0) (nodesLeft number of lines) padLeftCoordX, padLeftCoordY, padLeftCoordZ

Where padLeftCoordX is the nodal x-coordinate for the bearing connection node padLeftCoordY is the nodal y-coordinate for the bearing connection node padLeftCoordZ is the nodal z-coordinate for the bearing connection node

(If there is a right row of bearings – i.e. nodesRight > 0) (nodesRight number of lines) padRightCoordX, padRightCoordY, padRightCoordZ

Where padRightCoordX is the nodal x-coordinate for the bearing connection node padRightCoordY is the nodal y-coordinate for the bearing connection node padRightCoordZ is the nodal z-coordinate for the bearing connection node

(If there is a left row of bearings – i.e. nodesLeft > 0) (one line per connector element) nElem, padLeftConnI, padLeftConnJ

Where

435

nElem

is the connector element number

padLeftConnI

is node number at the I-end of the connector element

padLeftConnJ

is node number at the J-end of the connector element

(If there is a right row of bearings – i.e. nodesRight > 0) (one line per connector element) nElem, padRightConnI, padRightConnJ

Where nElem

is the connector element number

padRightConnI

is node number at the I-end of the connector element

padRightConnJ

is node number at the J-end of the connector element

Nodal displacement information (per load case) Nodal modeshape information (per eigenvector). Response Spectrum Analysis only.

(If there is a left row of bearings – i.e. nodesLeft > 0) (nodesLeft number of lines) PHIX_L, PHIY_L, PHIZ_L, PHIRX_L, PHIRY_L, PHIRZ_L

Where PHIX_L

is the connector node displacement in the x-direction

PHIY_L

is the connector node displacement in the y-direction

PHIZ_L

is the connector node displacement in the z-direction

PHIRX_L

is the connector node rotation about the x-axis

PHIRY_L

is the connector node rotation about the y-axis

PHIRZ_L

is the connector node rotation about the z-axis

(If there is a right row of bearings – i.e. nodesRight > 0)

436

(nodesRight number of lines) PHIX_R, PHIY_R, PHIZ_R, PHIRX_R, PHIRY_R, PHIRZ_R

Where PHIX_R

is the connector node displacement in the x-direction

PHIY_R

is the connector node displacement in the y-direction

PHIZ_R

is the connector node displacement in the z-direction

PHIRX_R

is the connector node rotation about the x-axis

PHIRY_R

is the connector node rotation about the y-axis

PHIRZ_R

is the connector node rotation about the z-axis

Geometry and Control Information

File: name.PLF

This is the main structure geometry and control information file. The contents are as follows:

Npset Is the number of pile sets for the piles.

Nseg1, nseg2, nseg3, ….. nsegN Where nsegi

is the number of cross section properties per pile set. There are npset numbers written.

ktype, dia, width, depth

437

There is one record for each segment. (nseg records) Ktype

is the shape of the section (1=round, 2=square/rectangular, 3=Hpile)

Dia

is the effective diameter of the cross section

Width

is the width of the section

Depth

is the depth of the section

Name Is the problem file name (character*256)

NUMNP, nstr, kbent Numnp is the number of nodes in the structure, including pile cap and the tops of the piles. Nstr kbent

is not used. is the model type kbent = -1: Pile and Cap Only & Single Pile kbent = 1: General Pier kbent = 3: High Mast / Lighting Sign

kbent = 4: Retaining Wall kbent = 5: Sound Wall kbent = 6: Stiffness Formulation kbent = 7: Pile Bent kbent = 8: Column Analysis

ncol, NCL V, NCANTN, NADMEM, NADPRP, NCLNOD, NBMNOD, NBPAD, kmetr

ncol

438

is the number of columns in the structure

nclv

is the

ncantn

is the number of cantilever nodes

nadmem is the number of additional members nadprp

is the number of additional properties

nclnod

is the number of node in the columns

nbmnod

is the number of nodes in the pier cap

nbpad

is the number of bearing locations

kmetr

is the metric flag (0=english,1=meters/KN, 2=mm,KN)

space, height, offset, CANTIL, PADOFF

These are double precision.

Space

is the spacing between columns

Height

is the height of the columns

Offset

is the distance from x=0 to start the structure.

Cantil

is the length of the cantilevers

Padoff

is the offset from the left column where the first bearing location starts.

X, Y, Z There are numnp records. These are the X, Y and Z coordinates of the structure nodes (Not including the piles below the pile cap).

Idx, idy, idz, idrx, idry, idrz There are numnp records. There are the structural DOF for the problem. They are for the x, y, z and then rotation x, y and z.

439

There are three sets of the following. For the beam type elements (mtype=3), for the shell elements (mtype=6) and for the spring elements (mtype=8).

Mtype, nume

Mtype

is the element type.

Nume

is the number of elements of this type.

NELM, NND, (LT(J), J=1, NND)

(this line is repeated nume times)

Nelm

is the element number

Nnd

is the number of nodes saved for this element

Lt()

is the list of node numbers for this element.

DX, DY, DZ, RX, RY, RZ There are numnp records. These are the displacements in the X, Y and Z and the rotations in the X, Y and Z directions for the structure nodes (Not including the piles below the pile cap).

MAXIMUMS

lmsh2,lpsh2,lmsh3,lpsh3,lmrm2,lprm2,lmrm3,lprm3, lmaxl,lpaxl,lmtor,lptor,lmsax,lpsax,lmsdx,lpsdx, lmsdy,lpsdy,lmsto,lpsto,lmdiz,lpdiz,lmdix,lpdix, lmdiy,lpdiy

lmsh2 load case with the max pile shear-2 lpsh2

is the pile number with the max pile shear-2

lmsh3

is the load case with the max pile shear-3

lpsh3

is the pile number with the max pile shear3

440

is the

lmrm2

is the load case with the max pile moment-2

lprm2

is the pile number with the max pile moment-2

lmrm3

is the load case with the max pile moment-3

lprm3

is the pile number with the max pile moment-3

lmaxl

is the load case with the max axial force

lpaxl

is the pile number with the max axial force

lmtor

is the load case with the max torsion

lptor

is the pile number with the max torsion

lmsax

is the load case with the max soil axial force

lpsax

is the pile number with the max soil axial force

lmsdx

is the load case with the max soil lateral-x force

lpsdx

is the pile number with the max soil lateral-x force

lmsdy

is the load case with the max soil lateral-y force

lpsdy

is the pile number with the max soil lateral-y force

lmsto

is the load case with the max soil torsion

lpsto

is the pile number with the max soil torsion

lmdiz

is the load case with the max pile axial-displacement

lpdiz

is the pile number with the max pile axial-displacement

lmdix

is the load case with the max pile x-displacement

lpdix

is the pile number with the max pile x-displacement

lmdiy

is the load case with the max pile y-displacement

lpdiy

is the pile number with the max pile y-displacement

MINIMUMS lmsh2,lpsh2,lmsh3,lpsh3,lmrm2,lprm2,lmrm3,lprm3, lmaxl,lpaxl,lmtor,lptor,lmsax,lpsax,lmsdx,lpsdx, lmsdy,lpsdy,lmsto,lpsto,lmdiz,lpdiz,lmdix,lpdix, lmdiy,lpdiy

441

lmsh2 load case with the min pile shear-2 lpsh2

is the pile number with the min pile shear-2

lmsh3

is the load case with the min pile shear-3

lpsh3

is the pile number with the min pile shear3

lmrm2

is the load case with the min pile moment-2

lprm2

is the pile number with the min pile moment-2

lmrm3

is the load case with the min pile moment-3

lprm3

is the pile number with the min pile moment-3

lmaxl

is the load case with the min axial force

lpaxl

is the pile number with the min axial force

lmtor

is the load case with the min torsion

lptor

is the pile number with the min torsion

lmsax

is the load case with the min soil axial force

lpsax

is the pile number with the min soil axial force

lmsdx

is the load case with the min soil lateral-x force

lpsdx

is the pile number with the min soil lateral-x force

lmsdy

is the load case with the min soil lateral-y force

lpsdy

is the pile number with the min soil lateral-y force

lmsto

is the load case with the min soil torsion

lpsto

is the pile number with the min soil torsion

lmdiz

is the load case with the min pile axial-displacement

lpdiz

is the pile number with the min pile axial-displacement

lmdix

is the load case with the min pile x-displacement

lpdix

is the pile number with the min pile x-displacement

lmdiy

is the load case with the min pile y-displacement lpdiy

Pile Data

442

is the pile number with the min pile y-displacement

is the

File: name.PIL

This file contains the pile information data.

NUMPN, NUMLC Numpn

is the total number of pile nodes

Numlc

is the number of load cases or combinations written to results file.

NPX, NPY, nmpil, npil, kfix, nplnod Npx

is the grid in the X direction

Npy

is the grid in the Y direction

Nmpil

is the number of missing piles.

Npil

is the number of actual piles

Kfix

is the flag for pile head fixity (0=pinned, 1=fixed)

Nplnod

is the number of nodes in a pile (including the top)

Mpilx, mpily

(There are nmpil records)

Mpilx

is the x index for the missing pile

Mpily

is the y index for the missing pile.

Dxsp1, dxsp2, dxsp3,…

(npx-1 values)

These are the pile spacings for the X direction.

443

Dysp1, dysp2, dysp3,…

(npy-1 values)

These are the pile spacings for the y direction.

