10. Ogib Svjetlosti i Atomski Spektri
May 6, 2019 | Author: Marko Barišić | Category: N/A
Short Description
Ogib i atomski spektri...
Description
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ELEKTROTEHNIČKI FAKULTET
Razlikovna godina
Kolegij:Fizika 2 Seminarski rad
OGIB SVJETLOSTI Darko Brežnjak David Kuzminski Filip Kraus
Glorijan Bagić Goran Ivoš Ilija Majdenić Ivan Benke
Ivica Čabraja Kristijan Radočaj Marko Zetović Tomislav Šapina Zvonimir Balent Osijek, 2014.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Sadržaj 1.
UVOD........................................... ................................................................. ............................................ ............................................. .......................................... ................... 1 1.1
2.
Uvod u seminar ........................................... .................................................................. ............................................. ......................................... ................... 3
EKSPERIMENTALNI EKSPERIMENTALNI DIO ........................................... ................................................................. ............................................ .............................. ........ 5 2.1
Određivanje valne duljine monokromatske svjetlosti pomoću optičke rešetke .......... 5
2.2 Određivanje propustljivosti zadanih optičkih filtara fi ltara pomoću ručnog spektroskopa ..... 14 3.
................................................................. ............................................. ............................................. ............................ ..... 18 ZAKLJUČAK ..........................................
4.
ZADACI ........................................... ................................................................. ............................................ ............................................ .................................... .............. 19
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
1.
UVOD
Svjetlost je jedan od oblika energije. energije. Ali je i pojava u obliku energije, čestice, čestice, fotona, i vala. Kako se svjetlost u određenim okolnostima može razmatrati ili kao val ili kao skup čestica govori se o dualnoj prirodi svjetlosti. Pa se tako i fizikalna optika, to jest dio fizike koji
proučava elektromagnetske elektromagnetske valove u smislu njihovih svojstava i pojave, dijeli na valnu i čestičnu, to jest korpuskularnu. U valnoj optici svjetlost je elektromagnetski val, koji predstavlja istodobno širenje električnog i magnetskog polja u prostor. Kao što je prikazano slikom 1. 1 ta dva polja su i međusobno okomita i okomita na širenje vala , stoga se može govoriti o transverzalnom obliku vala.
Slika 1.1: Širenje elektromagnetskog vala
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
magnetskog polja.
Te se, u vakuumu, kreće najvećom brzinom u prirodi koja iznosi
299.792,458 km/s. Kada se opisuju valovi koriste se pojmovi poput perioda, amplitude, frekvencije te valne duljine. Period je fizikalna
veličina kojom se iskazuje trajanje jednog ciklusa periodične promijene.
Frekvencija se opisuje kao broj titraja u jedinici vremena i jednaka je recipročnoj vrijednosti perioda.
Valna duljina je udaljenost nakon koje se val ponavlja, odnosno odgovara fizičkoj
udaljenosti između dva susjedna brijega (ili dola). Amplituda je najveći otklon od srednje vrijednosti,
ravnotežnog položaja. položaja.
Kao što je prikazanom slikom 1.2 e lektromagnetski valovi se rasprostiru velikim spektrom frekvencija, no ljudsko oko može vidjeti samo mali dio
tog spektra, točnije u području valne
duljine od oko 380 nanometara pa sve do oko 780 nanometara,
i to na načina da različite
valne duljine unutar tog raspona predočuje kao različite boje . P ri čemu je ljubičasta boja val sa valnom duljinom oko 380 nanometara, a crvena val sa valnom duljinom od oko 780 nanometara.
Slika 1.2: Spektar elektromagnetskih vala.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
samo jedan izvor valova. Dakle promatramo kako valovi koji dolaze iz istog izvora interferiraju jedni sa drugima. Interferencija valova jest svojstvo algebarskog
zbrajanja dva ili više vala. Da bi došlo do
interferencije valovi moraju biti koherentni, odnosno moraju
imati identične valne duljine i
amplitude, te razliku u fazi koja se ne mijena u vremenu.
Slika 1.3: Ogib svjetlosti na pukotini
Kao što je prikazano slikom 1.3 kada svjetlost naiđe na pukotinu nastaje interferencija. Ona je konstruktivna na mjestima gdje su
valovi u fazi, valovi označeni sa 1 i 2 na slici. A
destruktivna gdje su valovi međusobno pomaknuti u fazi za 180°(π), valovi označeni sa 3 i 4. 1.1
Uvod u seminar
U ovom seminaru
izvesti će se dva eksperimenta. U prvom eksperimentu cilj je odrediti valnu
duljinu izvora svijetlosti koja pada pada na optičku rešetku. rešetku. Kao izvor postavljen je laser laser (λ=632.5 nm), a optičke rešetke pomoću kojih se određuje val na duljina imaju konstante od d=10 -5 m i d=1.66667*10-6m.
