11-CoordSys
Short Description
Geographic coordinates system...
Description
Sperry Drilling Services
2007.1
Directional Drilling
FUNDAMENTAL COORDINATE SYSTEMS
Coordinate Systems Projections
Sperry Drilling Services 2007
2-D Rectangular Coordinate System
Basic Coordinate Systems
+Y • Rectangular (Cartesian) : P(x;y;z) P (x,y)
y
• Polar ------------------------- : P(R;α) • Cylindrical ----------------- : P(R;α;D)
1
0
1
+X
x
Direction from +X to +Y is counter-clockwise
3-D Rectangular Coordinate System
Polar Coordinate System
+Y 0
x
P (R, α)
y
+X
R
z
α
P (x,y,z)
reference direction
+Z
Direction from +X to +Y is counter-clockwise
Directional Drilling – Coordinate Systems
R polar radius polar angle
α
Page 1
Sperry Drilling Services
2007.1
Cylindrical Coordinate System
Measurement of Angles 0°
reference direction
D
P α R
P
P (R;α;D)
CCW
α
P
α
E
X
in surveying ...
calculators do ...
Location Coordinates - Conversion
Location Coordinates - Conversion
Y
N P
y
Math convention
R
x
X
P
n
Surveying convention
α
x = Rcosα y = Rsinα
α 0
CW
N
Y
0
R e
R = (x2 +y2 )1/2 α = atan (y/x)
E
e = Rsinα n = Rcosα R = (e2 +n2 )1/2 α = atan (e/n)
Using a Calculator’s Built-in Rectangular-polar Conversion
Example : Target displacement (R) 3200 ft Direction to target center (α) 53.5° GN
1. Calculate ΔN and ΔE 2. Enter as y and x coordinates 3. Calculate R and α polar angle
x = 3200 x sin(53.5) = 3200 x 0.8039 = 2,572.3 ft y = 3200 x cos(53.5) = 3200 x 0.5948 = 1,903.4 ft
Ngrid
The distance is R (ft or m) The grid Azimuth is 90 - α (deg)
Y
Remember :
α
TC X
Directional Drilling – Coordinate Systems
E
• x - East and y - North ? Check ! • α is measured from X to Y (ccw) • AZ is measured from North to East (cw)
Page 2
Sperry Drilling Services
2007.1
Direction to a Location or Target
Distance Between 2 Locations or to a Target
GN
S =
Y
Δx
2
+ Δy
2
P2
Δy = 55.95
Example:
P1
P1 → P 2 = a tan
Δx Δy
= a tan
432 . 59 55 .95
Surface coordinates TD coordinates
X
Δx = 432.59
= 82 .6
Horizontal References
à
Earth models (spheroids)
Projections
e6.00 e161.97
Δy = 853.97 – 3.00 = 850.97 ft Δx = 161.97 – 6.00 = 155.97 ft
deg rees
S =
Direction P1 Æ P2 = 82.6° (referenced to grid North)
Vertical references
n3.00 n853.97
850.97
2
+ 155.97
2
= 865.15
feet
Turn ri ght
Turn`left Build The Bull’s D ro
VERTICAL REFERENCES
Eye
p
The Solid Earth and the Oceans
Vertical Reference Surfaces Houston
sea level (geoid)
topographic surface
geoid surface
SOLID EARTH ellipsoid surface
topographic surface Mt. Everest
The Geoid is a level mathematical surface (equipotential surface of the gravity field), best fit to MSL Peter H. Dana 9/1/94
Directional Drilling – Coordinate Systems
Page 3
Sperry Drilling Services
2007.1
Vertical Direction
Vertical (depth) References
(
Deviation of the “vertical”
MSL = Mean Sea Level – a global depth reference MSL Geoid = equipotential surface (equal acceleration of gravity)
Geoid = Mean Sea Level
Ellipsoid
Example : Difference btw MSL Geoid and WGS84 ellipsoid : +/- 40m avg. extremes : + 60m -100m For vertical coordinates :
For horizontal coordinates :
Geoid height Geoid
Geoid
Ellipsoid
Which vertical do we use ?