The following line is written ONCE FOR EACH PILE in the system (NPIL times)

(ipp(i), i=1, nplnod-1)

This index tells which cross section to use for each segment of pile.

(numpset(I), I=1, npil)

This index tells which pile set number to use for each pile in the system.

Ndfrln

This is the number of nodes in the free length (above the ground surface). This matches nsub in the input file.

The next line is written for EACH PILE. (npil times).

TPL, GSE Tpl

is the total pile length.

Gse

is the height above the ground of the pile cap

Batx, baty, batl

(There are npil records)

Batx

is the slope in the x direction for a battered element.

Baty

is the slope in the y direction for a battered element.

444

Batl

is the actual element segment length.

DX, DY, DZ, RX, RY, RZ

(There are nplnod*npil records)

There are numpn records. These are the displacements in the X,y and Z and the rotations in the X,Y,and Z directions for the pile nodes.

Axial Forces for Beam Elements

File: name.AXL

This file contains the axial forces for each beam type element (structure and pile).

Numtrs, numfrm

Numtrs

is the number of truss type members (=0)

Numfrm

is the number of bending type members.

The next two sections are repeated twice and both are repeated NUMLC times, for each load case.

Mtype, nume

Mtype

is the element type (=3 for structure, =2 for piles)

Nume

is the number of elements

445

Axial

Axial

is the axial force for the member for the appropriate load case.

Maximum Moments in Beam Elements

File: name.MOM

This file contains the maximum moment forces for each beam type element (structure and pile).

numfrm

Numfrm

is the number of bending type members.

The next two sections are repeated twice and both are repeated NUMLC times, for each load case.

Mtype, nume

Mtype

is the element type (=3 for structure, =2 for piles)

Nume

is the number of elements

Rmom

Rmom

446

is the maximum moment in the member for the appropriate load case.

Stresses of Pile Cap

File: name.STR

This file contains the shell element stresses for the pile cap. There are eight records per load case. Each record contains eight values per element times the number of cap elements. The eight records represent: Mxx, Myy, Mxy, Sxz, Syz, Sy, Sx, Sxy

Therefore, the loops are:

Do I=1,numlc Do j=1,8 (the eight sets of results) Read() (stress(k), k=1, 8* #elements) Enddo Enddo

Capacity Information

File: name.SLI

This file contains the capacity information for each cross section used in the structure.

Nxpile, nxstruc Nxpile

is the number of cross section in the piles

Nxstruc

is the number of cross sections in the structure.

447

idflg

is the flag to tell if cross section capacity information (for interaction diagrams) exists in the file. One flag is written for each cross section. =1, information is not present =0, information is present

The next set of records is repeated for each cross section for which capacity information exists.

Nlcv

is the number of contour slices for this cross section

PTUV, YPC, ZPC

Ptuv

is the ultimate axial tension strength

Ypc

is the y shift for the plastic centroid

Zpc

is the z shift for the plastic centroid

(PNC(J)J=1, 13)

pnc

(repeated nlcv times)

is the table of capacity results. Where the values are: pnc(1) = φ* Compression capacity pnc(2) = φ* moment capacity about local 3 axis (M1) pnc(3) = φ* moment capacity about negative local 2 axis (M2) pnc(4) = φ* moment capacity about negative local 3 axis (M3) pnc(5) = φ* moment capacity about local 2 axis (M4) pnc(6) = α1 pnc(7) = β1 pnc(8) = α2 pnc(9) = β2 pnc(10) = α3

448

pnc(11) = β3 pnc(12) = α4 pnc(13) = β4

 M nz   M 0z

α

M   +  ny M   0y

β

  =1  

The α and β ’s are used as a pair for the following capacity equation:

If the compression is in the 1st quadrant (+2,+3) then use M1, M2, α1, β1 If the compression is in the 2nd quadrant (-2,+3) then use M3, M2, α2, β2 If the compression is in the 3rd quadrant (-2,-3) then use M3, M4, α3, β3 If the compression is in the 4th quadrant (+2,-3) then use M1, M4, α4, β4

Shear and Moment Results

File: name.VMD

This file contains the bending element shears, moments and capacities for the pile and structure elements. This is a direct access file (A fixed record size) of 56 bytes. There is one set of records for all elements in the piles and structure. The number of elements (records per set) is:

number of records per load case =NPEL + NUMFRM

where NPEL=NPIL*(nplnod-1).

Note that the numbers NPIL and NPLNOD can be found in the name.PIL file and NUMFRM can be found in the name.AXL file. The set of results is repeated for each load case. Each record contains fourteen values per element. The fifteen values represent:

449

W, V2I, V3I, V2J, V3J, XMI2, XMI3, XMJ2, XMJ3, XMMAX, XML, FRATI, FRATJ, AXLI, AXLJ Where W

is the uniform load on the element.

V2I

is the shear on the I end in the local 2 direction.

V3I

is the shear on the I end in the local 3 direction.

V2J

is the shear on the J end in the local 2 direction.

V3J

is the shear on the J end in the local 3 direction.

XMI2

is the moment on the I end about the local 2 axis.

XMI3

is the moment on the I end about the local 3 axis.

XMJ2

is the moment on the J end about the local 2 axis.

XMJ3

is the moment on the J end about the local 3 axis.

XMMAX

is the maximum midspan moment if uniform loads exist.

XML

is the distance from the I end where the maximum midspan moment exists.

FRATI

is the capacity ratio at the I end.

FRATJ

is the capacity ratio at the J end.

AXLI

is the axial force at the I end of the member.

AXLJ

is the axial force at the J end of the member.

NOTE: All values are single precision real numbers (4 bytes). Also, the pile elements come first, then the structure elements.

Analysis Convergence Information

File: name.NCV

This file contains analysis parameters and convergence information.

450

Nconv

Where Nconv

is the number of converged load cases (for static analyses) is the number of converged load combinations (for AASHTO load combination

problems) is the number of converged time steps (for dynamic analyses)

Phiovr

Where Phiovr diagrams.

is the user-defined strength reduction "phi" factor to use when factoring the interaction

NPlt

Where NPlt

is the results version number (currently version 1)

Ndynam

Where Ndynam

is the type of analysis (0 – for static, 1 – for dynamic, 2 – for response spectrum analysis)

NTimeStep

Where

451

NTimeStep

is the time step used (for time domain dynamic analysis, otherwise 0)

NVEC

Where

NVEC number of eigenvectors (for response spectrum analysis, otherwise 0)

is the

Mode Shape and Frequency Information (Response Spectrum Analysis)

File: name.EIG

This file contains eigenvalues (frequencies) and eigenvectors (mode shapes) used in the response spectrum analysis.

NVEC

Where NVEC

is the number of number of eigenvectors

NNODE

Where NNODE

452

is the number of nodes in the model

FREQ1, FREQ2, FREQ3, ….. FREQN

Where FREQx

is the vibration frequency for mode x.

Loop over the number of eigenvectors and over each node in the model

NODE, PHIXX, PHIYY, PHIZZ, PHIRX, PHIRY, PHIRZ

Where NODE

is the model node number (integer)

PHIXX

is the eigenvector in the x-direction (double)

PHIYY

is the eigenvector in the y-direction (double)

PHIZZ

is the eigenvector in the z-direction (double)

PHIRX

is the eigenvector about the x-axis (double)

PHIRY

is the eigenvector about the y-axis (double)

PHIRZ

is the eigenvector about the z-axis (double)

Eigenvector data read example:

Do I=1,NVEC Do j=1,NNODE Read() NODE, (PHI(k), k=1, 6) Enddo Enddo

453

AASHTO Load Combination Results

File: name.ASH

This file contains design code and limit state information.

nCodeType

Where nCodeType

is the AASHTO design code used for load combinations (0 – for LRFD, 1 – for LFD)

nGroup1, nGroup2, …, nGroup11

Where nGroup1…

are the limit states that were analyzed (0 – for analyzed, 1 – for not analyzed)

(CritPl(J),J=1,11)

Where CritPl

is load combination number with the maximum pile demand/capacity ratio for each analyzed limit state (0 – if not analyzed)

(CritCol(J),J=1,11)

Where CritPl

is load combination number with the maximum pier column demand/capacity ratio for each analyzed limit state (0 – if not analyzed)

454

(CritPierCap (J),J=1,11)

Where CritPl

is load combination number with the maximum pier cap demand/capacity ratio for each analyzed limit state (0 – if not analyzed)

References References

Brown, D., Morrison, C., and Reese, L. (1988), "Lateral Load Behavior of a Pile Group in Sand," ASCE Journal of Geotechnical Engineering, Vol. 114, No. 11, pp. 1261-1276.

Gazioglu, S. M., and O’Neill, M. W. "Evaluation of P-Y Relationships in Cohesive Soils," from Analysis and Design of Pile Foundations, proceedings of a symposium sponsored by the ASCE Geotechnical Engineering Division, ASCE National Convention, San Francisco, CA, pp. 192-213.

Georgiadis, M. "Development of P-Y curves for Layered Soils," Proceedings, Geotechnical Practice in Offshore Engineering, American Society of Civil Engineers, pp. 536-545.

Kulhawy, F. and Mayne, P. "Manual for Estimating Soil Properties for Foundation Design." Electric Power Research Institute (EPRI) Report. EPRI EL-6800. Project 1493-6. Aug. 1990, pp. 5-17.