U drugom eksperimentu se uz pomoć priručnog eksperimenta treba
odrediti spektar izvora svjetlosti te propusnost zadanih filtara. Cilj prvoga eksperimenta jest provjeriti preciznost
ovakvog načina mjerenja te moguće
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
se kemijskih elemenata sastoji izvor te
na koji način funkcioniraju filtri i kako ih se može
koristiti.
Kao analiza rezultati eksperimenata će biti obrađeni i statistički i grafički te će biti obrazloženi mogući uzroci odstupanja, pogrešaka, od zadanih, poznatih, vrijednosti.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
2. EKSPERIMENTALNI EKSPERIMENTALNI DIO U ovom dijelu biti će objašnjen način provođenja pojedinog eksperimenta eksperimenta i oprema, te t e će biti priložena matematička matematička podloga za izračun određenih vrijednosti. 2.1
Određivanje valne duljine monokromatske svjetlosti pomoću optičke
rešetke Optička rešetka sastoji se od međusobno jednako udaljenih, i paralelnih pukotina u jednoj ravnini na kojima se ogiba upadni val. Ogibom upadnog vala svaka pukotina postaje izvor
vala kao što je prikazano slikom 2.1. Pri prolasku svjetlosti kroz optičku rešetku dolazi do ogiba na svakoj od pukotina,zbog čega nastaje interferencije valova koji izlaze iz rešetke.
Slika 2.1: Optička rešetka
Obično je napravljena tako da je na staklenoj zarezan niz jednako udaljenih paralelnih zareza. Na mjestima gdje je staklo zarezano svjetlost ne prolazi, već prostorom između dva zareza.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Slika 2.2: Ogibna slika
Relacija za izračun valne duljine ima
slijedeći oblik:
(2-1)
Gdje je λ valna duljina monokromatske svjetlosti, n redni broj ogibne točke, Δ Zn položaj n-te
ogibne točke, d konstanta optičke rešetke, a L udaljenost od rešetke do zastora.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Postupak mjerenja sastoji se od nekoliko koraka. Prvo je potrebno provjeriti eksperimentalni L od zastora. Nakon toga se postav, potom je potrebno postaviti postaviti optičku rešetku na udaljenost udaljenost L od
optička rešetka treba postaviti na put snopu laserske svjetlosti kako bi se na zastoru prikazale ogibne točke. Potom je potrebno izmjeriti udaljenost između centralnog i svakog od prva tri ogibna maksimuma . Nakon čega se mijenja udaljenost
optičke rešetke od zastora.
Nakon mjerenja potrebno je uz pomoć relacije (2 -1) i izmjerenih vrijednosti izračunati vrijednosti valne duljine
monokromatske svjetlosti, te usporediti sa stvarnom vrijednošću
valne duljine He-Ne lasera ( λ=632,8nm). Tablica 2.1 prikazuje rezultate mjerenja pri =1·10-5m. korištenju optičke rešetke sa konstantom d =1
Tablica 2.1: Rezultati mjerenja valne duljine monokromatske svjetlosti sa d =1 =1·10-5m
Broj mjerenja
1
2
3
4
5
6
7
8
9
10
11
12
L[m]
0,1
0,2
0,3
0,4 0,4
0,5
0,6
0,7
0,8
0,9
1,0
1,1
1,2
ΔZ1[mm]
7
14
19
28
35
40
47,5
53
60
71
76
82
700 700 633 700 700
667
679
663 667 710 691 683
14
69
81
95
107 122 143 153 166
700 700 683 688 690
675
679
669 678 715 695 692
λ 1[nm] ΔZ2[mm] λ 2[nm]
28
41
55
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Uz pomoć tablice 2.1 možemo napraviti grafičku analizu mjerenja.