Examples of Depth References LAT = Lowest Annual Tide AHD = Australian Height Datum AGD84 = Australian Geodetic Datum, 1984 GDA94 = Australian Geodetic Datum, 1994 NAP = Nieuw Amsterdamse Peil • Acronyms : MSL BRT AHRT SS
AMSL AHD MD GL
TVD RF RKB DFE AHORT ODF
Depth References on Land Locations Options : • Ground level • Wellhead • Rotary table • Kelly bushing
Note : MSL or SS depth are vertical depth
Ground Level and Elevation
Directional Drilling – Coordinate Systems
Rotary Table as Depth Reference
Page 4
Sperry Drilling Services
2007.1
Elevations Based on the Geoid
Kelly Bushing as Depth Reference
RKB Elevation
MSL
Ground Elevation
Subsea Depth
Wellhead Elevation RT Elevation
… a land rig
Jack-up Rig – What is the Rotary Table Elevation ?
GlobalSantaFe
Semi-submersible Rig
Semi-submersible Rig
How we measure the depth here ?
GlobalSantaFe
Directional Drilling – Coordinate Systems
Page 5
Sperry Drilling Services
2007.1
Other Vertical Reference Points
Drill Ship
Well Reference Point near or at GL
Drill Datum usually rotary table (RT) or kelly bushing (KB)
Mean Sea Level MSL
subsea depth, target depths are typically given as TVDss = vertical depth below MSL
Well Reference Point at or near mudline
GlobalSantaFe
Ways of Expressing Direction …
Quadrant Bearings (e.g. N15E) (in quadrature system) Azimuth
(0 - 360°)
HORIZONTAL REFERENCES ¾ Angle units : degrees or radians (360°=2¶ radian, or 6.28… radian, where ¶ = 3.1415965) R
¾ Definition of radian :
The Quadrature System
R
1 radian
Quadrant Bearings
Cardinal bearings : N-E-S-W Intercardinal bearings : NE-SE-SW-NW N
N NW
NE
NW W
W
E SW
NxxE
NxxW
NE
SE
E
SxxE
SxxW SE
SW
S
S Quadrants : NE-SE-SW-NW
Directional Drilling – Coordinate Systems
The advantage is …
Page 6
Sperry Drilling Services
2007.1
Azimuth Examples :
N
=
0° or 360° AZ
N88E
=
88°
E
=
90°
S23E
=
157°
S
=
180°
S55W =
235°
W
=
270°
N15W =
345°
N
360 0
E
W
Azimuth is 0 - 360°
S
North is 0° or 360°
Azimuth Change Horizontal Direction References N 350°
10°
> True North - direction to the geodetic N pole > Magnetic North - direction to the magnetic N pole > Grid North - aligned with the central meridian(s) on maps
ΔAZ = (360-350) + (10-0) = 20° or ΔAZ = 350-10 = 340°
True & Magnetic North
True & Magnetic North TN
TN
MN
meridians
TN MN MN
Equator MN
Equator agonic line TN
TN
MN
Magnetic Declination
Directional Drilling – Coordinate Systems
polar axis
Magnetic Declination = 0
Page 7
Sperry Drilling Services
2007.1
Azimuth Correction
Magnetic Declination Convention
True North
True North
Magnetic North
Magnetic North
♠ Magnetic Declination (MD) : difference btw TN and MN MD = ƒ (location, time)
West Declination (-)
East Declination (+)
Azimuth correction : AZTRUE=AZMAG + (MD) East Declination : MN is East of TN West Declination: MN is West of TN
Application of Magnetic Declination West Declination
Application of Magnetic Declination East Declination
TN
TN MN
MT MD
T M
measured direction
φ
measured direction
T φ
M
P
P
AZTRUE=AZMAG+ MD
AZTRUE=AZMAG+ MD
Ellipsoids and the Geoid MSL (geoid) globally fitting ellipsoid eg. WGS 84
EARTH MODELS
locally fitting ellipsoid eg. Clarke 1866 area of best fit of ellipsoid to geoid
Directional Drilling – Coordinate Systems
Page 8
Sperry Drilling Services
2007.1
Earth Models - Spheroids (ellipsoids)
• Spheroids : Everest (1830) Bessel (1841) Airy (1830) Clarke (1866) Clarke (1880) Hayford (1909-1910) International (1924) Krassovsky (1940) GRS80 (1980) Geodetic Reference System WGS84 (World Geodetic System)
Ellipsoid Dimensions (approx.)