Matlock, H. "Correlations for Design of Laterally Loaded Piles in Soft Clay," Paper No. OTC 1204, Proceedings, Second Annual Offshore Technology Conference, Houston, Texas, Vol. 1, 1970, pp. 577-594.

McVay,M. C., O'Brien, M., Townsend, F. C., Bloomquist, D. G., and Caliendo, J. A. "Numerical Analysis of Vertically Loaded Pile Groups," ASCE, Foundation Engineering Congress, Northwestern University, Illinois, July, 1989, pp. 675-690.

455

McVay,M. C., M., Niraula, L. "Development of Modified T-Z Curves for Large Diameter Piles/Drilled Shafts in Limestone for FB-Pier," Report Number 4910-4504-878-12, National Technical Information Service, Springfield, VA June 2004.

Kim, Myoung-Ho, "Analysis of Osterburg and Stanamic Axial Load Testing and Conventional Lateral Load Testing", Master’s Thesis, University of Florida, Gainsvelli, Florida, 2001.

Murchison, J. M. and O’Neill, M. W. "Evaluation of P-Y Relationships in Cohesionless Soils," from Analysis and Design of Pile Foundations, proceedings of a symposium sponsored by the ASCE Geotechnical Engineering Division, ASCE National Convention, San Francisco, CA, pp. 174-191.

Reese, L. C., Cox, W. R. and Koop, F. D "Analysis of Laterally Loaded Piles in Sand," Paper No. OTC 2080, Proceedings, Fifth Annual Offshore Technology Conference, Houston, Texas, 1974 (GESA Report No. D-75-9).

Reese, L. C., Cox, W. R. and Koop, F. D. "Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay," Paper No. OTC 2312, Proceedings, Seventh Offshore Technology Conference, Houston, Texas, 1975.

Reese, L. C. and Welch, R. C. "Lateral Loading of Deep Foundations in Stiff Clay," Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, Vol. 101, No. GT7, Proceedings Paper 11456, 1975, pp. 633-649 (GESA Report No. D-74-10).

Sayed, S. M. and Bakeer, R. M. "Efficiency Formula For Pile Groups," Journal of the Geotechnical Engineering, American Society of Civil Engineers, Vol. 118, No. 2, Paper No. 26553, 1992, pp. 278-299.

Itani, A. M. "Future Use of Composite Steel-Concrete Columns in Highway Bridges." AISC Engineering Journal.33, No.3 pp. 110-115 1996.

Mander, J. B., Priestley, M. J. N.,Park R., "Theoretical Stress Strain Model for Confined Concrete" ASCE Journal of Structural Engineering 114,pp. 1804-1826, 1988.

Mander, J. B., Priestley, M. J. N.,Park R., "Observed Stress-Strain Behavior of Confined Concrete" ASCE Journal of Structural Engineering 114,pp. 1827-1849, 1988.

456

Chai, Y., H., Preistly, M., J., N., and Seible, F., "Flexural Retrofit of Circular Reinforced Bridge Columns by Steel Jacketing,", University of California, San Diego, La Jolla, 1991.

Mirza, S., A., and MacGregor, J., G., "Variability of mechanical properties of reinforcing bars,", ASCE Journal of Structural Engineering, 105(ST5):921-937, May 1979.

Scott, B., D., Park R., and Priestly, M., J., N., "Stress-strain Behavior of concrete confined by overlapping hoops at low and high strain rates,", ACI Journal , 79(1): 13-27, Jan./Feb 1982.

Stone, W., C. and Cheok, G., S., Inelastic Behavior of Full-Scale Bridge Columns Subjected to Cyclic Loading.. Report No. NIST/BSS-166, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersberg, MD 20899, Jan. 1989.

Pinder, Terrence, "A Model for Concrete Under The Effect of Transverse Confinement", Report presented to the graduate committee of the Department of Civil Engineering, University of Florida, Summer 1997.

Randolph, M.F., "Piles Subjected to Torsion," Journal of the Geotechnical Division, ASCE, Vol. 107, No. GT8, August, 1981, pp. 1095-1111.

Stoll, U.W., "Torque Shear Test of Cylindrical Friction Piles," Civil Engineering, ASCE, Vol. 42, No. 4, April., 1972, pp.63-64.

Wang, S. T., and Reese, L. C., "COM624P – Laterally loaded pile analysis for the microcomputer, ver. 2.0" FHWA-SA-91-048, Springfield, VA, 1993.

Peck, R.B., Hanson, W. E. and Thornburn, T. H., "Foundation Engineering", John Wiley & Sons, 1974.

Bowles, J. E., "Foundation Analysis and Design", McGraw-Hill, New York, 1977.

O’Neill, M. W. and Dunnavant, T. W., "A Study of Effect of Scale, Velocity, and Cyclic Degradability on Laterally Loaded Single Piles in Overconsolidated Clay.", Rep. No. UHCE 84-7, Dept. of Civil Engineering, Univ. of Houston, Houston, TX, 1984.

Welch, R. C., and Reese, L.C., "Lateral Load Behavior of Drilled Shafts", Research Rep. No. 3-5-65-99, conducted for Texas Highway Department and U.S. Department of Transportation, Federal

457

Highway Administration, Bureau of Public Roads, Center for Highway Research, Univ. of Texas at Austin, TX, 1972.

FHWA, PCSTABLS-Users Manual, Federal Highway Administration, Springfield, VA 1988.

Mitchell, J. S., "A Nonlinear Analysis of Bi-Axially Loaded Beam-Columns Using a Discrete Element Model," Ph. D. Dissertation, The University of Texas at Austin, August, 1973.

Andrade, P., "Materially and Geometrically Non-Linear Analysis of Laterally Loaded Piles Using a Discrete Element Technique," Masters Report, Universtiy of Florida, Gainesville, 1994.

Precast Conrete Institute, PCI Design Handbook, 4th Ed., Chicago IL, 1992.

California Department of Transportation (CALTRANS), Bridge Design Practice Manual, Sacrament, CA, 1981.

O’Neill, M.W., Townsend, F. C., Hassan, K. M., Buller, A., and Chan, P. S., "Load Transfer for Drilled Shafts in Intermediate Geomaterials," Report No. FHWA-RD-95-172, November 1996.

University of Florida, "Development of Modified T-Z Curves for Large Diameter Piles/Drilled Shafts in Limestone for FBPier", UF Project #4910-4504-878-12.

Tutorials Tutorial Index The following two tutorials are included with the Help Manual. (Click Link to view) Overview (9 minutes 8 seconds) This demo provides an overview of the FB-MultiPier program and explains the most commonly used features. Convergence Problem (3 minutes 45 seconds) This tutorial shows how to overcome convergence problems when analyzing a model using FB-MultiPier.

The tutorials below require an Internet connection and are located on the BSI server.

Covers the Element Forces Dialog.

458

(Click Link to download)

Help About The Help About displays important program information. Explains how to update a license in FB-MultiPier. Max Min Covers the Max Min Dialog. Percentage Steel Explains how to use the Percentage Steel method to enter reinforcing steel. Pile Sets Explains how to create Pile Sets. Printable Forces Covers the Printable Forces Dialog. Soil Plot Covers the Soil Plot Dialog. Soil Table Demonstrates how to enter data in the Soil Table. Zoom Feature Covers the Zoom features in FB-MultiPier.

FB MultiPier

459

Segment Selection

Select the member segment to view its interaction diagram.

Return to the Interaction Diagrams page.

Confined Concrete Model References

460

1. Itani, A. M. "Future Use of Composite Steel-Concrete Columns in Highway Bridges." AISC Engineering Journal.33, No.3 pp. 110-115 1996. 2. Mander, J. B., Priestley, M. J. N.,Park R., "Theoretical Stress Strain Model for Confined Concrete" ASCE Journal of Structural Engineering 114,pp. 1804-1826, 1988. 3. Mander, J. B., Priestley, M. J. N.,Park R., "Observed Stress-Strain Behavior of Confined Concrete" ASCE Journal of Structural Engineering 114,pp. 1827-1849, 1988. 5. Chai, Y., H., Preistly, M., J., N., and Seible, F., "Flexural Retrofit of Circular Reinforced Bridge Columns by Steel Jacketing,", University of California, San Diego, La Jolla, 1991 6. Mirza, S., A., and MacGregor, J., G., "Variability of mechanical properties of reinforcing bars,", ASCE Journal of Structural Engineering, 105(ST5):921-937, May 1979 7. Scott, B., D., Park R., and Priestly, M., J., N., "Stress-strain Behavior of concrete confined by overlapping hoops at low and high strain rates,", ACI Journal , 79(1): 13-27, Jan./Feb 1982 8. Stone, W., C. and Cheok, G., S., Inelastic Behavior of Full-Scale Bridge Columns Subjected to Cyclic Loading.. Report No. NIST/BSS-166, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersberg, MD 20899, Jan. 1989 9. Pinder, Terrence, "A Model for Concrete Under The Effect of Transverse Confinement", Report presented to the graduate committee of the Department of Civil Engineering, University of Florida, Summer 1997.