ΔZn 0,3
0,25
y = 0,2127x - 0,0017
0,2
ΔZ1 ΔZ2
0,15 y = 0,139x - 0,0008
ΔZ3
Linear (ΔZ1) Linear (ΔZ2) Linear (ΔZ3)
0,1
y = 0,0688x - 0,0004 0,05
0 0
0,2
0,4
0,6
0 ,8
1
1,2
1,4
L/[m]
Slika 2.4: Grafički prikaz ovisnosti Δ Z n=f(L)
Iz grafičke analize vidljivo je da su ogibni maksimumi linearno ovisni o udaljenosti optičke
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Tablica 2.2: Prvi ogibni maksimum metoda najmanjih kvadrata
i
ΔZ1[m] L*ΔZ1
L[m]
(L)²
(ΔZ1)²
1
0,1
0,007
0,0007
0,01
0,000049
2
0,2
0,014
0,0028
0,04
0,000196
3
0,3
0,019
0,0057
0,09
0,000361
4
0,4
0,028
0,0112
0,16
0,000784
5
0,5
0,035
0,0175
0,25
0,001225
6
0,6
0,04
0,024
0,36
0,0016
7
0,7
0,0475
0,03325
0,49
0,002256
8
0,8
0,053
0,0424
0,64
0,002809
9
0,9
0,06
0,054
0,81
0,0036
10
1
0,071
0,071
1
0,005041
11
1,1
0,076
0,0836
1,21
0,005776
12
1,2
0,082
0,0984
1,44
0,006724
n
Σ(ΔZ1) Σ(L*ΔZ1)
Σ(L) 7,8
0,5325
0,44455
Σ(L)² 6,5
Σ(ΔZ1)² 0,030421
(ΣL)² 60,84
(ΣΔZ1)² 0,283556
Uz pomoć relacija (2-2), (2-3) i (2- 4) možemo odrediti jednadžbu pravca u eksplicitnom obliku koji predstavlja najbolju prilagodbu na izmjerene podatke. Nagib pravca (a ): ):
∑ ∑ ∑ ∑ ∑
(2-2)
Odsječak na osi y ( b ): ):
∑ ∑
(2-3)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Usporedbom relacije (2-1) sa eksplicitnim oblikom pravca dobivenog gore navedenim
jednadžbama primjetno jednadžbama primjetno je da se jednadžba pravca pravca može izraziti i kao: kao:
(2-5)
Pa ako se usporedi sa osnovnom jednadžbom pravca koja ima oblik:
Gdje y Gdje y odgovara odgovara
, a x a x odgovara odgovara L. L. Tada se može primijetiti
(2-6)
da nagib pravca a zapravo
ima oblik:
(2-7)
Prema tome slijedi da valna duljina monokromatske svjetlosti iznosi:
(2-8)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Tablica 2.3: Treći ogibni maksimum metoda najmanjih kvadrata
i
ΔZ1[m] L*ΔZ1
L[m]
(L)²
(ΔZ1)²
1
0,1
0,021
0,0021
0,01
0,000441
2
0,2
0,042
0,0084
0,04
0,001764
3
0,3
0,063
0,0189
0,09
0,003969
4
0,4
0,084
0,0336
0,16
0,007056
5
0,5
0,102
0,051
0,25
0,010404
6
0,6
0,125
0,075
0,36
0,015625
7
0,7
0,145
0,1015
0,49
0,021025
8
0,8
0,164
0,1312
0,64
0,026896
9
0,9
0,187
0,1683
0,81
0,034969
10
1
0,219
0,219
1
0,07961
11
1,1
0,234
0,2574
1,21
0,054756
12
1,2
0,252
0,3024
1,44
0,063504
n
Σ(ΔZ1) Σ(L*ΔZ1)
Σ(L) 7,8
1,638
1,3688
Σ(L)² 6,5
Σ(ΔZ1)² 0,28837
(ΣL)² 60,84
(ΣΔZ1)² 2,683044
Izračun relativne pogreške u postotcima:
(
(2-9)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Iz tablice 2.4 je vidljivo da je pri mjerenju i računanju došlo do pogreške. Razlika između rezultata mjerenja i stvarne vrijednosti ima nekoliko uzroka.
Prvi uzrok je razlučivost pri mjerenju, što se može primijetiti na slici 2.2. jer su ogibne ogibne točke poprilično velike što što otežava točno točno očitavanje. Drugi Drugi uzrok jest taj što su se sva mjerenja mjerenja zaokruživala na milimetar što može dosta pridonijeti pogrešci kada je riječ o mj erama reda nekoliko stotina nanome tara. No ako se pogleda spektar valnih duljina može se primijetiti da
su odstupanja unutar crvene boje, jer crvena boja se nalazi između 625 i 740 nanometara valne duljine. Prema izračunu najtočnija vrijednost valne duljine jest
za prvi ogibni
maksimum sa relativnom pogreškom od 8,72%. Tablica 2.4 prikazuje rezultate mjerenja pri korištenju optičke rešetke sa konstantom d =1,66667 =1,66667·10-6m.