Ellipsoid name
Semi-major (metres)
Semi-minor (metres)
Inv. Flattening
Airy, 1848 (UK) Australian Nat. Clarke, 1866 (US) International 1924 WGS 72 WGS 84
6 377 563 6 378 160 6 378 206 6 378 388 6 378 135 6 378 137
6 356 257 6 356 745 6 356 584 6 356 912 6 356 750 6 356 752
299.325 298.25 294.979 297 298.26 298.257
ITRF (Int. Terrestial Reference Frame)
Ellipsoid – WGS84
Best Fitting Ellipsoids USA, Canada, Philippines
Clarke, 1866
Eu,N.Africa, Middle East
International, 1924
UK
Airy, 1848 International, 1924
Chile, Borneo, Indonesia
Bessel, 1841
Africa, France
Clarke, 1880
India, Afghanistan, Pakistan Thailand
Everest, 1830
Peninsular Malaysia
mod. Everest, 1830
Datums
• Sphere flattened by 1 part in 300 • Coincides with solid earth to +/- 10 km • Coincides with MSL (geoid) to +/- 100m
Datum Describes a Location, Height
Definition of datum : • Defines the shape of the reference ellipsoid • Defines position of the ellipsoid relative to the Earth • Defines how a coordinate system is seated on the reference ellipsoid
• At the datum the ellipsoid touches the surface of the earth, the location coordinates are fixed (“reference point”)
• Ideal datum : geocentric, with correct polar and equatorial radii (e.g. NAD83) • Important datums :
ED50 for the GCS (European Datum, 1950) NAD27 (North American Datum, 1927) NAD83 (North American Datum, 1983) WGS84 (World Geodetic System, 1984) Pulkovo (1946) Tokyo (TD) South American (1969) Australian Geodetic (1966) Indian
www.colorado.edu/geography/gcraft/notes/datum/datum.html
Directional Drilling – Coordinate Systems
Page 9
Sperry Drilling Services
2007.1
Comparison of Coordinates at Different Datums
NAD27 and NAD83
DATUM
OPTION
ELEVATION
LONGITUDE
LATITUDE
• NAD27 (1927) fixed location : origin is at Meade’s Ranch, Kansas USGS stated that the Clarke 1866 ellipsoid is a good approx.
NAD27
CENTRAL
51 ft
95°20’24.2” W
29°56’10.2” N
NAD27
CONUS
66 ft
95°20’24.2” W
29°56’10.2” N
• NAD83 (1983) geocentric, centered on Earth’s center of mass Based on the WGS84 ellipsoid. Natural Resources of Canada adopted in 1990 as its new geodetic reference system
NAD83
n/a
74 ft
95°20’24.6” W
29°56’11.0” N
WGS84
n/a
95 ft
95°20’24.1” W
29°56’10.7” N
GDA
n/a
74 ft
95°20’24.3” W
29°56’10.8” N
GEODETIC
1949
75 ft
95°20’27.5” W
29°56’07.7” N
• WGS84 (1984) geocentric, uses GRS80 ellipsoid, which is almost identical to WGS84 ellipsoid • Conversion between NAD27 and 83 : NADCON software accuracy : +/- 0.5m Note :
GPS uses the Earth’s centre of mass as origin – WGS84 ellipsoid, thus the NAD83 is compatible with
Accuracy : 22 ft Location : Houston, Zone 15
Central Meridian : 93°W
PROJECTIONS Distortions by Projection
1. Shape 2. Bearing 3. Scale 4. Area
Zones are defined in order to minimize distortion and preserve accuracy within ea. projection
Projection Types • Cylindrical
cylinder (Mercator, UTM)
• Conical
cone (Lambert Conformal Conic) ( Albers Equal-Area Conic)
• Azimuthal
plane (Lambert Azimuthal Equal-area)
• Miscellanous
(Unprojected Lat and Long)
Projections Used in the US and Territories • State Plane Coordinate System : – SPC27 based on NAD27 coordinates in feet – SPC83 NAD83 meters !