1) 2) 3) 4) 5)

Note: For cases when it is infeasible to contact a BSI representative during normal business hours, it is possible to obtain the numerical codes by fax or email. For this case, the user must fax or email the following information to the BSI: 1) 1) 1) 1) 1) 1) 1) 1) Name of the user 2) 2) 2) 2) 2) 2) 2) 2) Program License ID 3) 3) 3) 3) 3) 3) 3) 3) Password used for the BSI account 4) 4) 4) 4) 4) 4) 4) 4) Session Code 5) 5) 5) 5) 5) 5) 5) 5) Machine ID Upon receipt of the above information and verification of the user’s account status, the numerical codes to unlock the program will be provided by fax or email. After obtaining the numerical codes, the user can enter them and complete the license update.

461

Figure G5 License File Update by Internet (Preferred) This option allows the user to update the software license through an Internet connection. This is the preferred method, since it can be done at a convenient time for the user. The Update via Internet Connection option requires that the user enter a License ID and password, both of which were provided to the user when purchasing the product. After entering both items, click the Next button to continue. The FB-MultiPier program will now automatically connect the BSI web server to process the account information. If the account status is verified, the screen will tell you that the license has been updated successfully in green text. If there are problems with the account status or the License ID or password are incorrect, various error messages will be displayed in red text. In the event that the user cannot connect to the BSI web server, the Update by Phone/Fax option should be used. This can be done by clicking the Back button.

462

Figure G6 After successfully updating the software license, click the Next button to view the Update Complete wizard page. In order to apply the changes to the program configuration, the FB-MultiPier program needs to be restarted. Clicking the Finish button will update and automatically close the program. The program will now run in an unlocked state.

License Update Tutorial

AASHTO Table

Edit the loads in the spreadsheet by selecting a text field to edit.

Alter the spreadsheet with the following options:

1. Table Format 2. Table Edit Options 3. Load Case Options

463

Return to the Load Tab page.

AASHTO Table popup link to the AASHTO Table

P-Y Multiplier Reduction for Shaft with Torsion

464

A p-y multiplier reduction factor should be used for drilled shafts subjected to combined lateral and torsional loading. The results for various centrifuge tests with different L/D and Torque/Lateral load ratios are given below. The reduced capacity is plotted on the vertical axis. As an example, suppose there is a mast arm on a single drilled shaft with L/D = 5 and the Torque/Lateral Load ratio is 10. The resulting capacity would be approximately 90% of the original capacity. As a result, a p-y multiplier of 0.9 should be used to reduce the lateral capacity of the shaft.

465

Barge Impact

This section allows the user to define barge impact parameters. The external forcing function will be modified to simulate a barge impact with the pier. This is an experimental option that is currently not available in the graphical interface.

BARGE The next line specifies barge impact parameters.

L=LVLOUT V=VBINI M=MB C=ABY T= BFT N=NABPB

Where LVLOUT

is the level of output flag (greater than 0 indicates full output

VBINI

is the initial velocity of the barge

MB

is the mass of the barge

ABY

is the crush level at which yielding occurs

BFT

is Barge Force Tolerance

NABPB

is the number of points in ABPB (displacement v. load) array

The following lines describe the load-displacement crushing curve for the barge. A maximum of 200 lines can be used.

DIS LOAD (one per line)

Where DIS

is the displacement value (first column of ABPB array)

LOAD

is the load value (second column of ABPB array)

466

This section must end with a blank line.

3D Bridge View

Figure A90: 3D Bridge View Window

All the options available for the 3D View Window are available for the 3D Bridge View.

Zoom Feature Tutorial

467

Calculating Foundation Stiffness Using FBMultiPier

FB-MultiPier can be used to calculate the foundation stiffness of a pile and cap system. The purpose is to calculate the stiffness of the foundation structure including the piles, the pile cap the soil etc. The stiffness is reported at a single point and therefore it is a 6x6 matrix. The point at which the stiffness is reported is the pile head if it is a single pile or the center of the pile cap if it is a pile and cap problem. The point (node) at which the stiffness is reported is internally generated by the program.

The stiffness of the foundation is calculated as follows: 6.

6. 6. 6. 6. 6. 6. 6. The foundation (pile cap, piles, soil) is analyzed based on the applied load. The load can only be applied at the additional node that the program internally generates (see Figure E5).

7.

7. 7. 7. 7. 7. 7. 7. Once the solution is obtained for the applied load, the program calculates the flexibility matrix of the structure at the particular equilibrium state following general principles. To do that the program internally applies unit forces (actually 0.01 load and then scales the results) at the additional point that is internally created by the program. The forces are applied successively in all six possible directions (Fx, Fy, Fz, Mx, My, Mz).

8.

8. 8. 8. 8. 8. 8. 8. The displacements from each solution at the additional node comprise the columns of the flexibility matrix ie the displacements from the solution under the application of the Fx load comprise the first column of the flexibility matrix.

9.

9. 9. 9. 9. 9. 9. 9. Once the flexibility matrix is obtained the program calculates the inverse of that which is the stiffness.

10. 10. 10. 10. 10. reports both of the matrices.

10.

10.

10.

In the output data file the program

The calculated stiffness (or flexibility) matrix is calculated after the equilibrium state of the structure is obtained. This is necessary since the foundation is usually comprised from nonlinear elements (including the soil springs). Therefore the snapshot in time (equilibrium state) that the stiffness is calculated is very important.

If the program was not following the particular sequence ie not obtaining the equilibrium solution first, then the calculation of the stiffness would be incorrect since it would be obtained using information for a state of the structure other than the equilibrium.

468

The stiffness can be thought of as being the tangent stiffness (instead of secant) for the simple reason that it is calculated for a particular instance in time.

The program makes the decision that the loading on the pile cap is applied at the center. The reason for that is because the stiffness is reported at the particular point. Therefore to be consistent with the theory the load could not be applied at any other place. It is therefore imperative for the engineer to make sure that the resultant of the loads from the superstructure (bridge pier) passes through the particular point.