-6
=1,66667·10 m Tablica 2.4: Rezultati mjerenja valne duljine monokromatske svjetlosti sa d =1,66667
Broj mjerenja
1
2
3
4
5
6
7
8
9
10
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
0,25
0,2 y = 0,0204x + 0,0216
0,15 Z
Δ
ΔZ1
0,1
0,05
L[m]
0 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55
Slika 2.5: Grafički prikaz ovisnosti Δ Z n=f(L)
Tablica 2.5 prikazuje rezultate mjerenja za prvi ogibni maksimum sa optičkom rešetkom konstante d =1 =1 10-5
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Uz pomoć relacija (2-2), (2-3) i (2- 4) možemo odrediti jednadžbu pravca u eksplicitnom obliku koji koji predstavlja najbolju prilagodbu prilagodbu na izmjerene podatke.
Nagib pravca pravca a ima
vrijednost a=0,4073, odsječak na osi y b=0,00124, a koeficijent korelacije R=0,9999. R=0,9999.
2.2 Određivanje propustljivosti zadanih optičkih filtara pomoću ručnog spektroskopa
U ovom eksperimentu potrebno je odrediti područje propustljivosti zadanih optičkih filtara pomoću ručnog spektroskopa. Spektroskop je jednostavan instrument za promatranje spektra vidljive svjetlosti. Sastoji se od
optičke prizme ili optičke rešetke, koja služi za rastavljanje svjetla na spektar. Slika 2.6 prikazuje princip rada spektroskopa, dok slika 2.7 prikazuje izgled koriš tenog spektroskopa.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Slika 2.7: Spektroskop iz eksperimentalnog postava
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Filtri rade na principu propuštanja samo valova određenih valnih duljina. Tako žuti filtar propušta samo valne duljine koje se nalaze u spektru od ~565 -740 što se u bojama očitava kao spektar žute narančaste i crvene. Dok zeleni filtar propušta samo valne duljine ~500 -565 što se kao što vidimo u tablici 2.6 u bojama očitava kao spektar ze lene boje. Slika 2.8 prikazuje spektar spektar boja vidljiv pomoću spektroskopa spektroskopa bez filtra.
Slika 2.8: Spektar boja bez filtra
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Kako izvor svjetlosti nije živina izbojna žarulja, već fluorescentna rasvjeta očitane valne duljine ne odgovaraju valnim duljinama na energetskom dijagramu žive prikazanom slikom 2.9 stoga rješenja će biti približna. Slika 2.9 prikazuje energetski dijagram žive sa prijelazima i valnim duljinama prikazanim u mjernoj jedinici 10-10m.
Tablica 2.7: Izmjerene spektralne linije žive (fluorescentne svjetiljke) i odgovarajući
energetski prijelazi
Boja
valna duljina λ [nm] [nm]
energetski energetski prijelaz
ljubičasta
445
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
3.
ZAKLJUČAK
U prvom djelu eksperimenta bilo je potrebno izmjeriti valnu duljinu monokromatske
svjetlosti na način da se svjetlost iz lasera propusti okomito na optičku rešetku koja je udaljena od zastora za udaljenost „ L“ te da se izmjere udaljenosti od ogibnog maksimuma nultog reda do ogibnih maksimuma prva tri reda.
Tijekom mjerenja primijećeno je da
preciznost otežava veličina i ud aljenost ogibnih maksimuma, preciznost mjerne vrpce i preciznost ljudskoga ljudskoga oka. Što je dovelo do pogreške pogreške od 12,02% 12,02% . Drugi dio eksperimenta odnosio se na određivanje valnih duljina spektralnih linija sa ručnim spektroskopom. To jest bilo je potrebno usmjeriti spektroskop prema izvoru svjetlosti, fluorescentne
rasvjete, te na mjerilu unutar spektroskopa uočiti spektralne linije na mjeri.
Potom očitati sa mjere valne duljine uočenih spektralnih linija i njihove boje. Svaki izvor
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
4. ZADACI 1. Zadatak
Okomiti na optičku rešetku s 500 zareza po milimetru duljine upada snop monokromatske svjetlosti valne duljine 500 nm. Odrediti još
može vidjeti ako svjetlost pada okomito na rešetku i pod kojim kutom se otkloni
drugi ogibni maksimum( α2).
Rješenje: d =1 =1·10-3/500 m=2·10-6 m
λ=500 nm=5·10-7 m_____ a) k max max=? b)
najveći red spektra k koji se
α2=?
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Rješenje: λ=520
nm
L= L= 1 m n=1
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
LITERATURA [1]
Fizika 2 – PREDLOŽAK – PREDLOŽAK
ZA LABORATORIJSKU VJEŽBU, 2010./2011. g. , Ogib
svjetlosti [2]
Atomic spectra and Atomic Structure – Gerhard Gerhard Herzberg, New York, 1944.
View more...
Comments