• • • •
Lambert Conformal Conic (Cal – Tx – La) Transverse Mercator Oblique Mercator Approximate Azimuthal Equidistant
• Alaska : Lambert or Oblique Mercator
Directional Drilling – Coordinate Systems
Page 10
Sperry Drilling Services
2007.1
Geographic Coordinate System - GCS Geographic Coordinate System - GCS ato r
North Pole
Eq u
N 90°
Longitudes (great circles)
P
Latitude (parallels)
Equator
Geodetic Latitude (angle)
0°
Prime Meridian
Latitudes : 0 - 90° N and 0 - 90° S Horizontal Earth Rate : 15.000 deg/hr
Longitudes : 0-180° E or W Latitudes -- : 0-90° N or S
Geographic Coordinate System - GCS
Longitudes : 0-360° or 0-180°E and 0-180°W
S
geometric center of spin axis
Examples Geocentric Latitudes
N 90°
50°N London
P Equator
N
Geocentric Latitude (angle) 0° Equator
Latitudes : 0 - 90° N and 0 - 90° S Longitudes : 0-360° or 0-180°E and 0-180°W
S
6°S Jakarta
35°S Buenos Aires
geometric center of spin axis
Why a Location has Several Latitudes
Examples Longitudes - angle E/W from Greenwich (London) 0° London
45°E Baghdad
Location
A. ellipsoid B. ellipsoid perpendicular to A. ellipsoid
45°E 90°W 107°E
N
107°E Jakarta
Directional Drilling – Coordinate Systems
90°W New Orleans 95°W Houston
φΑ φΒ
Equator perpendicular to B. ellipsoid
Page 11
Sperry Drilling Services
2007.1
Unprojected Lat / Long Map
Geographic Coordinates - Example
Lat 53° 01’ 30.848” N -
Long 3° 33’ 05.185” E
Conversion to decimal degrees :
Latitudes
Lat /Long = HHH+ MM + SS 60 3600 Longitudes
Example :
Lat = 53.025°
Long = 3.551 ° • Simple rectangular coordinate system • Scale, distance, area and shape are all distorted • Distortion is increasing towards to poles
Note : distance on 1° Latitude change along a meridian is 60 nautical miles distance on 1° Longitude change is 60 nautical miles on the Equator 1’ is 1 nm (1853 m)
Gerard Kremer
Projections
Gerardus Mercator de Rupelmonde
1512 - 1594
• Transverse Mercator (TM) - Gauss-Kruger • Universal Transverse Mercator (UTM) • Lambert (conical)
www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.html
Mercator-projection
Mercator Projection
North N
B Equator
East
central meridian
A S
• •
Directional Drilling – Coordinate Systems
Easy navigation by holding constant direction from A to B Long, Lat and rhomb lines are straight lines on the map
Page 12
Sperry Drilling Services
2007.1
Zones of the UTM Projection
Universal Transverse Mercator (UTM) Projection US Army, 1947
N
Equator
S
Central Meridian
Cylindrical projection to a horizontal cylinder
www.fmnh.helsinki.fi/english/botany/afe/map/utm.htm
UTM Grid Zones
Eastings are distances from the false Easting line :
Central Meridian
84°N
N Origin of false Easting 500,000m
Easting at Central Meridian = 500 000 m Approximate range : 200 000 - 800 000 m
Northings are distances from the Equator : 8°
Northing = 0m Origins of false Northing
Northing at Equator = 0 for the Northern Hemisphere 107 Southern 3°
Equator
3°
E
8° Northing =107m
n=0m S
Equator
n = 10,000,000 m
80°S
appr. 600,000m
UTM Zone Limits
UTM Grid Blocks an Zone Limits
Lat = 84°N Long = CM - 3° 465,003 m E 9,329,292 m N
CM Last block 12° high !
North Zones Lat = 0° Long = CM - 3° 166,008 m E 10,000,000 m N Lat = 0° Long = CM 500,000 m E 10,000,000 m N
Equator
Lat = 0° Long = CM 500,000 m E 0mN
12°
X
8° 8°
D C
84°N
I and O are excluded
Lat = 0° Long = CM + 3° 833,992 m E 0mN
South Zones
Directional Drilling – Coordinate Systems
Lat = 80°S Long = CM + 3° 558,135 m E 1,116,652 m N
Block heights : 8°
80°S
Page 13
Sperry Drilling Services
2007.1
UTM Zones - Lower 48 States
UTM Standard Grid Zones Numbering
West Longitudes
126° 174°W
120°
114°
108°
102° 96°
90°
84°
78°
72°
66°
International Date Line
180°
19
zone 60
zone 1
10 North Pole 90°W
11
90°E
18 12
13
14
16
15
17
zone 31 zone 30
0° 6°E
Central Meridian
Prime Meridian (Greenwich)
Grid Scale Factor
Grid Scale Factor CM distance on map distance on surface
ace Surf th’s Ear
map surface grid scale factor > 1
map surface
th’s Ear e fac Su r
grid scale factor < 1
Scale factor =
distance on map (grid) true dist. on Ea. surface
Scale Factors in UTM Zones
grid scale factor = 1
Scale factor =
grid scale factor > 1
distance on map (grid) true dist. on Ea. surface
UTM Coordinates - Example East from the CM
F0 = 0.9996 Scale factor =
grid distance true distance
F = 1.0004
UTM coordinates : e 536987.41 - n5875344.05 GCS coordinates : Lat 53° 33’ 05.123” N
Long 5° 12’ 32.453”E Zone 31, central meridian 3°E (location is East from the CM)
block U
Central meridian
Note : Note : distances are true on central meridian only
Directional Drilling – Coordinate Systems
• 31U (std. zone 31 – sector U) ⇒ CM3 (3° E Longitude) • Coordinates in meters !
Page 14
Sperry Drilling Services
2007.1
UTM Coordinates - Example
Location Coordinates - example :
Geographic - Latitude and Longitude (degrees) e.g. LAT 53° 33’ 05.123”N LONG 5° 12’ 32.453”E
e536987.41 - n5875344.05 31U easting
northing
block
UTM Grid - Northings and Eastings (metres) e 536987.41 n 5875344.05
zone
CM3
Note : Spheroid and datum must be given for both
Note : CM longitude or zone number must be given !
Rectangular Grid within a UTM Zone
Location Coordinates - example : M ⇒ T + 16.076 M ⇒ G + 14.851 T ⇒ G + 1.225
Corrections :
Grid North
North
Position :
Grid East
Distance (R) = 1331.5 ft Direction (α) = 57.7°MN
East Equator Grid South
PMN(1331.5 ; 57.7°) or (711.49N ; 1125.47E) PTN (1331.5 ; 73.78°)
(371.92N ; 1278.50E)
PGN (1331.5 ; 72.55°)
(399.28N ; 1270.22E)
Central Meridian
Grid North vs True North
Grid North vs True North
Southern Hemisphere
Northern Hemisphere
UTM Projection TN
TN GN
UTM Projection
Equator
TN
GN
GN
GN
TN
GN
TN
P TN
K
GN
K
K
P Grid
K
P P
Equator
Meridians
Grid
TN
TN
Meridians
Directional Drilling – Coordinate Systems
Page 15
Sperry Drilling Services
2007.1
Meridian Convergence
Meridian Convergence N
TN
GN
MC = f ( LAT, Δλ )
TN
GN
TN
Δλ = λ − λ0
GN
λ
LAT
Δλ
LONG
Equator
E
LAT,LONG : geographic coordinates
Angular difference between Grid North and True North If Grid North is East of True North : positive Grid North West True North : negative
CM
λ0 Longitude of the CM
Azimuth correction : AZGRID=AZMAG + MD - (MC) Note : other names used
λ Longitude of the location
- Grid Convergence - Grid Correction
2
3
+
5 Δλ
15
(
)
sin LAT ⋅ cos 2 LAT 1 + 3n2 + 2n 4 +
(
sin LAT ⋅ cos 4 LAT 2 − t 2
)
Approximate meridian convergence (grid correction) value : MC = (LONG
[ Eq. 1 ]
λ0 = Longitude of central meridian e 2 ⋅ cos 2 LAT
λ = λ − λ0
n2 =
t = tan LAT
where : e = 2.7182
Δ
λ0
Meridian Convergence – Approximate Calculation
Meridian Convergence – Exact Solution
MC = Δλ ⋅ sin LAT + Δλ
S
Δ λ distance from CM, degrees
MC LONGCM LATLOC LONGLOC MD
LOC
− LONG
CM ) × sin LAT LOC
[ Eq. 2 ]
meridian convergence (grid correction), degrees Longitude of central meridian, degrees Latitude of the location, degrees Longitude of the location, degrees magnetic declination, degrees
1− e2
Example :
Total Azimuth correction : AZGRID=AZMAG + MD - (MC)
Azimuth Corrections - Example
Lat 54.0046 N - Long 4.9129 E
TM5 projection (!)
Convergence from Eq.1 = - 0.0695 degree Eq.2 = - 0.0705 Rounded to 2 decimals = - 0.07
Corrections :
MD = 16.076 MC = - 1.225
M ⇒ T + 16.076 T ⇒ G + 1.225 M ⇒ G + 14.851
Measured Direction (α) = 57.7° MN Azimuth, from MN = 57.7° 57.7 + 16.076 = 73.776 ~ 73.8° TN
E.g. : AZTN = 37° ⇒ AZGN = AZTN - ( - 0.07) = 37.07°
73.8 + 1.225 = 75.025 ~~ 75.0° GN
Note : the location is W from the central meridian 5° (TM5) thus GN is W from TN ( AZGN > AZTN ) : West convergence
Directional Drilling – Coordinate Systems
Page 16
Sperry Drilling Services
GN
2007.1
Application of Magnetic Declination and Grid Correction (1)
TN
Application of Magnetic Declination and Grid Correction (2)
GN TN
MN MN
measured direction G φ
M
View more...
Comments