Additional node created by the program in Orange

Figure E5: Stiffness model in thin mode showing additional node in orange

469

Sound_Wall_Eplanation

3D 3D Display Control

3D 3D Results

3D Display Control

470

3D Node Information

3D Results Dynamic Options

3D Results Window

AASH AASHTO Load Factors Table

AASH Automated AASHTO Loads

471

AASH Limit States to Check

AASHTO Load Case Options

AASHTO Load Combination Preview Table

AASHTO Load Combination Results

AASHTO Load Manager

472

AASHTO Load Table

AASHTO Table Edit Options

AASHTO Table Format

Add Substructure

Adjustment for Prestressing

Analysis Convergence Information

473

Analysis Type

Angle of Internal Friction

AP 1020 Pile Pier Behavior

AP 1033 Iteration Control

AP 1123 Print Control

474

AP 1211 Soil Behavior

AP 1258 Design Options

AP 1708 Interaction Diagram Phi Factor

Axial Forces for Beam Elements

Axial Skin Friction for Florida Limestone

475

Axial Soil Pile Interaction

Axial T Z Curve for Side Friction

Axial T Z Q Z Curve for Tip Resistance

Batch Mode

Bearing Connection

476

Bearing Location Loads

Bearing Pad Properties

Bearing Rotation

Bridge Multiple Piers Option

Bridge Span Overview

477

Bridge Spring Toggle

Bridge Tab

Cap Behavior

CAP Edit Cap Thickness

Capacity Information

478

CD Custom Stress Strain

Clay API

ClayEnd

ClaySide

Column Connection to the Pile Cap

Column Information

479

Combination AASHTO

Concentrated Nodal Loads

Conclusions

Concrete

CONFINED CONCRETE MODEL

480

Control Menu

Converting FB Pier Coordinates to a Standard Coordinate System

Deck Modeling

DESCRIPTION OF TOOLBAR ICONS

Discrete Element Model

481

DrilledEnd

DrilledSide

Driven Pile Clay API

Driven Pile Clay API QZ

Driven Pile Sand API

482

Driven Pile Sand API QZ

DrivenEnd

DrivenSide

Dynamic Control Parameters

Dynamic Load Function Application

Dynamic Step by Step Integration

483

Dynamics Tab

Edit Custom Bearings

Edit Load Functions

Edit Span

Edit Supports

484

Element Deformation Relations

Element Dialog

Element End Forces

Element Stiffness

Engine Input Overview

485

Equivalent Stiffness Generation

Expanding Memory

Failure Ratio for Cross Sections

FB PIER LICENSE INSTALLATION HELP

FB Pier1

486

Figure B 2

Figure B 3

File Menu

FINITE ELEMENT

Flat Shell Elements

487

Full Scale Column without Steel Casing

General Control

General Pier Wizard

Generalized Stress and Strain

Geometry and Control Information

488

GRID 2094 Grid Spacing Table

GRID Custom Grid Spacing

Gross Pier Component Properties

Gross Pile Properties

Group Interaction

489

Half Scale Column With Steel Retrofitting Jacket

Header

Help Menu

High Strength Prestressing Steels

HP H Pile Properties

490

HP Section Dimensions

HP Section Orientation

Hyperbolic Curve

ID Interaction Diagram

ID Interaction Diagrams

ID Pier Selection

491

ID Pile Selection

Integration of Stresses

INTERACTION DIAGRAMS

Intermediate GeomaterialQZ

Intermediate GeomaterialTZ

492

Lateral Soil Pile Interaction

LE Database Section Selection

LE Parabolic Taper Cantilever Properties

LE Pier Components

LE Section Data

493

LE Section Properties

License File

Limestone McVay use 2 3 Rotation

Load Function Edit Table

LOAD Load Case Options

LOAD Load Table

494

LOAD Table Edit Options

LOAD Table Format

Longitudinal Reinforcement

LP Database Section Selection

LP Full Cross Section Pile Properties

495

LP Load Case

LP Loads

LP Node Applied

LP Pile Set Info

LP Pile Shaft Segment List

LP Section Properties

496

LP Section Type

LP Segment Dimensions

Mander Models for Confined Concrete

Mass Damper Tab

Mass Dampers in 3D View

497

Matlock s Soft Clay Below Water Table

Max Min Forces Dialog

Maximum Moments in Beam Elements

MEM Extra Member Sections

MEM Extra Members List

498

MEM Nodes Attached

Membrane Element

Mesh Correctness and Convergence

Mild Steel

Mindlin Theory

499

Missing Pile Data

MLE Section Type

Mode Shape and Frequency Information Response Spectrum Analysisi

Modify Load Factors

Multiple Pier Generation

500

Multiple Pier Substructure Information

Multiple Pile Sets

Multiple Soil Sets

NLE Full Pier Component Properties

NLE Section Dimensions

NLP Material Properties

501

NLP Section Dimensions

NLP Section Type

NONLINEAR BEHAVIOR

Nonlinear Solution Strategies

O Neill s Clay

502

O Neill s Sand

OP Bullet Section Properties

OP Cross Section Orientation

OP Group Data

OP Void Data

503

P Y Resistance for Florida Limestone

PAD Bearing Locations

PI Pile Data

Pier Cross Section Table

Pier Element Selection

Pier Rotation Angle

504

Pier Segment Selection

Pier to Superstructure Connectivity

Pile Batter Information

Pile Cap Properties

Pile Data

505

Pile Element Selection

Pile Information

Pile Segment Selection

Pipe Pile Properties

Plate Element

506

Point Dampers

Point Mass

Poisson s Ratio

POST PROCESSING FILE FORMATS

PP 1044 Pile Cap Grid Geometry

507

PP 1087 Pile Cross Section Type

PP Pile Cap Data

PP Pile Length Data

PP Pile Shaft Type

PP Pile to Cap Connection

PR Graphs

508

PR Pile Results

PR Pile Selection

PR Plot Display Control

PR Printable Forces

Print Control

509

Printable Soil Graph

Program Settings

PRP 1049 General Pier Option

PRP 1050 High Mast Light Sign Option

PRP 1051 Retaining Wall Option

510

PRP 1052 Sound Wall Option

PRP 1059 Pile and Cap Option

PRP 1060 Single Pile Option

PRP 1061 Stiffness Option

PRP 1062 Column Analysis Option

PRP 1063 Pile Bent Option

511

PRR Graphs

PRR Pier Results

PRR Pier Selection

PRR Printable Forces Dialog

Pushover

512

PYM Advanced Soil Data

Reese and Welch s Stiff Clay Above Water Table

Reese s Stiff Clay Below Water Table

References

Reinforcement

513

Removed Pier Cap Element

Removed Pile Cap Element

Result Forces Dialog

Results Viewer

RET Retaining Wall Soil Layer Data

RET Soil Layer

514

RET Soil Layer Data

RET Surcharge

RET Wall and Layer Geometry

RET Wall Load Data

Retaining Wall Explanation

515

Rigid Link Properties

RP Circular Section Properties

RP Confined Concrete Option

RP Edit Bar Groups

RP Group Data

RP Miscellaneous

516

RP Shear Reinforcement

Running FBPier eng in Batch Mode

Sand API

Sand of Reese Cox and Koop

SandEnd

517

SandSide

SECTION Detailed Cross Section

Section Properties

Self Weight and Buoyancy Load Factors

Set Path for a License File on a Network Server

518

Shear and Moment Results

Shear Modulus

Soil Dynamics Dialog

Soil Information

SOIL PILE INTERACTION

519

Soil Properties

Soil Resistance Due to Pile Rotation

Soil Table

SOILPLOT Soil Model Plot

Sound Wall Explanation

SP Elevations

520

SP Rectangular Section Properties

SP Soil Layer Data

SP Soil Layer Models

SP Soil Strength Criteria

SP Void Data

521

Span Concentrated Nodal Loads

Span End Condition

Special Element for FB-PIER

Spectrum Analysis

SPR Spring Nodes

522

SPR Spring Stiffness

Spring Properties

SPT Window

SS Default Stress Strain Curves

SSPLOT Section Stress Strain Plot

Steel Jacket

523

STP Cross Section Type

STP Pier Geometry

STP Taper Data

Stress Strain Curves

Stresses of Pile Cap

524

Structural Information

Subgrade Modulus

Superstructure Information

TAB 130 Soil Tab

TAB 132 Pile and Cap Tab

525

TAB 134 Pier Tab

TAB 135 Load Tab

TAB 136 Analysis Tab

TAB 137 Problem Tab

TAB 243 Spring Tab

TAB 282 X Members Tab

526

TAB 285 AASHTO Tab

TAB 290 Retaining Tab

TAB 298 Pushover Tab

Taper Modeling

Torsional Soil Pile Interaction

527

Transfer Beam Properties

Transfer License to a Different Computer

Transverse Reinforcement

Tutorials

Unconfined Concrete

528

Undrained Strength

Update a License on a Network Server

Update a License on a Stand Alone Workstation

User Defined Bearing Connection

User DefinedPY

529

User DefinedQZ

User DefinedTq

User DefinedTZ

View Menu

Water Table

What s New in Version 3

530

WIN 3D View Window

WIN Pile Edit Window

WIN Soil Edit Window

Wind Load Generation

Wind Load Generation Table

531

Wizard Menu

XML Report Generator

Young s Modulus

532

Index 2 2D Bridge View ...................................................................................................................... 47, 133

3 3D 3D Display Control ................................................................................................................. 470 3D 3D Results.............................................................................................................................. 470 3D Bridge View ............................................................................................................................ 467 3D Display Control............................................................................................................... 199, 470 3D Node Information ................................................................................................................... 471 3D Results ................................................................................................................................... 193 3D Results Dynamic Options............................................................................................... 196, 471 3D Results Window ..................................................................................................................... 471 3D View Window.................................................................................................................. 170, 173 3D_Results_Window ................................................................................................................... 193

A AASH AASHTO Load Factors Table ........................................................................................... 471 AASH Automated AASHTO Loads.............................................................................................. 471 AASH Limit States to Check........................................................................................................ 472 AASHTO Load Case Options .............................................................................................. 147, 472 AASHTO Load Combination Preview Table.......................................................................... 43, 472 AASHTO Load Combination Results................................................................................... 454, 472 AASHTO Load Factors Table........................................................................................................ 39 AASHTO Load Manager........................................................................................................ 41, 472 AASHTO Load Table ........................................................................................................... 146, 473 AASHTO Tab................................................................................................................................. 39 AASHTO Table Edit Options ............................................................................................... 146, 473 AASHTO Table Format ....................................................................................................... 146, 473 Add Substructure ................................................................................................................. 163, 473 Adjustment for Prestressing ........................................................................................................ 473 Advanced Soil Data ..................................................................................................................... 112 Analysis Convergence Information...................................................................................... 450, 473 Analysis Tab .................................................................................................................................. 33 Analysis Type ........................................................................................................................ 36, 474 Angle of Internal Friction...................................................................................................... 261, 474 AP 1020 Pile Pier Behavior ......................................................................................................... 474 AP 1033 Iteration Control ............................................................................................................ 474 AP 1123 Print Control .................................................................................................................. 474 AP 1211 Soil Behavior................................................................................................................. 475 AP 1258 Design Options ............................................................................................................. 475 AP 1708 Interaction Diagram Phi Factor ..................................................................................... 475 ASSHTO Table ............................................................................................................................ 463 Automated AASHTO Loads........................................................................................................... 40 Axial Efficiency............................................................................................................................. 255 Axial Forces for Beam Elements ................................................................................................. 475 Axial Skin Friction for Florida Limestone ............................................................................. 284, 475 Axial Soil Pile Interaction ............................................................................................................. 476 Axial Soil-Pile Interaction............................................................................................. 281, 283, 293

533

Axial T Z Curve for Side Friction.................................................................................................. 476 Axial T Z Q Z Curve for Tip Resistance....................................................................................... 476 Axial T-Z Curve for Side Friction ......................................................................................... 283, 288 Drilled and Cast Insitu Piles/Shafts.................................................................. 288, 289, 290, 291 Driven Piles .............................................................................................................................. 283 User Defined ............................................................................................................................ 288 Axial T-Z(Q-Z) Curve for Tip Resistance ..................................................................... 293, 294, 296 Drilled and Cast Insitu Piles/Shafts.......................................................................... 296, 297, 299 Driven Piles .............................................................................................................................. 294 User Defined ............................................................................................................................ 294

B Barge Impact ............................................................................................................................... 466 Batch Mode.................................................................................................................. 249, 250, 476 Bearing Connection ............................................................................................................. 430, 476 Bearing Location Loads ....................................................................................................... 141, 477 Bearing Locations ........................................................................................................................ 120 Bearing Pad Properties ....................................................................................................... 221, 477 Bearing Rotation .................................................................................................................. 121, 477 Bridge (Multiple Piers) Option........................................................................................................ 31 Bridge Multiple Piers Option ........................................................................................................ 477 Bridge Span Dead Load ...................................................................................... 224, 225, 226, 228 Bridge Span Element Numbering ................................................................................................ 235 Bridge Span Overview................................................................................................................. 477 Bridge Spring Toggle ........................................................................................................... 348, 478 Bridge Tab ................................................................................................................... 156, 157, 478 Bullet Section Properties ............................................................................................................. 130 Buoyancy ............................................................................................................................. 140, 348

C Calculating Foundation Stiffness Using FB-MultiPier.................................................................. 468 Cap Behavior ......................................................................................................................... 34, 478 CAP Edit Cap Thickness ............................................................................................................. 478 capacity........................................................................................................................................ 326 Capacity Information.................................................................................................................... 478 CD Custom Stress Strain ............................................................................................................ 479 Circular Section Properties............................................................................................................ 67 Clay (API) .................................................................................................................................... 281 Clay API....................................................................................................................................... 479 ClayEnd ....................................................................................................................................... 479 ClaySide ...................................................................................................................................... 479 Column Analysis Option ................................................................................................................ 30 Column Connection to the Pile Cap .................................................................................... 206, 479 Column Information ..................................................................................................................... 479 Combination (AASHTO) .............................................................................................................. 349 Combination AASHTO................................................................................................................. 480 Concentrated Nodal Loads.......................................................................................................... 480 Conclusions ........................................................................................................................... 91, 480 Concrete ................................................................................................................................ 74, 480 Confined ........................................................................................................................................ 74 CONFINED CONCRETE MODEL............................................................................................... 480 Confined Concrete Model References ........................................................................................ 460 Confined Concrete Option ............................................................................................................. 71 Control Menu ......................................................................................................................... 20, 481 Converting FB Pier Coordinates to a Standard Coordinate System ........................................... 481

534

Cross Section Orientation............................................................................................................ 132 Cross Section Type ..................................................................................................................... 122 Custom Grid Spacing .................................................................................................................. 169 Custom Stress/Strain..................................................................................................................... 97

D Database Section Selection .................................................................................................. 61, 124 Deck Modeling ..................................................................................................................... 217, 481 Default Stress/Strain Curves ......................................................................................................... 96 Demo ........................................................................................................................................... 237 DESCRIPTION OF TOOLBAR ICONS ....................................................................................... 481 Design Options .............................................................................................................................. 37 Detailed Cross Section .................................................................................................................. 65 Discrete Element Model ...................................................................... 311, 312, 313, 314, 317, 481 Element Deformation Relations ............................................................................................... 312 Element End Forces ................................................................................................................ 317 Element Stiffness ..................................................................................................................... 318 Integration of Stresses ............................................................................................................. 314 Display Control ............................................................................................................................ 200 DrilledEnd .................................................................................................................................... 482 DrilledSide ................................................................................................................................... 482 Driven Pile Clay (API) .................................................................................................................. 282 Driven Pile Clay (API)_QZ ........................................................................................................... 295 Driven Pile Clay API .................................................................................................................... 482 Driven Pile Clay API QZ ............................................................................................................. 482 Driven Pile Sand (API)................................................................................................................. 282 Driven Pile Sand (API)_QZ.......................................................................................................... 295 Driven Pile Sand API ................................................................................................................... 482 Driven Pile Sand API QZ ............................................................................................................ 483 DrivenEnd .................................................................................................................................... 483 DrivenSide ................................................................................................................................... 483 Dynamic Control Parameters .............................................................................................. 353, 483 Dynamic Load Function Application .................................................................................... 432, 483 Dynamic Step by Step Integration ....................................................................................... 356, 483 Dynamics Tab........................................................................................................................ 45, 484

E Edit Cap Thickness..................................................................................................................... 169 Edit Bar Groups ............................................................................................................................. 69 Edit Custom Bearings .......................................................................................................... 159, 484 Edit Load Functions ............................................................................................................... 49, 484 Edit Span ............................................................................................................................. 160, 484 Edit Supports ....................................................................................................................... 158, 484 Element Deformation Relations................................................................................................... 485 Element Dialog .................................................................................................................... 173, 485 Element End Forces .................................................................................................................... 485 Element Stiffness......................................................................................................................... 485 Elevations .................................................................................................................................... 102 Engine Input Overview ........................................................................................................ 335, 485 Equivalent Stiffness ..................................................................................................................... 329 Equivalent Stiffness Generation .................................................................................................. 486 Expanding Memory.............................................................................................................. 235, 486 Extra Member Sections ............................................................................................................... 135 Extra Members List...................................................................................................................... 135

535

F Failure Ratio ........................................................................................................................ 326, 327 Failure Ratio for Cross Sections.................................................................................................. 486 FB MultiPier ................................................................................................................................... 17 FB PIER LICENSE INSTALLATION HELP ................................................................................. 486 FB Pier1....................................................................................................................................... 486 FB-Pier......................................................................................................................................... 459 Figure B 2 .................................................................................................................................... 487 Figure B 3 .................................................................................................................................... 487 File Menu ............................................................................................................................... 19, 487 FINITE ELEMENT ....................................................................................... 303, 304, 306, 309, 487 Fixed License............................................................................................................................... 240 Flat Shell Elements.............................................................................................................. 307, 487 Full Cross-Section Pile Properties................................................................................................. 64 Full Pier Component Properties .................................................................................................. 127 Full Scale Column without Steel Casing ..................................................................................... 488

G General Control ........................................................................................................................... 488 General Pier Option ....................................................................................................................... 23 General Pier Wizard ............................................................................................................ 248, 488 Generalized Stress and Strain............................................................................................. 309, 488 Geometry and Control Information .............................................................................................. 488 Global Damping ............................................................................................................................. 47 Global Mass................................................................................................................................... 47 Graphs ......................................................................................................................... 176, 177, 180 GRID 2094 Grid Spacing Table................................................................................................... 489 GRID Custom Grid Spacing ........................................................................................................ 489 Grid Spacing Table ........................................................................................................................ 59 Gross Pier Component Properties............................................................................................... 489 Gross Pile Properties................................................................................................................... 489 Group Data ............................................................................................................................ 70, 131 Group Interaction ................................................................................................................. 252, 489

H Half Scale Column With Steel Retrofitting Jacket ....................................................................... 490 Header ......................................................................................................................................... 490 Help Menu ............................................................................................................................. 21, 490 High Mast Light/Sign Option.......................................................................................................... 25 High Strength Prestressing Steels............................................................................................... 490 HP H Pile Properties.................................................................................................................... 490 HP Section Dimensions ............................................................................................................... 491 HP Section Orientation ................................................................................................................ 491 H-Pile Properties............................................................................................................................ 95 Hyperbolic Curve ......................................................................................................................... 491

I ID Interaction Diagram................................................................................................................. 491 ID Interaction Diagrams............................................................................................................... 491 ID Pier Selection .......................................................................................................................... 491 ID Pile Selection .......................................................................................................................... 492 INPUT FILE .........................................336, 339, 340, 362, 387, 388, 389, 414, 418, 419, 425, 427 Column Information.................................................................................................................. 418 Concentrated Nodal Loads ...................................................................................................... 419

536

General Control........................................................................................................................ 337 Header ..................................................................................................................................... 335 Missing Pile Data ..................................................................................................................... 388 Pile Batter Information ............................................................................................................. 387 Pile Cap Properties .................................................................................................................. 427 Pile Information ........................................................................................................................ 362 Print Control ............................................................................................................................. 336 Soil Information ........................................................................................................................ 389 Spring Properties ..................................................................................................................... 425 Structural Information............................................................................................................... 398 Integration of Stresses................................................................................................................. 492 interaction .................................................................................................................................... 326 Interaction Diagram ............................................................................................................. 188, 189 Interaction Diagram Phi Factor...................................................................................................... 36 Interaction Diagrams ................................................................................................................... 185 INTERACTION DIAGRAMS ................................................................................ 323, 324, 325, 492 Intermediate GeomaterialQZ ....................................................................................................... 492 Intermediate GeomaterialTZ........................................................................................................ 492 Iteration Control ............................................................................................................................. 35

L Lateral Soil Pile Interaction.......................................................................................................... 493 Lateral Soil-Pile Interaction.................................................. 265, 266, 269, 270, 271, 273, 274, 280 LE Database Section Selection ................................................................................................... 493 LE Parabolic Taper Cantilever Properties ................................................................................... 493 LE Pier Components ................................................................................................................... 493 LE Section Data........................................................................................................................... 493 LE Section Properties .................................................................................................................. 494 license.......................................................................................................................................... 239 License ........................................................................................................................ 237, 238, 239 license file .................................................................................................................................... 239 License File.................................................................................................................. 237, 238, 494 License Path ................................................................................................................................ 242 License Transfer .......................................................................................................................... 246 license update.............................................................................................................................. 239 Limestone (McVay use 2 - 3 Rotation ........................................................................................ 277 Limestone McVay use 2 3 Rotation............................................................................................. 494 Limit States to Check..................................................................................................................... 44 Linear Pier Component Properties .............................................................................................. 122 Linear Pile Properties .................................................................................................................... 59 Load Case ................................................................................................................................... 139 Load Case Options ...................................................................................................................... 144 Load Factor.................................................................................................................................. 348 Load Function Edit Table....................................................................................................... 51, 494 LOAD Load Case Options ........................................................................................................... 494 LOAD Load Table ........................................................................................................................ 494 Load Tab...................................................................................................................... 137, 138, 139 Load Table........................................................................................................................... 143, 144 LOAD Table Edit Options ............................................................................................................ 495 LOAD Table Format .................................................................................................................... 495 Loads ........................................................................................................................................... 141 Longitudinal ................................................................................................................................... 84 Longitudinal Reinforcement......................................................................................................... 495 LP Database Section Selection ................................................................................................... 495 LP Full Cross Section Pile Properties ......................................................................................... 495 LP Load Case .............................................................................................................................. 496

537

LP Loads...................................................................................................................................... 496 LP Node Applied.......................................................................................................................... 496 LP Pile Set Info ............................................................................................................................ 496 LP Pile Shaft Segment List.......................................................................................................... 496 LP Section Properties .................................................................................................................. 496 LP Section Type .......................................................................................................................... 497 LP Segment Dimensions ............................................................................................................. 497

M Mander..................................................................................................................................... 74, 76 Mander Models for Confined Concrete ....................................................................................... 497 Mass Damper Tab ....................................................................................................................... 497 Mass Dampers in 3D View .......................................................................................................... 497 Mass/Damper Tab ....................................................................................................................... 149 Mass/Dampers in 3D View .......................................................................................................... 149 Material Properties......................................................................................................................... 96 Matlock s Soft Clay Below Water Table ...................................................................................... 498 Matlock's Soft Clay Below Water Table....................................................................................... 271 Max Min Forces Dialog ........................................................................................................ 202, 498 Maximum Moments in Beam Elements ....................................................................................... 498 MEM Extra Member Sections...................................................................................................... 498 MEM Extra Members List ............................................................................................................ 498 MEM Nodes Attached.................................................................................................................. 499 Membrane Element ............................................................................................................. 304, 499 Mesh Correctness and Convergence .................................................................................. 310, 499 Mild Steel ..................................................................................................................................... 499 Mindlin Theory ..................................................................................................................... 307, 499 Miscellaneous ................................................................................................................................ 73 Missing Pile Data ......................................................................................................................... 500 MLE Section Type ....................................................................................................................... 500 Mode Shape and Frequency Information (Response Spectrum Analysisi) ................................ 452 Mode Shape and Frequency Information Response Spectrum Analysisi ................................... 500 Model ............................................................................................................................................. 74 Model Analysis Damping ............................................................................................................... 49 Modify Load Factors ............................................................................................................ 351, 500 Multiple Pier Generation ...................................................................................................... 433, 500 Multiple Pier Substructure Information ................................................................................ 340, 501 Multiple Pile Sets ................................................................................................................. 386, 501 Multiple Soil Sets ................................................................................................................. 397, 501

N Network License .......................................................................................................................... 241 Network Path ............................................................................................................................... 242 Network Server ............................................................................................................................ 241 Network Server Path ................................................................................................................... 242 New Project/Problem Tab.............................................................................................................. 21 NLE Full Pier Component Properties .......................................................................................... 501 NLE Section Dimensions ............................................................................................................. 501 NLP Material Properties .............................................................................................................. 501 NLP Section Dimensions ............................................................................................................. 502 NLP Section Type........................................................................................................................ 502 Node Applied ............................................................................................................................... 140 Node Information ......................................................................................................................... 202 Node Numbering.......................................................................................................................... 213 Nodes Attached ........................................................................................................................... 136

538

NONLINEAR BEHAVIOR ........................................................................................................... 311 NONLINEAR BEHAVIOR ............................................................................................................ 502 Nonlinear Solution Strategies .............................................................................................. 327, 502

O O Neill s Clay ............................................................................................................................... 502 O Neill s Sand.............................................................................................................................. 503 O'Neill's Clay................................................................................................................................ 270 O'Neill's Sand .............................................................................................................................. 266 OP Bullet Section Properties ....................................................................................................... 503 OP Cross Section Orientation ..................................................................................................... 503 OP Group Data ............................................................................................................................ 503 OP Void Data............................................................................................................................... 503

P P Y Resistance for Florida Limestone ......................................................................................... 504 PAD Bearing Locations ............................................................................................................... 504 Parabolic Taper Cantilever Properties ........................................................................................ 126 partial Fixity.................................................................................................................................. 362 PI Pile Data.................................................................................................................................. 504 Pier Components ......................................................................................................................... 123 Pier Cross Section Table..................................................................................... 182, 183, 184, 504 Pier Element Selection ........................................................................................................ 191, 504 Pier Geometry.............................................................................................................................. 117 Pier Results ................................................................................................................................. 179 Pier Rotation Angle.............................................................................................................. 119, 504 Pier Segment Selection ....................................................................................................... 190, 505 Pier Selection....................................................................................................................... 179, 189 Pier Tab ....................................................................................................................................... 116 Pier to Superstructure Connectivity ..................................................................................... 434, 505 Pile and Cap Option ...................................................................................................................... 23 Pile and Cap Tab ........................................................................................................................... 54 Pile Batter Information ................................................................................................................. 505 Pile Bent Option............................................................................................................................. 29 Pile Cap Data................................................................................................................................. 57 Pile Cap Grid Geometry ................................................................................................................ 57 Pile Cap Properties...................................................................................................................... 505 Pile Cross Section Type ................................................................................................................ 55 Pile Data .............................................................................................................................. 168, 505 Pile Edit Window.......................................................................................................... 166, 167, 168 Pile Element Selection......................................................................................................... 188, 506 Pile Information............................................................................................................................ 506 Pile Length Data ............................................................................................................................ 54 Pile Results.................................................................................................................................. 174 Pile Segment Selection ....................................................................................................... 187, 506 Pile Selection ....................................................................................................................... 175, 185 Pile Set Info ................................................................................................................................... 61 Pile to Cap Connection .................................................................................................................. 56 Pile/Pier Behavior .......................................................................................................................... 34 Pile/Shaft Segment_List ................................................................................................................ 60 Pile/Shaft Type .............................................................................................................................. 56 Pipe Pile Properties ............................................................................................................... 96, 506 Plate Element .............................................................................................. 305, 306, 307, 309, 506 Plot Display Control ..................................................................................................................... 175 Point Dampers ..................................................................................................................... 431, 507

539

Point Mass ........................................................................................................................... 430, 507 Poisson s Ratio............................................................................................................................ 507 Poisson's Ratio ............................................................................................................................ 259 POST PROCESSING FILE FORMATS .............................. 433, 437, 442, 445, 446, 447, 449, 507 Axial Forces for Beam Elements.............................................................................................. 445 Capacity Information ........................................................................................................ 447, 448 Geometry and Control Information........................................................................................... 437 Maximum Moments in Beam Elements ................................................................................... 446 Pile Data................................................................................................................................... 442 Shear and Moment Results ..................................................................................................... 449 Stresses of Pile Cap ................................................................................................................ 447 PP 1044 Pile Cap Grid Geometry................................................................................................ 507 PP 1087 Pile Cross Section Type ............................................................................................... 508 PP Pile Cap Data......................................................................................................................... 508 PP Pile Length Data .................................................................................................................... 508 PP Pile Shaft Type....................................................................................................................... 508 PP Pile to Cap Connection .......................................................................................................... 508 PR Graphs ................................................................................................................................... 508 PR Pile Results............................................................................................................................ 509 PR Pile Selection ......................................................................................................................... 509 PR Plot Display Control ............................................................................................................... 509 PR Printable Forces .................................................................................................................... 509 Preliminary Soil Values................................................................................................................ 216 Print Control........................................................................................................................... 37, 509 Printable Forces Dialog ....................................................................................................... 177, 181 Printable Soil Graph .................................................................................................... 110, 111, 510 Problem Tab .................................................................................................................................. 22 Program Settings ................................................................................................................. 236, 510 PRP 1049 General Pier Option ................................................................................................... 510 PRP 1050 High Mast Light Sign Option ...................................................................................... 510 PRP 1051 Retaining Wall Option ................................................................................................ 510 PRP 1052 Sound Wall Option ..................................................................................................... 511 PRP 1059 Pile and Cap Option ................................................................................................... 511 PRP 1060 Single Pile Option....................................................................................................... 511 PRP 1061 Stiffness Option.......................................................................................................... 511 PRP 1062 Column Analysis Option............................................................................................. 511 PRP 1063 Pile Bent Option ......................................................................................................... 511 PRR Graphs ................................................................................................................................ 512 PRR Pier Results......................................................................................................................... 512 PRR Pier Selection ...................................................................................................................... 512 PRR Printable Forces Dialog....................................................................................................... 512 Pushover.............................................................................................................................. 349, 512 Pushover Tab ................................................................................................................................ 52 P-Y Resistance for Florida Limestone ......................................................................................... 275 PYM Advanced Soil Data ............................................................................................................ 513

R Rayleigh Damping Fractors ........................................................................................................... 48 Rectangular Section Properties..................................................................................................... 92 Reese and Welch s Stiff Clay Above Water Table ...................................................................... 513 Reese and Welch's Stiff Clay Above Water Table ...................................................................... 274 Reese s Stiff Clay Below Water Table......................................................................................... 513 Reese's Stiff Clay Below Water Table......................................................................................... 273 References .......................................................................................................................... 455, 513 Reinforcement ....................................................................................................................... 83, 513 Remove License .......................................................................................................................... 244

540

removed....................................................................................................................................... 428 Removed Cap.............................................................................................................................. 428 Removed Pier Cap Element ................................................................................................ 428, 514 Removed Pile Cap Element ................................................................................................ 427, 514 Result Forces Dialog ........................................................................................................... 198, 514 Results Viewer............................................................................................................. 205, 206, 514 RET Retaining Wall Soil Layer Data............................................................................................ 514 RET Soil Layer............................................................................................................................. 514 RET Soil Layer Data .................................................................................................................... 515 RET Surcharge ............................................................................................................................ 515 RET Wall and Layer Geometry.................................................................................................... 515 RET Wall Load Data .................................................................................................................... 515 Retaining Tab .............................................................................................................................. 152 Retaining Wall Explanation.................................................................................................. 154, 515 Retaining Wall Option .................................................................................................................... 26 Retaining Wall Soil Layer Data.................................................................................................... 155 Rigid Link Properties ........................................................................................................... 220, 516 RP Circular Section Properties.................................................................................................... 516 RP Confined Concrete Option ..................................................................................................... 516 RP Edit Bar Groups ..................................................................................................................... 516 RP Group Data ............................................................................................................................ 516 RP Miscellaneous ........................................................................................................................ 516 RP Shear Reinforcement............................................................................................................. 517 Running FBPier eng in Batch Mode ............................................................................................ 517

S Sand (API) ................................................................................................................................... 280 Sand API...................................................................................................................................... 517 Sand of Reese Cox and Koop .............................................................................................................................. 269 Sand of Reese Cox and Koop ..................................................................................................... 517 SandEnd ...................................................................................................................................... 517 SandSide ..................................................................................................................................... 518 Section Data ................................................................................................................................ 125 SECTION Detailed Cross Section ............................................................................................... 518 Section Dimensions ......................................................................................................... 66, 95, 129 Section Orientation ........................................................................................................................ 96 Section Properties ................................................................................................... 35, 63, 126, 518 Section Stress-Strain Plot.............................................................................................................. 98 Section Type.................................................................................................................... 62, 67, 130 Segment Dimensions .................................................................................................................... 63 Segment Selection ...................................................................................................................... 460 Self Weight .................................................................................................................................. 348 Self Weight and Buoyancy Load Factors ............................................................................ 348, 518 Set Path for a License File on a Network Server ........................................................................ 518 Shaft with Torsion ........................................................................................................................ 464 Shear and Moment Results ......................................................................................................... 519 Shear Modulus............................................................................................................. 259, 260, 519 Shear Reinforcement..................................................................................................................... 73 Single Pile Option .......................................................................................................................... 24 Soil Behavior.................................................................................................................................. 35 Soil Dynamics Dialog........................................................................................................... 108, 519 Soil Edit Window.................................................................................................................. 165, 166 Soil Information.................................................................................................................... 389, 519 Soil Layer..................................................................................................................................... 152

541

Soil Layer Data .................................................................................................................... 101, 154 Soil Layer Models ........................................................................................................................ 104 Soil Model Plot............................................................................................................................. 108 SOIL PILE INTERACTION .......................................................................................................... 519 Soil Properties ............................................................................. 258, 259, 260, 261, 262, 263, 520 Soil Resistance Due to Pile Rotation................................................................................... 255, 520 Soil Strength Crirteria .................................................................................................................. 113 Soil Tab........................................................................................................................................ 100 Soil Table..................................................................................................................... 102, 103, 520 SOIL-PILE INTERACTION .................................................................................. 252, 265, 281, 301 SOILPLOT Soil Model Plot .......................................................................................................... 520 Sound Wall Explanation ...................................................................................................... 133, 520 Sound Wall Option......................................................................................................................... 27 SP Elevations .............................................................................................................................. 520 SP Rectangular Section Properties ............................................................................................. 521 SP Soil Layer Data ...................................................................................................................... 521 SP Soil Layer Models .................................................................................................................. 521 SP Soil Strength Criteria.............................................................................................................. 521 SP Void Data ............................................................................................................................... 521 Span Concentrated Nodal Loads ........................................................................................ 360, 522 Span End Condition............................................................................................................. 164, 522 Span Length ................................................................................................................................ 216 Span Modeling............................................................................................................................. 211 Special Element for FB-MultiPier................................................................................................. 309 Special Element for FB-PIER .............................................................................................. 309, 522 Spectrum Analysis ....................................................................................................... 357, 358, 522 Spiring_Stiffness.......................................................................................................................... 148 SPR Spring Nodes....................................................................................................................... 522 SPR Spring Stiffness ................................................................................................................... 523 Spring Nodes ............................................................................................................................... 148 Spring Properties ......................................................................................................................... 523 Spring Tab ................................................................................................................................... 148 SPT Window ........................................................................................................................ 114, 523 SS Default Stress Strain Curves ................................................................................................. 523 SSPLOT Section Stress Strain Plot............................................................................................. 523 Stand Alone License.................................................................................................................... 240 Steel Jacket ..................................................................................................................... 87, 88, 523 Stiffness ............................................................................................... 329, 330, 331, 332, 333, 334 Stiffness Conversion.................................................................................................................... 331 Stiffness Coordinate .................................................................................................................... 331 Stiffness Option ............................................................................................................................. 28 STP Cross Section Type ............................................................................................................. 524 STP Pier Geometry...................................................................................................................... 524 STP Taper Data........................................................................................................................... 524 Stress Strain Curves.................................................................................................................... 524 Stresses of Pile Cap .................................................................................................................... 524 Stress-Strain Curves ........................................................................................... 319, 320, 321, 322 Adjustment for Prestressing..................................................................................................... 322 Concrete........................................................................................................................... 319, 320 High Strength Prestressing Steels ........................................................................................... 321 Mild Steel ......................................................................................................................... 320, 321 Structural Information .................................................................................................................. 525 Subgrade Modulus .............................................................................................................. 263, 525 Superstructure Information .................................................................................................. 342, 525 Surcharge .................................................................................................................................... 156

542

T TAB 130 Soil Tab......................................................................................................................... 525 TAB 132 Pile and Cap Tab.......................................................................................................... 525 TAB 134 Pier Tab ........................................................................................................................ 526 TAB 135 Load Tab ...................................................................................................................... 526 TAB 136 Analysis Tab ................................................................................................................. 526 TAB 137 Problem Tab ................................................................................................................. 526 TAB 243 Spring Tab .................................................................................................................... 526 TAB 282 X Members Tab ............................................................................................................ 526 TAB 285 AASHTO Tab................................................................................................................ 527 TAB 290 Retaining Tab ............................................................................................................... 527 TAB 298 Pushover Tab ............................................................................................................... 527 Table Edit Options ....................................................................................................................... 144 Table Format ............................................................................................................................... 144 Taper Data................................................................................................................................... 116 Taper Modeling.................................................................................................................... 207, 527 Time Functions .............................................................................................................................. 49 Time Stepping Patameters ............................................................................................................ 48 TOOLBAR ICONS ....................................................................................................................... 246 Torsional Soil Pile Interaction ...................................................................................................... 527 Torsional Soil-Pile Interaction.............................................................................................. 301, 303 Hyperbolic Curve.............................................................................................................. 301, 302 User Defined ............................................................................................................................ 303 Transfer Beam ..................................................................................................... 229, 230, 231, 232 Transfer Beam Properties ................................................................................................... 219, 528 Transfer License .......................................................................................................................... 244 Transfer License to a Different Computer ................................................................................... 528 Transverse..................................................................................................................................... 87 Transverse Reinforcement .......................................................................................................... 528 Tutorials ............................................................................................................................... 458, 528

U Unconfined............................................................................................................................... 82, 83 Unconfined Concrete ................................................................................................................... 528 Undrained Strength ............................................................................................................. 262, 529 Unlock .......................................................................................................................................... 236 Update a License on a Network Server....................................................................................... 529 Update a License on a Stand Alone Workstation........................................................................ 529 User Defined Bearing Connection ....................................................................................... 346, 529 User DefinedPY ........................................................................................................................... 529 User DefinedQZ........................................................................................................................... 530 User DefinedTq............................................................................................................................ 530 User DefinedTZ ........................................................................................................................... 530

V View Menu ....................................................................................................................... 19, 20, 530 Void Data ............................................................................................................................... 94, 132

W Wall and Layer Geometry............................................................................................................ 152 Wall Load Data ............................................................................................................................ 155 Water Table ......................................................................................................................... 101, 530 What s New in Version 3 ....................................................................................................... 17, 530 WIN 3D View Window ................................................................................................................. 531

543

WIN Pile Edit Window.................................................................................................................. 531 WIN Soil Edit Window.................................................................................................................. 531 Wind Generator ........................................................................................................................... 232 Wind Load Generation......................................................................................................... 422, 531 Wind Load Generation Table................................................................................................. 42, 531 Wizard Menu.................................................................................................................... 20, 21, 532

X X-Members Tab ........................................................................................................................... 134 XML Report Generator ........................................................................................................ 204, 532

Y Young s Modulus ......................................................................................................................... 532 Young's Modulus ......................................................................................................................... 259

544

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF