1-mukavemet
February 4, 2018 | Author: Alper Yapici | Category: N/A
Short Description
Download 1-mukavemet...
Description
Öğrt. Görevlisi Serap KARAGÖZ
T.C. ADNAN MENDERES ÜNĠVERSĠTESĠ AYDIN MESLEK YÜKSEKOKULU DEĞİŞİMİN GELECEĞİ
AYMYO YAYINLARI DERS NOTU NO: 01
MUKAVEMET
Hazırlayan
Öğr. Gör. Serap KARAGÖZ Makine Resim Konstrüksiyon Programı
Aydın - 2007
Öğrt. Görevlisi Serap KARAGÖZ
1
ĠÇĠNDEKĠLER KONU
1. 1.1. 1.1.1. 1.1.2. 1.1.3. 1.1.4. 1.1.5.
1.2. 1.2.1. 1.2.2. 1.2.3. 1.2.3.1. 1.2.3.2. 1.2.3.3. 1.2.3.4. 1.2.3.5. 1.2.3.6. 1.2.3.7. 1.2.3.8.
1.3. 1.3.1.
1.4. 1.4.1. 1.4.2. 1.4.3. 1.4.4. 1.4.5. 1.4.6. 1.4.7.
2. 2.1. 2.1.1.
2.2. 2.2.1.
2.3.
Sayfa No
ÖNSÖZ ………………………………………………….. MUKAVEMET …………………………………………………………
3
4 MUKAVEMETĠN ĠLKELERĠ …………………………...................... 5 KatılaĢtırma ilkesi .…………………………………………………………... 5 Ayırma ilkesi .…………………………………………………………………. 5 EĢdeğerlilik ilkesi ………………………………………………………….. 5 Saint – Venant ilkesi ………………………………………………………… 6 Süperpozisyon ilkesi ……………………………………………………........... 6 TAġIYICI SĠSTEMNLER ..…………………………………………….. 7 Üç boyutlu taĢıyıcı sistemler ...……………………………………………….. 7 Yüzeysel taĢıyıcı sistemler ……………………………………………............. 7 Prizmatik çubuklu sistemler ………………………………………………... 7 Basit kiriĢler …………………………………………………………………... 8 Çıkmalı kiriĢler ……………………………………………………………….. 8 Konsol kiriĢler ………………………………………………………………… 8 Destekli kiriĢler ……………………………………………………………... 8 Ġki ucu ankastre kiriĢler …………………………………….……………...... 9 Sürekli kiriĢler ……………………………………………………………… 9 Mafsallı kiriĢler ………………… ………………………………………….. 9 Kafes kiriĢler ………………………………………………………………... 9 TAġIYICI SĠSTEMLERE ETKĠ EDEN KUVVETLER ……….. 10 Ġç kuvvet – dıĢ kuvvet ………………………………………………………… 11 GERĠLME ÇEġĠTLERĠ ..……………………………………………… 11 Çekme gerilmesi ……………………………………………………………….11 Basma gerilmesi ………………………………………………………………. 11 Kesme gerilmesi ………………………………………………………………. 11 Eğilme gerilmesi ……………………………………………………………… 12 Burulma gerilmesi …………………………………………………................. 12 Burkulma gerilmesi ……………………………………………………........... 12 BileĢik Gerilme ……………………………………………………………….. 12 ÇEKME – BASMA GERĠLMESĠ ..……………………………. 13 ÇEKME (GERĠLME – ġEKĠL DEĞĠġTĠRME) DĠYAGRAMI .13 Problemler …………………………………………………………………... 15 DARBE ġEKĠL DEĞĠġTĠRMELERĠ ………………………………. 17 Problemler …………………………………………………………………….. 17
BĠR ÇUBUĞUN AĞIRLIĞINDAN DOĞAN GERĠLME VE ġEKĠL DEĞĠġTĠRME …………………………………………………... 18
2.3.1.
Problemler ..…………………………………………………………………... 18
2.4.
Eġ DAYANIMLI ÇUBUKLAR ……………………………………..... 19
2.4.1. 2.4.2.
Faturalı ve EĢ Dayanımlı Çubuklar ..…………………………………........ 19 Problemler ..………………………………………………………………….. 20 ISI ETKĠSĠ OLDUĞU ZAMAN UZAMA ..………………………… 20 Problemler …………………………………………………………………….. 20 EĞĠK KESĠTLERDEKĠ GERĠLMELER ………………………….. 21
2.5. 2.5.1.
2.6.
Öğrt. Görevlisi Serap KARAGÖZ
2
ĠÇĠNDEKĠLER KONU
Sayfa No
3.1. 3.2.
Problemler ……………………………………………………………………. 21 GERĠLME YIĞILMALARI …………………………………………… 22 Problemler …………………………………………………………………….. 23 KESME GERĠLMESĠ ……………………………………………… 24 KAYMA ÇEġĠTLERĠ .………………………………………………….. 24 PROBLEMLER .………………………………………………………….. 25
4.
BURULMA GERĠLMESĠ …………………………………………. 27
4.1.
PROBLEMLER .………………………………………………………….. 28
5.
BURKULMA GERĠLMESĠ ..…………………………………….. 29
5.1.
EULER YÖNTEMĠ .……………………………………………………… 30
5.1.1.
Problemler …………………………………………………………………….. 31 TETMAJER YÖNTEMĠ .……………………………………………….. 32 Problemler …………………………………………………………………….. 32 ω YÖNTEMĠ ..……………………………………………………………... 33 Problemler …………………………………………………………………….. 33 EĞĠLME GERĠLMESĠ .…………………………………………….. 34
2.6.1.
2.7. 2.7.1.
3.
5.2. 5.2.1.
5.3. 5.3.1.
6. 6.1.
KĠRĠġLERDE KESME KUVVETĠ (MAKASLAMA) VE MOMENTLER ……………………………………………………………. 34
6.1.1.
Problemler …………………………………………………………………….. 36 ATALET MOMENTLERĠ ……………………………………………... 37 EĞĠLME FORMÜLÜ ..………………………………………………….. 39 EĞĠLME OKU (SEHĠM) ..……………………………………………… 40 Düzgün Yayılı Yükte Eğilme ..………………………………………………. 40 Nokta Yüklü Basit KiriĢte Eğilme .………………………………………….. 40 Tek Taraftan Ankastre Düzgün Yayılı Yükte Eğilme ……………………... 40 Problemler ……………………………………………………………………. 41 BĠLEġĠK GERĠLME ………………………………………………. 43 ÇEKME - BASMA VE EĞĠLME GERĠLMELERĠ .……………. 44 EĞĠLME VE BURULMA GERĠLMELERĠ .……………………… 45 ÇEKME - BASMA VE BURULMA GERĠLMELERĠ …………. 46 PROBLEMLER ………………………………………………………….. 47
6.2. 6.3. 6.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4.
7. 7.1. 7.2. 7.3 7.4.
KAYNAKÇA ……………………………………………………………. 49
Öğrt. Görevlisi Serap KARAGÖZ
3
ÖNSÖZ Mukavemet konusu Makine Resim Konstrüksiyon Programı öğretim programları içerisinde oldukça önemli bir yere sahiptir. Tekniker unvanıyla mezun olacak Makine Resim Konstrüksiyon programı öğrencilerinin, tasarladıkları makine parçalarının ve sistemlerin sağlıklı çalıĢabilmesi için dayanımları konusunda da bilgi ve fikir sahibi olmaları gerekir. Bu ders notu Aydın Meslek Yüksekokulu öğrencilerine yönelik olarak hazırlanmıĢtır. Konular ileri düzeyde ve kapsamlı dayanım hesaplamalarına girilmeden, bir teknikerin bilmesi gereken temel dayanım bilgisi ve basit hesaplamalarla ve örnek problemlerle de desteklenmiĢtir. Genel olarak konular ve sıralama Mukavemet dersi içeriğine uygun olarak düzenlenmiĢ, problemler diğer derslerle de iliĢkilendirilerek makine sistemleri üzerinde uygulanabilecek Ģekilde hazırlanmıĢtır.
AYDIN 2007 Öğr.Gör. Serap KARAGÖZ
Öğrt. Görevlisi Serap KARAGÖZ
4
1. MUKAVEMET MEKANĠK, çeĢitli kuvvetlerin etkisi altında kalan cisimlerin denge ve hareket koĢullarını inceleyen bir bilimdir. Mekaniğin sıvılar ve gazları inceleyen dalına AKIġKANLAR MEKANĠĞĠ adı verilir. Mekanik biliminde katılar kuvvetlerin etkisiyle Ģekil değiĢtiren (rijit olmayan) ve Ģekil değiĢtirmeyen (rijit) cisimler olmak üzere iki gurupta incelenir. Statik ve dinamikte cisimlerin kuvvetlerin etkisiyle Ģekil değiĢtirmediği ve dengede olduğu kabul edilir. MUKAVEMET ise Ģekil değiĢtiren cisimlerin durumunu inceler. (ġekil 1.1) MUKAVEMET katı cisimlerin mekaniğini inceler. Her katı cismin belirli bir Ģekli vardır. Bu Ģekil küçük kuvvetlerin etkisi ile değiĢmez, ya da değiĢtiği hissedilmez. Fakat büyük kuvvetler her katı cismin Ģeklinde değiĢiklik meydana getirir. Mekanik Katıların mekaniği
Akışkanlar mekaniği
Şekil değiştiren cisimlerin mekaniği(MUKAVEMET) Şekil değiştirmeyen cisimlerin mekaniği Dinamik
Statik
ġekil 1.1 Mekaniğin sınıflandırılması STATĠK ve DĠNAMĠK ile MUKAVEMET arasındaki fark Ģu Ģekilde vurgulanabilir. ġekil.2’deki kiriĢte F kuvvetinin mesnet tepkilerin bulurken, STATĠKte kiriĢin Ģeklinin bozulmadığı, kırılmayacak kadar sağlam olduğu varsayılır. MUKAVEMET’ de ise, kiriĢin eğilmemesi ve kırılmaması için gerekli koĢullar araĢtırılır. F
ġekil 1.2 Etki eden kuvvet ve tepkiler Cisimlerin Dayanımı baĢka bir ifade ile mukavemet, problemleri çözerken aĢağıdaki koĢulları dikkate alır. 1. Sağlamlık 2. Teknik koĢullar 3. Ekonomiklik Problem çözümlerinde, ‘Teknik’ koĢullar dikkate alınarak, ‘sağlamlık’ ve ‘ekonomiklik’te en uygun ve kullanılabilir çözüm aranır. Mukavemetin incelediği cisim, kuvvetlerin etkisiyle az veya çok Ģekil değiĢtiren homojen yapıda bir katı cisimdir.
Öğrt. Görevlisi Serap KARAGÖZ
5
1.1. MUKAVEMETĠN ĠLKELERĠ 1.1.1. KatılaĢtırma ilkesi Dayanımda incelenen cisim, Ģekil değiĢtiren bir katı cisimdir. ġekil değiĢtirme sona erdikten sonra cisme, mekanikteki gibi Ģekil değiĢtirmeyen katı cisim olarak düĢünülüp, aynı denge denklemleri uygulanabilir.
1.1.2. Ayırma ilkesi Cismin dıĢ etkilere uygunluğunu anlamak için, bir düzlemle herhangi bir yerinden kuramsal olarak kesilir. Cismin ayrılan kısımlarından yalnız bir parçasına denge denklemleri uygulanır (ġekil 1.3). Cismin bir tarafının atıldığı varsayılarak kalan kısmının dengesinin incelenmesine ayırma ilkesi denir. F
Vr Mr
ġekil 1.3 Ayırma ilkesi
1.1.3. EĢdeğerlilik ilkesi Tepkilerin bulunmasında bileĢenlerin etkisi kullanıldığı gibi bileĢkenin etkisi de kullanılabilir. Rijit (Ģekil değiĢtirmeyen) cisimlerde bileĢke yerine bileĢenlerin veya bileĢenlerin yerine bileĢkenin kullanılmasına eĢdeğerlilik ilkesi denir. EĢdeğerlilik ilkesi statikte geçerlidir ancak dayanımda geçerli değildir. ġekil 1.4’de görüldüğü gibi bileĢke ile bileĢenlerin Ģekil değiĢimine etkisi farklıdır. F
F
2F
ġekil 1.4 EĢdeğerlilik Aynı Ģekilde rijit cisimlerde (statikte–mekanikte) kuvvet, kayan bir vektörle gösterilir ve doğrultusu üzerinde yön F değiĢtirebilir (ġekil 1.5). Dayanımda kuvvet, kayan vektörle F gösterilecek olursa, çekilme etkisi basılmaya, basılma etkisi de çekilmeye dönüĢür. Bu da, F F unsurdur. dayanımda kabul edilemez bir F
F
F
F
ġekil 1.5 Çekilme ve Basılma
Öğrt. Görevlisi Serap KARAGÖZ
6
1.1.4. Saint – Venant ilkesi Statikte geçerli olan eĢdeğerlilik bazı koĢullarda, Ģekil değiĢtiren cisimlerde de geçerli olur. Bu koĢullara Saint Venant ilkesi adı verilir. Bu ilkeye göre kuvvetler birbirine yakın olmalı ve söz konusu noktalar kuvvet uygulanan bölgeden yeterli uzaklıkta bulunmalıdır. (ġekil 1.6). Bu koĢullar varsa kuvvetler yerine eĢdeğer olarak bileĢke Ģekil değiĢtiren cisimlerde de kullanılabilir. F F C
2F C
ġekil 1.6 Saint – Venant ilkesi
1.1.5. Süperpozisyon ilkesi KatılaĢtıma ilkesine göre, denge denklemlerin Ģekil değiĢikliğini tamamlamıĢ bir sistem için yazılması gerekir. Ancak Ģekil değiĢikliği genellikle diğer boyutların yanında çok küçük olabilir. Bu durumda denge denklemleri yaklaĢık olarak sistemin Ģekil değiĢtirmemiĢ konumu için yazılabilir. Bu koĢullarda süperpozisyon geçerli olur. ġekil 1.7’de görülen basit bir kiriĢte F1 dıĢ kuvvetinin oluĢturduğu C noktasındaki Ģekil değiĢtirme e1; F2 dıĢ kuvvetinin C noktasında tek baĢına oluĢturduğu Ģekil değiĢtirme e2 olursa, F1 ve F2 kuvvetlerinin birlikte uygulandıklarında C noktasında oluĢan Ģekil değiĢikliği e 1+e2 olur. Bu süperpozisyon ilkesi olarak tanımlanır. F1 C e1
F2 e2
F1
F2 e1+e2
ġekil 1.7 Süperpozisyon ilkesi
Öğrt. Görevlisi Serap KARAGÖZ
7
1.2. TAġIYICI SĠSTEMLER TaĢıyıcı sistemler, boyutlarının birbirine göre durumları göz önüne alınarak üçe ayrılır. 1. Üç boyutlu taĢıyıcı sistemler 2. Yüzeysel taĢıyıcı sistemler 3. Prizmatik çubuklu sistemler (Curun,1981)
1.2.1. Üç boyutlu taĢıyıcı sistemler Üç boyutlu taĢıyıcı sistemler üç boyutu da birbirine yakın olan taĢıyıcılardır.(ġekil 1.8).
ġekil 1.8 Üç boyutlu taĢıyıcı
1.2.2. Yüzeysel taĢıyıcı sistemler Bu taĢıyıcılarda bir boyut diğer iki boyuta göre daha küçüktür. TaĢıyıcı yüzey düzlemdir. Bu düzlem yüzey, kuvvetlerin etki durumuna göre levha, plak ya da kabuk adını alır (ġekil 1.9). Plak
Kabuk Levha
ġekil 1.9 Yüzeysel taĢıyıcılar
1.2.3. Prizmatik çubuklu sistemler Bunlara bir boyutlu sistemler de denilir. Bu sistemlerde iki boyut, üçüncü boyuta göre dikkate alınmayacak kadar küçüktür. Bu nedenle çubuk enkesitlerinin ağırlık merkezlerinden geçen bir eksenle gösterilir (ġekil 1.10).
F
ġekil 1.10 Prizmatik çubuklu sistemler
Öğrt. Görevlisi Serap KARAGÖZ
8
1.2.3.1. Basit kiriĢler Bir ucundan sabit, diğer ucundan hareketli dayanağa oturan çubuklara basit kiriĢ adı verilir (ġekil 1.11). Bütün kuvvetlerin kiriĢ düzleminde etki ettikleri, hareketli dayanağın da aynı düzlem içerisinde yatay bir doğru boyunca, sürtünmesiz hareket ettiği varsayılır. F
R1
R2
ġekil 1.11 Nokta yüklü basit kiriĢ
1.2.3.2. Çıkmalı kiriĢler Biri mafsallı ve sabit, diğeri mafsallı ve hareketli iki dayanağa oturan düzlem bir kiriĢtir. KiriĢin uçları mafsallardan dıĢarı uzanmıĢtır (ġekil 1.12). q daN/m
F1
R1
F2
R2
ġekil 1.12 Çıkmalı kiriĢ
1.2.3.3. Konsol kiriĢler Konsol kiriĢler, bir ucu ankastre olup, tek taraflı taĢınırlar (ġekil. 1.13). Bu uç aynı zamanda kiriĢin dönmesine karĢı koyacak dayanımdadır. q daN/m M R
ġekil 1.13 Konsol kiriĢ
1.2.3.4. Destekli kiriĢler Bu tür kiriĢlerin bir ucu ankastre, diğer ucu ise mafsallıdır (ġekil 1.14). q daN/m M R2 R1
ġekil 1.14 Destekli kiriĢ
Öğrt. Görevlisi Serap KARAGÖZ
9
1.2.3.5. Ġki ucu ankastre kiriĢler Ġki ucundan da ankastre edilmiĢ kiriĢlerdir (ġekil 1.15).
M
M R1
R2
ġekil 1.15 Ġki ucu ankastre kiriĢ
1.2.3.6. Sürekli kiriĢler Sürekli elemanları ara noktalarına dayanaklar yerleĢtirilecek olur ise, kiriĢlere sürekli kiriĢler adı verilir (ġekil1.16).
F1
R1
R2
F2
R2 R3
R4
ġekil 1.16 Sürekli kiriĢ
1.2.3.7. Mafsallı kiriĢler (Gerber kiriĢler) Bazı durumlarda (köprüler gibi) kiriĢlere menteĢeler konulabilir (ġekil 1.17). Ancak mafsal sayısı, sistemi oynak yapmayacak Ģekilde seçilmelidir.
ġekil 1.17. Mafsallı kiriĢ
1.2.3.8. Kafes kiriĢler Çubuklardan oluĢmuĢ ve düğümlerle bağlanmıĢ, bütün çubuk elemanlarının bir düzlem içerisinde bulunduğu sistemlere kafes sistemler denir (ġekil 1.18). Kafes sistemlerinde kuvvetler düğüm noktalarına etki eder. Kaynak veya perçinle birleĢtirilmiĢ olsa da, hesaplamalar sürtünmesiz mafsallı birleĢtirme durumuna göre yapılır.
ġekil 1.18 Kafes kiriĢ
Öğrt. Görevlisi Serap KARAGÖZ
10
1.3.
TAġIYICI SĠSTEMLERE ETKĠ EDEN KUVVETLER
Kuvvetleri, Ģiddeti zamana bağlı olarak değiĢip – değiĢmemesine göre ikiye ayrılabilir (STATĠK VE DĠNAMĠK ETKĠ). Sistemlere etki eden ağırlıklar değiĢmeyen kuvvetlerdir. Bir piston koluna etki eden kuvvet ise değiĢen kuvvettir. Yayın ucuna bağlı yükün titreĢimi ile kuvvet Ģiddeti de değiĢecektir (ġekil 1.19).
q daN/m
F1
F2
F R1
R2
ġiddeti zamanla değiĢmeyen kuvvetler
F
ġiddeti zamanla değiĢen kuvvetler
ġekil 1.19 ġiddeti zamanla değiĢen/değiĢmeyen kuvvetler Cisimlere etki eden kuvvetler belirli bir noktaya etki edip – etmemesine göre; a) Tekil kuvvetler (Nokta yükler) b) Yayılı kuvvetler 1- Uzunluğa yayılı 2- Alana yayılı Ģeklinde sınıflandırılır (ġekil 1.20). Uzunluğa yayılı yüklere örnek olarak bir kiriĢin ağırlığı verilebilir. Alana yayılı yüklere örnek olarak da, su kabının dibine veya yanal yanal yüzeyine etki eden basınç kuvvetleri gösterilebilir. F
F
q daN/m
Tekil kuvvetler Uzunluğa yayılı ġekil 1.20 Nokta ve yayılı yükler
Alana yayılı
Yayılı yükün birim uzunluğa veya birim alana gelen kısmına yayılı yükün Ģiddeti denir. Uygulanan yükler, uygulama noktalarının sabit ya da hareketli olmasına göre; a) Sabit yükler (bir kiriĢin üzerinde bulunan ve yeri değiĢmeyen yükler) b) Hareketli yükler (Atelyelerde vinçlerin raylarına gelen yükler Ģeklinde ikiye ayrılabilir.
Öğrt. Görevlisi Serap KARAGÖZ
11
1.3.1. Ġç Kuvvet – DıĢ Kuvvet Makine parçaları birçok kuvvetin etkisi altında çalıĢırlar ve bu kuvvetlere dayanmaları istenir. Etkisi altında kaldığı dıĢ kuvvetlere karĢı iç yapıda tepki kuvvetleri (iç kuvvet) meydana gelir (ġekil 1.21). Bu iç kuvvetlerin birim alandaki Ģiddetine GERĠLME denir.
F
F
F
Dış kuvvet
İç kuvvet
İç kuvvet
ġekil 1.21 Ġç ve dıĢ kuvvetler
1.4. GERĠLME ÇEġĠTLERĠ 1.4.1. Çekme gerilmesi Bir çubuk ekseni boyunca etki eden iki kuvvetle çekilir ise (ġekil 1.22), çubuk çekmeye zorlanır ve boyu uzamaktadır. Etkiyen kuvvetin doğrultusu, etkilenen kesite diktir. F
F
F
F
ġekil 1.22 Çekme
1.4.2. Basma gerilmesi Bir çubuk ekseni boyunca iki kuvvet etkisi ile basılmaya çalıĢıyor ise (ġekil 1.23), çubuk basınca zorlanır ve boyu kısalmaktadır. Ancak bu durumda eğilme olmadığı kabul edilir. Etkiyen kuvvetin doğrultusu etkilenen kesite diktir. F
F
F
F
ġekil 23 Basma
1.4.3. Kesme gerilmesi Bir çubuğa etkiyen eĢit büyüklükte ve birbirine zıt yönde kuvvetler, çubuğun parçalarını kuvvetlerin etkidiği kesitte birbirinden kaydırmaya ve kesmeye çalıĢır. Bu Ģekildeki kuvvetlerin etkisindeki çubuğa kesilmeye çalıĢıyor denir (ġekil 1.24). Etkiyen kuvvetin doğrultusu, etkilenen kesitle aynı düzlemdedir. BaĢka bir ifade ile bir makaslama kuvveti söz konusudur. F
F
ġekil 1.24 Kesme
Öğrt. Görevlisi Serap KARAGÖZ
12
1.4.4. Eğilme gerilmesi Eğilmeye zorlanan bir çubukta kuvvet çubuk eksenine dik olarak etki eder ve ekseni eğri hale getirir (ġekil 1.25). F F F
q daN/m
ġekil 1.25 Eğilme
1.4.5. Burulma gerilmesi Ġki kuvvet bir çubuğu eksene dik kesitte burmaya çalıĢır (ġekil 1.26). F F
ġekil 1.26 Burulma
1.4.6. Burkulma gerilmesi (Flambaj) Narin çubuk adı verilen kesitine göre boyu uzun olan çubuklarda eksene dik etkileyen kuvvetlerin etkisi ile burkulma oluĢur (ġekil 1.27). F1
ġekil 27 Burkulma (Flambaj)
1.4.7. BileĢik gerilme Bir elemanda birden fazla zorlanma çeĢidi (ġekil 1.28) varsa dayanım hesaplamaları bileĢik zorlanmaya göre yapılır ve boyutlar bileĢik zorlanmaya göre bulunur.
F1 F4
F2 F3
ġekil 1.28 BileĢik gerilme
Öğrt. Görevlisi Serap KARAGÖZ
13
2. ÇEKME – BASMA GERĠLMESĠ Cisimlere etkiyen kuvvetler etkilenen kesite dik doğrultuda ise cisim kuvvetin yönüne göre çekmeye veya basmaya zorlanır ve kesitte normal gerilme (Çekme-Basma gerilmesi) ve Ģekil değiĢikliği oluĢur. Cisim, kuvvetin büyüklüğüne göre kuvvet etkisi ortadan kalktığında eski Ģekline dönebilir veya Ģekil değiĢikliği kalıcı olabilir. Elastisite: Bir cisim aralarında kuvvet etkisi olan bir takım moleküllerden oluĢur. Moleküler kuvvetler, dıĢ kuvvetlerin cisimde oluĢturmaya çalıĢtığı Ģekil değiĢtirmeye karĢı koyarlar. Cisimde deformasyon (Ģekil değiĢikliği) yapan kuvvetler yavaĢ yavaĢ azaltılır ise, Cisim ya tam elastik ya da kısmen elastiktir ve ilk durumuna döner. Bu duruma elastisite denir. Bir baĢka deyiĢle bir cisimde elastisite; kalıcı Ģekil değiĢikliğinin olmaması demektir.
2.1. ÇEKME (GERĠLME – ġEKĠL DEĞĠġTĠRME) DĠYAGRAMI
ġekil 2.1 Çekme diyagramı (Curun,1981) Kuvvet etkisi ile bir cismin Ģekil değiĢtirmesine etki eden faktörler: 1- Malzemenin cinsi 2- Cismin Ģekli 3- Yükün cinsi ve Ģiddeti Dayanımda malzemenin önemini anlamak için, değiĢik malzemelerle aynı deneyler yapılır. ġeklin önemi için, aynı malzemeden farklı Ģekilli deney parçaları kullanılır. Yük ise, deney sırasında yavaĢ yavaĢ arttırılarak yüklenir. Yük büyüdükçe Ģekil değiĢikliği de artar. ġekil 2.1’de görülen grafik (çekme diyagramı) yük ve uzama yerine, birim yük (gerilme) ile birim uzama ( Ģekil değiĢtirme) arasında çizilir. Çünki iki örneğin karĢılaĢtırılabilmesi için birim esası dikkate alınır. Orantı sınırı: O – P arasında diyagram bir doğrudur. Bu da P noktasına kadar gerilme ile Ģekil değiĢtirmenin orantılı olduğunu gösterir. (Hooke kanunu; Şekil değişince kuvvet de değişir.) Ancak bu kanun bazı malzemeler için ve orantı sınırına kadar geçerlidir. Dökme demir, kösele, taĢ, tahta gibi bazı malzemelerde orantı sınırına kadar olan doğrusal kısım çok azdır. Ancak genel olarak P noktasına kadar gerilme – Ģekil değiĢtirme bağıntısı doğrusaldır denir.
Öğrt. Görevlisi Serap KARAGÖZ
14 Elastik cisimle ilgili teoriler, gerilme – Ģekil değiĢtirmenin orantılı olduğu savına dayandığından, bir malzemenin taĢıyabileceği en büyük gerilme orantı sınırındaki σP gerilmedir. Elastik sınır: Malzemenin elastik özelliğinin sona erdiği sınır olarak tanımlanır. Teorik olarak bu sınıra kadar, yükün kalkması halinde malzeme (çubuk) tamamen eski halini alır. Çelik malzemelerde orantı sınırı ile elastiklik sınırı çok yakındır. Pratikte bu iki sınır tek olarak düĢünülür. (E noktası) Akma sınırı: Kalıcı Ģekil değiĢikliğinin % 0,2 değerine eriĢtiği gerilme sınırı olarak kabul edilir. Bu sınırda malzeme içinde büyük değiĢiklikler meydana gelir. Çekme doğrultusuna göre 450 açılı çizgiler oluĢur (Büyüteçle görülebilir). Bu çizgiler (Luders – Hartman çizgileri) plastik Ģekil değiĢikliğinin baĢlangıcını gösterir (F noktası). Bu da akma sınırı olarak gösterilir. Kopma sınırı: Malzemede kopmadan önce oluĢan en büyük gerilme olarak tanımlanır. Akma sınırından sonra yükleme sürdürülürse, kesitte daralma baĢlar, bir süre sonra da çubuk yükü kaldıramaz duruma gelir ve kopar. Kesit daralması ile birlikte uzama da olur. Ancak hesaplamalarda ilk kesit alanı dikkate alınır. (B noktası) Emniyet katsayısı: Bir makine parçasının dıĢ etkilere dayanması beklenir. Dayanım hesaplamalarının amacı da budur. Bir makine elemanı hiçbir zaman tehlikeli sayılan sınır değerine kadar yüklenmez. Bir malzemenin emniyetli gerilmesi orantı sınırını geçmemelidir. Orantı sınırını tam olarak saptamak zor olduğundan, akma veya kopma dayanımının bir emniyet katsayısına bölünmesi ile saptanabilir. Birçok malzemede orantı sınırı kopma dayanımının yarısı kadardır. Statik yüklerde orantı sınırının yarısı emniyetli gerilme olarak alınır. Teknikte emniyet katsayısının kullanılma nedenleri: a. DıĢ kuvvetler ve momentler tam olarak belirli değildir. b. Dayanım formüllerinde bir çubuk esas alınır. Oysa gerçek makine parçaları çubuktan çok farklıdır. c. Mukavemete göre malzemenin ideal özelliklere sahip olduğu düĢünülür. Pratikte bu mümkün değildir. d. Zaman ve çevre etkisini hesap yoluyla değerlendirmek çok güçtür. Çekme gerilmesi: Malzemede kopmadan önce oluĢan en büyük gerilmedir. Bu değer uygulanan kuvvetin malzemenin ilk kesitine bölünmesi ile bulunur. HOOKE KANUNU: Çubuğun uzaması, çekme kuvveti ve uzunluğu ile doğru orantılı olup, kesit alanı ve elastisite modülü ile ters orantılıdır. σÇ - Çekme dayanımı (daN/ cm2) F F .L Δ - Toplam uzama ç F - Kuvvet (daN) A A.E L - Uzunluk (cm) L A - Dik kesit alanı (cm2 )
ε
ε
E - Elastiklik modülü (daN/ cm2) – Birim uzama Elastiklik modülü: Çekme diyagramında P noktasına kadar olan doğrunun eğimidir (Birim kuvvet ile uzama oranı). E sembolü ile ifade edilir. - Birçok çelik cinsi için E= 2.10 6 daN/ cm2 veya E= 2,1.106 daN/ cm2
Öğrt. Görevlisi Serap KARAGÖZ
15
2.1.1. Problemler 1. Uzunluğu 75 cm ve çekme gerilmesi 950 daN/ cm2 olan çelik çubuğun toplam uzamasını bulunuz. 2. Uzunluğu 500 mm olan çelik çubuk, bir çekme kuvveti etkisi ile 0,5 mm uzuyor. Çubuğun hacmi 600 cm3 olduğuna göre çekme kuvvetinin Ģiddetini bulunuz. 3. ġekildeki sistemde bulunan askı telinde meydana gelen gerilmeyi bulunuz. Fç 2m
3m 5m
F=15 kN
4. ġekilde görülen silindirik boruya etki eden kuvvet F= 150 tondur. Malzemenin güvenli dayanımı σg= 850 daN/cm2 olarak verildiğine göre borunun et kalınlığını bulunuz. Ġç çap 10 cm’dir. F
5. ġekilde görülen çekilmeye çalıĢan çubuğun boyu 50 cm, dik kesit alanı 8 cm2 , etki eden kuvvet F= 2500 daN olduğuna göre toplam uzamayı bulunuz. Çubuk malzemesi çeliktir. F
F 50
6. Bir çekme deneyinde etki eden kuvvet 30 ton, çubuk kesiti 7 cm 2’dir. Çubuk dik kesitindeki gerilmeyi bulunuz. F
F Gerilme
Öğrt. Görevlisi Serap KARAGÖZ
16
7. ġekilde görülen zincirin halka çapı 15 mm ve
σg= 850 daN/ cm2 olduğuna göre
taĢıyabileceği yükü bulunuz.
d
d
F
8. ġekilde görülen silindirik bir çubuk, M30 vida ile bağlanmıĢ ve ucuna 2200 daN asılmıĢtır. Çubuk kesitinde oluĢacak çekme gerilmesini bulunuz.
Ød
F
9.
ġekilde görülen sistem F= 2500 daN’luk bir yük taĢımaktadır. Çubuk kesitlerini hesaplayınız. y S1
S1
X
S2
X
F
Çekmede σg= 150 daN/ cm2 Basmada σg= 75 daN/ cm2
S2 y
10. 5000 daN’luk bir cisim, yatay ile 20 0 açı yapan 125 cm uzunluğundaki iki tel ile asılmıĢtır. Tellerin güvenli gerilmesi σg= 900 daN/ cm2 olduğuna göre tel çapları ne kadar olmalıdır? Yükün etkisi ile bir telde meydana gelen toplam uzamayı bulunuz. E=2,1.10 6 daN/ cm2 S1
S
F
2.2. DARBE ġEKĠL DEĞĠġTĠRMELERĠ
Öğrt. Görevlisi Serap KARAGÖZ
17
Ani bırakılmıĢ yüklerde (h yükseklığınden) (ġekil 2.2) Ağırlık
1
1
2.E.h. A Q.L
.x
h
L
max
σmax : maksimum gerilme (daN/cm2) x : Dinamik katsayı Yük ani olarak cisme etki ettirilirse h = 0 olur. Çekme deneyinde elastik sınır içinde uygulanan herhangi bir andaki kuvvet ani olarak aynı parçaya uygulanırsa gerilme iki katına çıkar.
σmax= 2 . σ
ġekil 2.2
Kesit
2
max
Maksimum uzama:
2 h
h=0 olursa Δmax= 2. Δ
tayini :
A
2.E.Q.h 2 g .L
(cm2)
2.2.1. Problemler 1. Bir cisim eksenel olarak 55 daN ağırlığındaki bir cismin darbeli etkisi altında kalıyor. Çubuk boyu 3 m, E = 2,1.10 6 daN/ cm2 ve σg= 1500 daN/ cm2 olduğuna göre emniyetli kesit çapını ve max uzamayı bulunuz (L=h). 2. Üst ucundan ankastre ve düĢey bağlanmıĢbir çubuğun çapı 10 cm, boyu 2m ve malzemesinin güvenli dayanımı σg= 1250 daN/ cm2’dir. 1,2 m yükseklikte ani olarak yüklendiğine göre taĢıyabileceği kuvveti bulunuz (E=2. 106 daN/ cm2 ). 3. ġekildeki çubuğun çapı 2,5 cm, boyu 5 m, malzemenin Elastiklik modülü E=2. 10 6 daN/ cm2dir. 3 m yükseklikten bırakılan 500 daN’luk yükün etkisiyle oluĢacak maksimum uzama ve malzemenin maksimum gerilmesini bulunuz.
h
L
d
F
Öğrt. Görevlisi Serap KARAGÖZ
18
2.3. BĠR ÇUBUĞUN AĞIRLIĞINDAN DOĞAN GERĠLME VE ġEKĠL DEĞĠġTĠRME
F .L A.E A
B
B
y
L
A
Yalnızca dıĢ kuvvetler söz konusu ise kullanılır. Çubuğun boyu uzun ise kendi ağırlığı da dikkate alınır. L boyundaki çubuk ağırlığı W A.L. (γ : özgül ağırlık) A-A kesitindeki gerilme F A.L. A A A B-B kesitindeki gerilme F A. . y B B A
F ġekil 2.3
ġekil 2.3’deki A – A kesiti en tehlikeli kesittir ve A – A kesitindeki en büyük gerilme malzeme için uygun görülen güvenli gerilme kadar olmalıdır.
F
g
A.L. y A
F A
A.L. A
g
F A
L.
g L.
F A
F
A
g
.L
Δ = Δ1 + Δ2 Δ = DıĢ kuvvet ve çubuğun ağırlığından oluĢan toplam uzama Δ1 = DıĢ kuvvetin etkisi ile oluĢan uzama Δ2 = Çubuğun kendi ağırlığından oluĢan uzama
F .L A.E
1
1
2
F 2
F .L A.E
W .L 2 A.E
W .L 2 A.E
F
W .L 2 A.E
2.3.1. Problemler 1. Bir ucundan ankastre düĢey bir çubuk 15 m boyunda ve 15 cm çapındadır. Çubuğun ucuna 2500 daN asılmıĢ olup, özgül ağırlığı 7,8 gr/ cm3 ’tür. En tehlikeli kesitteki gerilmeyi ve çubuğun toplam uzamasını bulunuz (E = 2,1.106 daN/ cm2) 2. DüĢey bağlanmıĢ bir çubuk 4 m boyunda ve 8 cm çapındadır. Çubuk malzemesinin özgül ağırlığı 7,8 gr/ cm3 ve elastiklik modülü E = 2,1.10 6 daN/ cm2, güvenli gerilmesi 120 daN/ cm2olduğuna göre taĢıyabileceği yükü ve yükün etkisiyle oluĢacak maksimum uzamayı hesaplayınız.
Öğrt. Görevlisi Serap KARAGÖZ
19
2.4. Eġ DAYANIMLI ÇUBUKLAR Cismin ucundan aĢağıya inildikçe cismin ağırlığından dolayı gerilmeler artmaktadır. O halde çubuğun kesiti dibe doğru geniĢleyecek Ģekilde Ģekillendirilmelidir. Buna göre de cismin her yerindeki kesitte güvenli dayanım olmalıdır (ġekil 2.4). F A A 0 F g Ao
A .e x 0
y
A
Q Ağırlık
Q Ağırlık
dy
A .e 0
.y
L
A
g
Ao A
F
ġekil 2.4 Sağlamlık ve ekonomiklik koĢullarını taĢıyan çubuklar
2.4.1. Faturalı ve eĢ dayanımlı çubuklar
L4
Bir makine parçasını Ģekil 2.4’deki gibi Ģekillendirme masraflıdır. EĢ kesitli yapılması durumunda ise malzeme israfı ortaya çıkar. ĠnĢaat iĢlerinde malzeme iĢçilikten fazla olacağı için kolonları yukarıdaki gibi (Ģekilde) Ģekillendirmek daha ekonomiktir. Oysa makinecilikte boĢaltılan malzeme fazla değildir, ancak iĢçilik fazladır. Buna rağmen verimi arttırmak için eĢ dayanımlı çubuklar istenmektedir. Bu durumda iĢçiliği azaltmak için parçalar konik veya faturalı yapılarak eĢ dayanım elde edilir (ġekil 2.5).
L3
A4
F
1 – 1 Kesit alanı
A1
2 – 2 Kesit alanı
A2
3– 3 Kesit alanı
A3
g . A2 g .L3
4 – 4 Kesit alanı
A4
g. A3 g .L4
.L1
g. A1 g .L2
L2
L
A3
g
L1
A2
A1
F
ġekil 2.5
Δ = Δ1 + Δ2 + Δ3 + Δ4
Öğrt. Görevlisi Serap KARAGÖZ
20
2.4.2. Problemler 1. 15 m uzunluğunda ve dikey duran bir çubuğun 15 tonluk yük asılacaktır. Çubuğun dört eĢit uzunlukta kademeli olması istenmektedir. Özgül ağırlığı γ = 7,7 gr/cm 3 olduğuna göre her kademenin kesit çapını bulunuz. σg = 450 daN/cm2 2. Bir çubuğun boyu 20 m ve etki eden çekme kuvveti F = 1,5 tondur. Çubuğun eĢ dayanımlı ve faturalı olarak üretilmesi isteniyor. σg = 500 daN/cm2 , γ = 0,0078 Kg / cm3 ’tür. Her kademe aynı uzunlukta ve boy üçe bölüneceğine göre A1, A2, A3 kesit alanlarını hesaplayınız. 3. Üstteki problemde F = 25 ton, L = 200 m alındığında kesit alanlarını ve toplam uzamayı bulunuz. Malzeme kazancını yüzde olarak gösteriniz. ( kademe dört adet olacaktır.) E = 2,1.106 daN/cm2
2.5. ISI ETKĠSĠ OLDUĞU ZAMAN UZAMA σ = α . ( t2 – t1) . E Δ = α . ( t2 – t1) . L
α = malzemenin uzama katsayısı t2 – t1 = ısı farkı E = Elastikiyet modülü L = Çubuk boyu
2.5.1. Problemler 1. 12 m boyunda çelik bir çubuğun ısısı 60° yükseltiliyor. Çubuk çapı 8 cm olduğuna göre çubuğun uzamasını bulunuz. Çeliğin uzama katsayısı α = 12 . 10-6 2. Çekmeye çalıĢan bir çubuğun sıcaklığı 55° yükseltiliyor. Etkisi altında kalacağı gerilmeyi bulunuz. Uzama katsayısı α = 12 . 10-6, Elastiklik modülü E = 2,1.10 6 daN/ cm2
Öğrt. Görevlisi Serap KARAGÖZ
21
2.6. EĞĠK KESĠTLERDEKĠ GERĠLMELER p
F
F
A1
A
q
p
σx
S S
S
F
S
A
A1
q
S
A – Dik kesit alanı (cm2 ) A1 – Eğik kesit alanı (cm2 ) σn – Normal Gerilme (daN/ cm2 ) Тφ – Kayma gerilmesi (daN/ cm2 ) F – Dik kesitteki çekme kuvveti (daN) S – Eğik kesitteki çekme kuvveti (daN) F F S x A1 A A A Cos A1 A1 Cos
ġekil 2.6 n
S.Cos
n
x
.Cos 2
S
F A / Cos
F .Cos A
x
.Cos
S
S . cos A
S o
m
B C
Eğik kesitlerdeki gerilmeler MOHR DAĠRESĠ’ni kullanarak çizim yolu ile de bulunabilir. Dairenin çapı çubuğun dik kesit gerilmesi ( x ) kadar alınır. O noktasından açısıyla saatin dönme yönünün tersine çemberi kesecek bir doğru çizilir. Doğrunun çemberi kestiği noktadan (A) yatay eksene (
n)
dik inilerek B noktası iĢaretlenir. OB
doğrusu Normal gerilmeyi( n ), AB doğrusu (Kayma gerilmesini verir. OA doğrusu ise eğik kesitteki S gerilmesi kadardır (ġekil 2.7). ġekil 2.7 Mohr dairesi
2.6.1. Problemler 1. Bir çubuğun çapı 6,5 cm, etki eden eksenel kuvvet F = 4500 daN’dur. DüĢeyle 30 0’lik açı yapan bir düzleme etki eden normal ve kayma gerilmelerini bulunuz. 2. Bir çubuğun çapı 4 cm ve etki eden eksenel kuvvet F= 6300 daN’dur. Eksene dik düzlemden 300’lik açı yapan bir düzlemde meydana gelen normal ve kayma gerilmelerini hesaplayınız. 3. Bir p – q düzlemine 300 daN/ cm2 kayma ve 850 daN/ cm2 normal gerilmeleri etkiyor. Φ açısını ve çubuk çapı 6 cm olduğuna göre eksenel F kuvvetini hesaplayınız.
Öğrt. Görevlisi Serap KARAGÖZ
22
2.7. GERĠLME YIĞILMALARI F
F r/2
D
D
C
D
C
2b
r
2r
2a
B
A
B
A
L
F
A2
L
F
F r/2
d
D
D
2b
r
2a
A1
B A2
L
ġekil 2.8 Gerilme yığılmaları
F 2r L max
max
1 10 3. F 3. A
2a L max
1 10
K.
max
1
2a b
K
1
Öğrt. Görevlisi Serap KARAGÖZ
23
ġekil 2.9 Gerilme yığılmaları diyagramları (Yazıcıoğlu,1998)
2.7.1. Problemler 1. Çekmeye çalıĢan kademeli milde çekme kuvveti F = 12 ton, malzemenin çekme gerilmesi 550 daN/ cm2’dir. ġekildeki milin maksimum gerilmesini bulunuz.
F
Ø20
Ø30
2. ġekildeki kademeli çubuğun güvenli gerilmesi 250 daN/ cm2’dir. dikkate alarak F kuvvetinin en fazla ne kadar olabileceğini bulunuz. D=3 cm d=2cm R5 F
Gerilme yığılmasını
Öğrt. Görevlisi Serap KARAGÖZ
24
3. KESME GERĠLMESĠ Cisimlere etkiyen kuvvetler etkilenen kesit doğrultusunda ise cisim kesilmeye zorlanıyordur ve kesitte kayma gerilmesi oluĢur. Cisimlerin kesitlerinde kesme kuvveti, yalnız baĢına ender durumlarda oluĢur. Genellikle diğer zorlanmalarla birlikte bulunur. Örneğin bir cismin makasla kesilmesi (sadece kesme kuvveti) basit kesme durumudur. Kesme kuvveti çubukların ve kiriĢlerin kesitlerinde genellikle eğilme momenti ile birlikte olur. * Basit kesmelerde F kuvveti ile kesilmeye çalıĢan bir cisimde, F kuvveti kadar bir kuvvet kesilmeye karĢı koyar (-F). Kesitteki birim alana düĢen karĢı koyma kuvvetine KAYMA GERĠLMESĠ denir (Т) (ġekil 3.1).
F daN / cm2 (Ortalama kayma gerilmesi) A F B A C
D -F
ġekil 3.1 Kesme gerilmesi Çekme ve basma gerilmeleri etki ettikleri yüzeylere dik olan kuvvetler tarafından meydana getirilir. Bu nedenle çekme ve basma gerilmelerine NORMAL GERĠLME, kayma gerilmesine ise TEĞETSEL GERĠLME denir. Uygulanan kuvvet kesit üzerinde iki tarafı birbiri üzerinde kaymaya zorluyorsa, o yüzeylerde KAYMA GERĠLMESĠ oluĢur. Makinecilikte kamalar, perçinler, pimler, cıvatalar kesilmeye çalıĢan elemanlardır. Ancak cıvatalar daha çok çekilmeye de çalıĢırlar.
3.1. KAYMA ÇEġĠTLERĠ F F
F F
F
F
F
a)Tek çalıĢmalı kayma
b) Çift çalıĢmalı kayma
ġekil 3.2 Kayma çeĢitleri
c) Kayma çalıĢan alandır
Öğrt. Görevlisi Serap KARAGÖZ
25
3.2. PROBLEMLER 1. ġekildeki volan bir makinenin krank miline hareket vermektedir. Arzu edilmeyen bir sıkıĢma halinde pimin kesilerek hareketin durması istenmektedir. Volan dakikada 200 devirle dönmekte ve 5 kW iletmektedir. Mil çapı 40 mm, pim çapı 7 mm olduğuna göre pimde oluĢacak kesme gerilmesini bulunuz. Ød
2R
2. ġekildeki miller aynı kesitli çözülebilir bir kavrama ile bağlanmıĢtır. Kavramanın flanĢlarında 6 adet M10 cıvata kullanılmıĢtır. Ġletilen güç 75 KW, devir sayısı 200 dev/dk, olduğuna göre cıvataların kesme gerilmesini bulunuz (R = 15 cm). ( Kavramanın sürtünmesiz olduğu kabul edilecektir)
3.
ġekilde görülen s=4 mm kalınlığındaki sacın kesilme dayanımı T= 3400 daN/ cm2’dir. Zımba gerecine Þ = 1000 daN/ cm2 ’lik bir basınç gerilmesi gelmesi için; 1. Zımba çapı d = ? 2. P kuvveti ne kadar olmalıdır? F
s
d
4. ġekildeki taĢıyıcı sistemde cıvata malzemesi Ç 1020 kullanılmıĢtır. DeğiĢken etki altında güvenli kesilme dayanımı Tg = 600 daN/ cm2, etki eden en büyük kuvvet 10 ton alınırsa cıvatanın diĢ dibi ve diĢ üstü çapları ne kadar olur?
Öğrt. Görevlisi Serap KARAGÖZ
26
F
F
5. ġekilde hafif bir uçağın iniĢ takımının bir kısmı görülmektedir. A ve B ‘deki cıvatalar çift, C’deki cıvata ise tek çalıĢmalıdır. Tg = 560 daN/ cm2 olduğuna göre cıvataların çaplarını hesaplayınız. R = 1200 daN
A F
C
B
R
500=b
200=a
(Curun,1981)
4. BURULMA GERĠLMESĠ
Öğrt. Görevlisi Serap KARAGÖZ
27
F M
r
o A
A
Mb
o
L
F
Mb
ġekil 4.1 Burulma
Mb 955
N n
(rad )
F .r
Mb = Burulma momenti (N.m) N = Güç (KW) N = Dakikada dönme sayısı (dev/dk) F = Etki eden kuvvet daN r = Milin yarı çapı (cm)
Mb.L G. p
φ = Burulma açısı (rad) (360° = 2π (rad) Mb = Mile uygulanan burulma momenti (Nm) L = Mil boyu (cm) Ip = polar atalet momenti (cm4) G = Kayma modülü Çelik için G = 8 . 105 daN/cm2 AhĢap için G = 7000 daN/cm2 Dökme demir için G = 3,8 . 105 daN/cm2
P
.d 4 32
Wp
P
r
.d 3 3 cm 16
Tmax = Maksimum kayma gerilmesi (daN/cm2) Mb = Burulma momenti (daN . cm) Wp = Polar dayanım momenti (cm3 ) Ip = Polar atalet momenti (cm4 ) r = Milin yarı çapı (cm)
max
Mb Ip / r
max
Mb r 1 Ip
Mb Wp
Mb r p
Öğrt. Görevlisi Serap KARAGÖZ
28
4.1. PROBLEMLER 1. ġekilde görülen çelik çubuk tek taraflı ankastredir. Çubuk çapı 25 mm ve moment kolu BC 40 cm’dir. Güvenli kayma gerilmesi Tg=650 daN/cm2 olduğuna göre F kuvveti ne kadar olmalıdır?
d
90°
A
B
C
F
2. ġekilde görülen, çapı 10 cm olan bir mil, dakikada 45 devirle dönmektedir. Tg=400 daN/cm 2 olduğuna göre iletebileceği güç ne kadardır? A
d
B
3. ġekildeki sistemde A diĢli çarkı 350 KW almakta ve bu gücü B ve C çarklarına 220 KW ve 150 KW olarak vermektedir. d1 çapı C çarkının etkisi altındadır. Güvenli kayma gerilmesi Tg=500 daN/cm2 olduğuna göre mil çaplarını bulunuz.
C
350 KW
B
1500 cm
d2
220 KW
d1
150 KW
A
250 KW
1500 cm
4. Bir geminin pervane mili, dakikada 125 devirle dönerken 350 KW iletecektir. Tg=420 daN/cm2 olduğuna göre çapın 20 katı kadar uzunluktaki burulma açısının 1o’yi geçmemesi için mil çapı ne kadar olmalıdır? 360o = 2Π rad 2Π / 360 = Π / 180 rad 5. ġekildeki boru burulmaya çalıĢmaktadır. DıĢ çapı 40 mm, iç çapı 20 mm, boyu 120 cm, emniyetli kayma gerilmesi 150 daN/cm2 olduğuna göre meydana gelecek momenti ve burulmanın etkisiyle B noktasında meydana gelecek açısal dönme miktarını bulunuz. G= 8x104 daN/cm2
5. BURKULMA GERĠLMESĠ
120 cm
Mb 0 Ø2
Ø 40
Öğrt. Görevlisi Serap KARAGÖZ
29 Kesit alanları küçük, boyları kesitlerine göre büyük olan çubuklara NARĠN ÇUBUKLAR adı verilir. Narin çubuklar eksenel olarak çalıĢırsa burkulur ve kırılır. Bu nedenle narin elemanların kuvvet altındaki davranıĢlarını incelerken, hem kesitleri, hem boyları göz önüne alınmalıdır. Narin bir basınç çubuğunun dayanımını kaybetmesi, çubuğun ekseninin yanal yer değiĢtirmeler yaparak, doğru Ģeklinin bozulmasıdır. Bu olaya da burkulma (FLAMBAJ) denir. Bir çubuğun burkulmasına neden olacak kuvvetin, burkulma baĢlangıcındaki değerini bulabilmek için, yapılan deneyler sonucunda üç yöntem bulunmuĢtur. 1- Euler yöntemi 2- Tetmajer yöntemi 3- ω yöntemi Bu yöntemlerin hangisinin hesaplamada kullanılacağına çubuğun narinlik derecesine bakılarak karar verilir.
Basılma Gerilmesi
A.Lk 2 λ = Narinlik derecesi 2
A = Kesit alanı (cm )
E Akma sınırı C
Te
tm
Orantı sınırı
aje r
B
E
Lk = Flambaj boyu (cm) I = Atalet momenti (cm4)
u
l e
r A
D 0
20
40
60
80
100 120 140 160 180 200 220 250
N a r i n l i k
D e r e c e s i
ġekil 5.1 Basma gerilmesi-Narinlik derecesi diyagramı (Curun,1981) Yukarıdaki diyagrama göre (ġekil.59); λ > 100 için Euler yöntemi (Basınç gerilmesi orantı sınırının altında olan çubuklar için) 60 < λ < 100 için Tetmajer yöntemi ( Basınç gerilmesi orantı sınırı ile akma sınırı arasında olan çubuklar için) ω yöntemi λ’nin bütün değerleri için kullanılabilir, ancak λ < 60 için daha uygundur. λ > 60 bölgelerinde diğer yöntemler (Euler – Tetmajer) daha iyi sonuç verir.
5.1. EULER YÖNTEMĠ
Öğrt. Görevlisi Serap KARAGÖZ
30
2
.E. Lk 2
Fk
F
Fk Sk
Fk = Flambaja baĢlangıç kuvveti (daN) E = Elastiklik modülü (daN/cm2 ) I = Atalet momenti (cm4) Lk = Flambaj boyu (cm)
k. A Sk
Fk A
k
F = Uygulanabilecek kuvvet (daN) Sk = Güven katsayısı Fk
F
II)
L
L
I)
Alt uç ankastre üst uç serbest Lk = 2L
Her iki uç da serbest (mafsallı) Lk = L
2
2
.E.I 4 L2
Fk
.E.I L2
Fk Fk
Fk
IV)
L
L
III)
Alt uç ankastre, üst uç serbest
Her iki uç da ankastre
Lk
(mafsallı)
Lk
Fk
L 2
2
0,707 L
Fk
2
.E.I L2
ġekil 5.2 Narin çubuklar 5.1.1. Problemler
0,5L
4
2
.E.I L2
Öğrt. Görevlisi Serap KARAGÖZ
31 1. ġekildeki 10 cm çapında ve boyu 300 cm olan iki ucu da mafsallı çelik çubuğun narinlik derecesini bulunuz.
F
F 300
2. ġekilde görülen bir ucu ankastre, diğer ucu boĢta olan 350 cm boyunda, 25 cm çapındaki ahĢap bir kolonun kritik yükünü ve kritik gerilmesini hesaplayınız (E = 105 daN/cm2).
L
F
3. Yukarıdaki Ģekilde olduğu gibi bir ucu ankastre, diğer ucu boĢta ve 30x20 cm dikdörtgen kesitli ve boyu 500 cm olan çubuğun güven katsayısı 10 olduğuna göre taĢıyabileceği yükü bulunuz (E = 120000 daN/cm2). 4. Yukarıdaki Ģekilde çubuğun taĢıdığı yük 2 ton olduğunda EULER formülüne göre güven katsayısını hesaplayınız. 5. Her iki ucu da mafsallı, basılmaya çalıĢan çelik bir çubuğun kesiti 25 cm 2’ dir. Çubuğun orantı sınırı σp = 2100 daN/cm2 ve E = 2,1 . 10 6 daN/cm2 olduğuna göre EULER formülünün geçerli olabileceği en küçük çubuk boyunu hesaplayınız. 6. ġekildeki gibi yüklenen bir sistemde AC çubuğu (çelik) basılmaya çalıĢmaktadır. Flambaja uğramaması için çapı ne kadar olmalıdır? Sk = 5, E = 2.106 daN/cm2 , W = 3000 daN 400 cm
A
300 cm
B
0 50
cm
W
C
7. ġekildeki kolonun burkulma olmadan F yükünü taĢıyabilmesi için et kalınlığının ne kadar olması gerektiğini hesaplayınız.
Öğrt. Görevlisi Serap KARAGÖZ
32
d
L
F
D
5.2. TETMAJER YÖNTEMĠ Çizelge 5.1 Bazı malzemelerin burkulma kullanım sınırları (Curun,1981) Basma gerilmesi
Tetmajer’e göre hesaplama
Euler’e göre hesaplama
λ ≤ 1,8
1,8 < λ < 100
λ ≥ 100
Tetmajer’e göre kritik gerilme daN/cm2 σk = 293 – 1,94 λ
Dökme demir
λ ≤ 5
5 < λ < 80
λ ≥ 80
σk = 7760–120 Λ+1,53 λ
YumuĢak çelik
λ ≤ 10
10 < λ < 100
λ ≥ 100
Orta sert çelik
λ ≤ 10
10 < λ < 89
λ ≥ 89
%5 nikelli çelik
λ ≤ 10
10 < λ < 86
λ ≥ 86
σk = 3100 – 11,4 λ σk = 3350 – 6,2 λ σk = 4700 – 23 λ
Malzeme AhĢap
2
.E
p p
2
= Narinlik derecesi E = Elastiklik modülü (daN/cm2) σp = Orantı sınırı (Akma sınırı) (daN/cm2) p
5.2.1. Problemler 1. Çelik bir çubuğun; orantı sınırı σp = 2000 daN/cm2, elastiklik modülü E = 2,1.10 6 daN/cm2, akma sınırı 2500 daN/cm2’dir. Tetmajer formülünün kullanılabileceği en küçük narinlik derecesini bulunuz. 2. Tetmajer formülünü kullanarak λ = 90 olabilmesi için yumuĢak çelik bir malzemede ki kritik gerilmeyi hesaplayınız.
5.3. ω YÖNTEMĠ Çizelge 5.2 Çelik malzemelerin güvenlik katsayıları (ω) (Curun,1981)
Öğrt. Görevlisi Serap KARAGÖZ
33
λ
110
120
130
140
160
180
200
220
240
250
YumuĢak çelik
2,11
2,43
2,85
3,31
4,32
5,47
6,75
8,17
9,73
10,55
Sert Çelik
3,06
3,65
4,28
4,96
6,48
8,21
10,13
12,26
14,59
15,83
σ . ω ≤ σg Çubuğun narinlik derecesine göre çizelge.2’den ω değeri seçilir. Bulunan değer malzemenin güvenli dayanımından küçük olmalıdır.
5.3.1. Problemler 1. 5000 daN ‘luk bir yükle basılmaya zorlanan sert çelik malzemeden yapılmıĢ çubuğun çapı 4 cm’dir Narinlik derecesi 160 ve her iki ucu da ankastre olan çubuğun boyu ve malzemesinin güvenli dayanımı en az ne kadar olmalıdır? 2. 7500 daN bir basma kuvveti ile zorlanan 200 cm boyunda ve 5x5 cm kare kesitli yumuĢak çelik çubuğun güvenli gerilmesi 1250 daN/cm2’dir. Bu verilere göre kesitin uygunluğunu kontrol ediniz. Lk = L
6. EĞĠLME GERĠLMESĠ Bir kiriĢin eksenine dik etki eden kuvvetler, çubuk kesitlerinde KESME KUVVETĠ ve EĞĠLME MOMENTĠ meydana getirir.
Öğrt. Görevlisi Serap KARAGÖZ
34 Eğilme momenti sonucu çubuğun doğrusal durumu eğrisel duruma geçer ve çubuk ekseni de bir eğri olur. Bu eğriye ELASTĠK EĞRĠ adı verilir. Eğilme momenti ile bu momenti meydana getiren EĞĠLME GERĠLMESĠ ve düĢey KESME KUVVETĠ ile bu kuvvet etkisi altında oluĢan KAYMA GERĠLMESĠ arasında bağıntı vardır. Bu bağıntıları bulurken; 1. KiriĢin düzlem olan dik kesiti eğilmeden sonra da düzlem kalır. 2. Çekilmede ve basılmadaki elastiklik modülleri eĢittir. 3. KiriĢ malzemesi homojendir, Hooke kanununa uygundur. 4. KiriĢ orijinal olarak doğrudur ve kesitler sabittir. koĢullarını kabul edilir. Bir eğilme probleminin çözülebilmesi için kiriĢ kesitinin atalet momenti, dayanım momenti, tarafsız eksen, kesme kuvveti ve eğilme momenti diyagramlarının çizimi gibi bilgilere gerek duyulur.
6.1. KĠRĠġLERDE KESME KUVVETĠ (MAKASLAMA) VE MOMENTLER Nokta yükle yüklenen bir kiriĢte (ağırlık dikkate alınmadan) denge Ģartları (ġekil 6.1) F
x a a RA
RB x V M
RA
RA
M
A
V A
RB
V
ġekil 6.1 Nokta yüklenmiĢ bir kiriĢ a. Σ Fx = 0 b. Σ Fy = 0 Ģartı için RA ‘ya karĢı bir iç kuvvet vardır. Bu kuvvet kesme kuvvetidir. c. Momentler toplamının ΣM = 0 olması gerekir. RA = V olduğunda M = RA . x olur. KiriĢi eğmeye çalıĢan bu moment EĞĠLME MOMENTĠ’dir. d.
KiriĢin her iki parçasında da kesme kuvveti ve eğilme momenti eĢit olmalıdır.
SONUÇ olarak; kiriĢler eksenine dik kuvvetlerle yüklenirse, kiriĢ kesitlerinde kesme kuvveti ve eğilme momenti meydana gelir. M – Eğilme momenti daN.cm Mmax – En büyük eğilme momenti daN.cm q – Birim uzunluktaki yayılı yük daN/cm daN/m Düzgün yayılı yüklerde:
Öğrt. Görevlisi Serap KARAGÖZ
35
x/2 A RA
q.L 2 x uzaklığındaki kesitte;
q daN/cm qx
B RB
V L
RA
RB
RA
q.x V
V
Vx
q
L/2
L/2
Mx
Mx
Mmax
X ġekil 6.2
L X 2 q. X L X 2
L için 2
Tek taraflı ankastre kiriĢler için;
x
L
F
x -F.L
-F.L F
L-x Vx
F V M
Mx -F.L ġekil 6.3 x = 0 için M = F. L x = L için M = - F. L + F . L Mmax = - F . L
6.1.1. Problemler
V=F(+) L-x
V=F(+)
F
M
q.L2 8
Öğrt. Görevlisi Serap KARAGÖZ
36 1.
ġekildeki basit kiriĢin (nokta yüklü) kesme kuvveti ve moment diyagramlarını çiziniz.
F=4 ton 3m
RA 1m 2.
RB
ġekildeki gibi yüklenmiĢ kiriĢin maksimum eğilme momentini bulunuz.
2 ton 1m 1m
4 ton
6 ton 2m
4m
3 ton 2m
RA
3.
RB
Bir basit kiriĢ ġekildeki gibi düzgün yayılmıĢ yük ile yüklenmiĢtir. Bu kiriĢin kesme kuvveti ve eğilme momenti diyagramlarını çizerek maksimum momentin yeri ve değerini bulunuz. q=500 daN/m
4.
3m
2m
RA
4m RB
ġekildeki gibi yüklenmiĢ bir kiriĢin kesme kuvveti ve eğilme momenti diyagramlarını çizerek maksimum momentin yeri ve değerini bulunuz. q=1ton/m 2 ton 4 ton 1m 1m
4m 2m
6m RA
5.
RB
ġekildeki gibi yüklenmiĢ bir kiriĢin kesme kuvveti ve eğilme momenti diyagramlarını çizerek maksimum momentin yeri ve değerini bulunuz. F=100daN q=10 daN/m 2m 3m 5m
R1 R2
6.2. ATALET MOMENTLERĠ
Öğrt. Görevlisi Serap KARAGÖZ
37 Düzlem alanların atalet momentleri
x
h
A b
y
x
A. y 2
y
A.x 2
Statik moment = alan x uzunluk = A . L Atalet momenti = alan x uzunluğun karesi = A . L2
x y
ġekil 6.4 Dikdörtgen alanın atalet ve dayanım momentleri Atalet momenti A.h 2 x x 3
b h
b.h3 4 cm 3
b.h3 4 cm 12
tarafsız eksen
Dayanım momenti x
x
W
ġekil 6.5
W
h/2
b.h2 3 cm 6
Daire alanın atalet ve dayanım momentleri
Atalet momenti
.r 4 4
x
Dayanım momenti
W
.d 4 64
r
d4 20
0,05d 4cm4
.d 4 cm4 64
cm3
Boru kesitlerin atalet ve dayanım momentleri ØD
Ød
.D 4 64
Atalet momenti
ġekil 6.6 Dayanım momenti
W
32 D
BileĢik kesitlerde atalet ve dayanım momentler
.d 4 cm4 64
D 4 d 4 cm3
D4
d4 20
cm 4
Öğrt. Görevlisi Serap KARAGÖZ
38
b2 H
G
tarafsız eksen
e2
g
h2
b
d
g2
x
L g1
h1 A
n
m
D
F
e1
a
G E
C
x
B
b1
ġekil 6.7 2
Imn = I g + A . d Imn = ġeklin kendi eksenine göre atalet momenti Ig = Kesitin kendi ağırlık merkezinden geçen yatay eksenine göre atalet momenti A = kesit alanı d = Ġki paralel eksen arasındaki dik uzaklık ġekil.79’da görülen x – x eksenine göre atalet ve dayanım momentlerinin bulunması; 1- Yüzey iki parçaya ayrılır. 2- Alanların A noktasına göre statik momentleri bileĢke momentine Ms A1.a A2 .b eĢitlenir. A.e1 x Ms A.e1 Ms A1.a A2 .b A.e1
A1.a A2 .b A
e1 mn
A.d
g
2
2
G
g1
A1.d1
A2 .d 2
g2
d1
e1 a
d2
e2 L1 / 2
e2
L e1
2
Kesit simetrik olmadığından iki adet dayanın momenti vardır. G
W1
e1
cm3
W2
G
e2
cm 3
Problem: ġekildeki kesitlerin x – x eksenine göre atalet ve dayanım momentlerini bulunuz. 20
15
e2
g2
60
50
A1
G
g1
G
x
23.38
g1
e1
20
D
x 50
6.3. EĞĠLME FORMÜLÜ
g2
x
A2 x
40
Öğrt. Görevlisi Serap KARAGÖZ
39
A E
C F
B
G
tarafsız eksen
D
F ġekil 6.8 Eğilme ġekil 6.8’deki ankastre çubuk, ucundan düĢey bir kuvvetle yüklenirse eğilir. Eğilmede çubuk ekseni bir eğri halini alır. Bir kısım iplikler uzar, bir kısım iplikler kısalır. Bunlar arasında tarafsız bir yüzey vardır ki bunun boyu değiĢmez (Gerçekte iplikçiklerden sadece ağaç malzemelerde söz edilir. Ancak dayanımda diğer malzemelerde de liflerin olduğu kabul edilir). Tarafsız düzlem ve dik kesitin arakesitine TARAFSIZ EKSEN denir. Tarafsız düzlemin bir tarafında basılma (BD), diğer tarafında çekilme (AC) etkisi vardır. Tarafsız düzlemde basılma yada çekilme etkisi yoktur. AC’deki lif maksimum çekilme gerilmesine, BD’deki lif ise maksimum basılma gerilmesine karĢı koyar (ġekil 6.9). V=F
TE
e2
y
Gb
a1 a2
y1 y2
e1
Gz
Gd F
ġekil 6.9 Eğilme ve gerilmeler σz = maksimum gerilme
z
y e1
e
z
e
z b
.
y e1
*Tarafsız eksende gerilme 0’dır.
.y
e1
Me
.e1.
e
Me Wb
y => Eğilme Formülü e1
σb = Eğilmeden oluĢan çekilme veya basılma gerilmesi Me = Eğilme momenti ( daN . cm) I = Kesitin atalet momenti (cm4) y = Tarafsız eksenden ölçülen lif uzaklığı (cm)
6.4. EĞĠLME OKU (SEHĠM)
Me
Me e
e1
.y
.
z
Öğrt. Görevlisi Serap KARAGÖZ
40
F x
ymax
y
ymax
ġekil 6.10 Eğilme oku
F .L3 3.E.
ymax = Maksimum eğilme oku
6.4.1. Düzgün yayılı yükte eğilme x
RA
ymax
B RB
ymax
y
A
q daN/cm
5 q.L4 . 384 E.
L L=Çubuk boyu (cm)
Nokta yüklü basit kiriĢ; ġekil 6.11 Düzgün yayılı yükte eğilme
6.4.2. Nokta yüklü basit kiriĢte eğilme F
x
y
ymax
C A P/2
Tek taraftan L/2 ankastre düzgün L/2 yayılı
B P/2
ymax
F .L3 48.E.
L=Çubuk boyu (cm)
ġekil 6.12 Nokta yükte eğilme
6.4.3. Tek taraftan ankastre düzgün yayılı yükte eğilme x
y
q daN/cm
ymax
ymax
ġekil 6.13 Tek taraftan ankastre düzgün yayılı yükte eğilme
6.4.4. Problemler
q.L4 8.E.
Öğrt. Görevlisi Serap KARAGÖZ
41 1. ġekilde görülen tek taraftan ankastre bir kiriĢ 3 m boyundadır ve ucundan 2500 kg yüklenmiĢtir. KiriĢ 10 x 10 kare kesitlidir. En dıĢtaki lifte oluĢan gerilmeyi, Eğilme oku uzunluğunu (ymax ) bulunuz. E = 2,1 . 106 daN/cm2 F 300cm
2. ġekildeki gibi yüklenmiĢ basit kiriĢ boru kesitlidir ve iç çapın dıĢ çapa oranı d 5 dir. KiriĢ malzemesinin güvenli dayanımı σ g = 80 daN/cm2 olduğuna göre dıĢ çapı D 7 bulunuz. 80 daN
300 daN
2000 daN
A
B 20cm
40cm
50cm
50cm
3. ġekildeki gibi yüklenmiĢ bir kiriĢin L boyu ne kadar olmalıdır? σ g = 80 daN/cm2 q=16 daN/cm
A
B
4. ġekilde görülen basit kiriĢte tek bir kuvvet orta noktadan etki ediyor. Ġzin verilen en büyük sehim (ymax ) 0,5 cm olduğuna göre P kuvvetinin en büyük değerini bulunuz. KiriĢ daire kesitlidir ve çapı 10 cm’dir.
ymax
F
RB
L=480 cm
5. ġekildeki barfikste hareket yapılan çubuk, D = 3 cm, d = 2,2 cm çaplarında bir borudur. Hareket sırasında borunun ortasına gelen en büyük yük 90 kg olduğuna göre dayanak
Öğrt. Görevlisi Serap KARAGÖZ
42 demirlerinin açıklığı (L) ne kadar olmalıdır? (Dönmeden oluĢan merkezkaç kuvvet dikkate alınmayacaktır.) σ g = 80 daN/cm2
A
B F=90 daN
6. ġekilde görülen üç kiriĢ aynı malzemeden yapılmıĢtır. Kesit Ģekilleri farklı kesit alanları eĢit olan bu kiriĢlerden hangisi en büyük yükü taĢır? σg = 80 daN/cm2 L = 50 cm F b h
1)
b=10 cm, h=18 cm
F b 2)
h b=18 cm, h=10 cm F
Ød d=15 cm
3) L=50 cm
7. BĠLEġĠK GERĠLME
Öğrt. Görevlisi Serap KARAGÖZ
43 Makine parçalarının çalıĢmaları sırasında karĢılaĢtıkları kuvvetler her zaman tek bir etki yaratmazlar. Genellikle birkaç gerilme bir arada etki eder. Örneğin; bir makine parçası sadece çekmeye ya da sadece eğilmeye çalıĢmaz. Aynı anda çekme ve eğilmeye, burulma ve eğilmeye veya basılma ve burulmaya v.b. zorlanıyor olabilir (ġekil.93). Bir parçanın hesaplamaları yapılırken, etki eden tüm gerilmeler incelenerek oluĢabilecek en büyük gerilme dikkate alınmalıdır. Makine parçalarının bileĢik zorlanmaları güvenle taĢıyabilmesi için;
max
max
g
n max
g
olmalıdır.
Тmax : En büyük kayma gerilmesi (daN/cm2) Тg : Güvenli kayma gerilmesi (daN/cm2) (σn) max : En büyük normal gerilme (Çekme – Basma) (daN/cm2)
σg
: Güvenli normal gerilme (Çekme – Basma) (daN/cm2)
F1 F2
F Mb
F
b)
a)
Mb
F Mb
d) c) ġekil 7.1 BileĢik gerilmeler 1. Çekme - basma ve eğilme gerilmeleri (a) 2. Eğilme ve burulma gerilmeleri (b,c) 3. Çekme - basma ve burulma gerilmeleri (d)
7.1. ÇEKME - BASMA VE EĞĠLME GERĠLMELERĠ
Öğrt. Görevlisi Serap KARAGÖZ
44
F1 C
F2
D
ġekil 7.2 Çekme –Eğilme Sadece F2 kuvvetinin etkisi çekme gerilmesi oluĢturur (Ģekil.95). F2
D
x
ġekil 7.3 Çekme F1
F2 A
dir.
Sadece F1 kuvveti ise eğilme gerilmesi oluĢturur (ġekil.96).
C
emax
Me Wb
(Me: Eğilme momenti) (daNcm) (Wb: Dayanım momenti) (cm3 )
D
ġekil 7.4 Eğilme Her iki kuvvetin etkisiyle (ġekil.97); C’de Çekme gerilmesi + Eğilme gerilmesi
F1 C
max
F2
Me Wb
F2 A
D’de Basma gerilmesi + Eğilme gerilmesi D
F2 A
ġekil 7.5 Çekme-Eğilme gerilmeleri
Me Wb
Tarafsız eksen üzerinde ise
0
F2 A
7.2. EĞĠLME VE BURULMA GERĠLMELERĠ
olur.
Öğrt. Görevlisi Serap KARAGÖZ
45 Birçok makine elemanı, özellikle de miller çalıĢmaları sırasında taĢıdıkları elemanlar nedeniyle eğilmeye, dönme hareketi nedeniyle de burulmaya çalıĢırlar. Hem eğilme hem de burulma etkisiyle oluĢan en büyük gerilmeler en dıĢ liflerde olur. Eğilme momenti etkisiyle oluĢan normal gerilmelerle (çekme – basma), burulma momenti etkisiyle oluĢan kayma gerilmesinin maksimum bileĢkesi en dıĢ kabukta olur (ġekil.98).
F Mb
Burulma etkisiyle oluĢan en büyük KAYMA GERĠLMESĠ en dıĢtaki liflerde oluĢur.
Eğilme etkisiyle oluĢan en büyük NORMAL GERĠLMELER en dıĢtaki liflerde oluĢur
Mb
ġekil 7.6 Eğilme-Burulma F max
Mb Mb Mb: Burulma momenti Wp: Polar dayanım momenti Wp 2
n max
max
max
2
2
2 max
Burulma etkisiyle oluþan en büyük KAYMA GERÝLMESÝ en dýþtaki liflerde oluþur.
max
Mb Me: Eğilme momenti Wb:Dayanım momenti Wb
Eğilme ve burulmadan oluĢan gerilmeler kesite etki eden burulma ve eğilme momentleri Eðilme etkisiyle oluþan en büyük NORMAL GERÝLMEler cinsinden yazılabilir. ( Çekme-Basma) en dýþtaki liflerde oluþur.
Me 2 Mb 2 2Wb
2 n min
Mb
max
max
2
2
2
max max
max
2 2
max max max
2
max
Me n max
7.3. ÇEKME - BASMA VE BURULMA GERĠLMELERĠ
Me 2 Mb 2 2Wb
Öğrt. Görevlisi Serap KARAGÖZ
46 Makine elemanlarının uygulamada taĢıdıkları bir baĢka gerilme de Çekme - Basma ve burulma gerilmeleri bileĢkesidir. Örneğin vidalı elemanlar aynı anda hem burulmaya hem de çekme veya basmaya zorlanırlar (ġekil.99). Etkisi altındaki kuvvetin olĢturduğu normal gerilmelerle (çekme – basma), en dıĢ kabukta oluĢan burulma momenti etkisiyle oluĢan kayma gerilmesinin maksimum bileĢkesi olur.
F Mb
Mb F
ġekil 7.7 Çekme-Basma-Burulma Çekme – Basma etkisiyle oluĢan normal gerilme
Burulma etkisiyle oluĢan dıĢ yüzeydeki en büyük kayma gerilmesi
F A
x
max
σx : Normal gerilme (daN/cm2)
Тmax : Burulma momentinin etkisiyle oluĢan kayma gerilmesi (daN/cm2) Mb : Burulma momenti (daN.cm) Wp : Polar dayanım momenti (cm3)
F : Etkileyen yük (daN) A : Kesit alanı (cm2) En büyük Gerilmeler 2 n max
x
x
2
2
2 max
2 2
x max max
2
7.4. PROBLEMLER
Mb Wp
max
Öğrt. Görevlisi Serap KARAGÖZ
47
100 cm
1. Bir çubuk Ģekildeki gibi ankastre edilmiĢ F kuvvetinin etkisindedir. A ve B noktalarındaki gerilmeleri bulunuz. F= 200 daN, çubuk boyu 100 mm, çubuk çapı 10 cm
d=30mm
2. ġekildeki çubuğun taĢıyabileceği yükü bulunuz. Çubuk çapı 30 mm, boyu 100 cm, maksimum gerilme 800 daN/cm 2 A B
F1 3. ġekildeki döner vincin muylusunun kontrol hesabını yapınız. Muylu çapı 10 cm, muylu boyu 12 cm’dir. Güvenli gerilme 750 daN/cm2
5m W 5000 daN 2m
F
D
C
A
F
10cm
12cm
G 1200 daN
B bağlantısı F B
(Curun,1981) 4. ġekildeki mil eğilme ve çekme etkisindedir. Maksimum gerilmeyi bulunuz. Fe=25 daN Fç=50 daN d= 30 mm Fe
Fç
Fç
60cm
60cm
Öğrt. Görevlisi Serap KARAGÖZ
48 5. ġekildeki gibi tek taraflı ankastre bir çubuk aynı anda eğilmeye ve burulmaya çalıĢmaktadır. Maksimum normal ve kayma gerilmelerini bulunuz. Çubuk çapı d= 8 cm, Fe = 250 daN, Fb= 150 daN Fe Fb 40 cm
30cm Fb
R=30cm
6. ġekildeki sistemde volan F kuvvetinin etkisiyle eğilme ve burulma etkisindedir. Volanın yarıçapı 30 cm’dir. Sistemin F= 1200 daN’luk yükü taĢıyabilmesi için AB kesitindeki çapını bularak kayma gerilmesine göre kontrolünü yapınız. σg= 750 daN/cm2 Tg= 500 daN/cm2
A B L=80cm
F
KAYNAKÇA
Öğrt. Görevlisi Serap KARAGÖZ
49
Akkurt, M., Kent, M., (1979). Makine Elemanları. Birsen Yayınevi. Ġstanbul. Akkurt, M. (1994). Makine Elemanları Problemleri. Birsen Yayınevi. Ġstanbul. Akkurt, M. (2000). Makine Elemanları. Birsen yayınevi. Ġstanbul. Curun, N. (1977). Cisimlerin Mukavemeti. Yüksek Teknik Öğretmen Okulu Matbaası. Ankara. Curun, N. (1981). Cisimlerin Dayanımı. Milli Eğitim Bakanlığı Yayınları. Ankara. Curun, N. (1983). Cisimlerin Dayanımı Çözümlü Problemler. Özgün Matbaacılık. Ankara. Eker, B., TaĢeri, L., Günaydın, L. (1994). Makine Tasarımı El Kitabı. T.Ü. Tekirdağ Ziraat Fakültesi Basımevi. Tekirdağ. GediktaĢ, M. (1999). Makine Elemanları Problemleri. Çağlayan Kitabevi. Ġstanbul. Okday, ġ. (1979). Makine Elemanları. Kazmaz Matbaası. Ġstanbul. Omurtag, H. M. (2003). Statik ve Mukavemet. Beta Yayıncılık. Ġstanbul. Omurtag, H. M. (2003). Statik ve Mukavemet Çözümlü Problemleri. Beta Yayıncılık. Ġstanbul. Yazıcıoğlu, O. (1998). Konstrüksiyonda Mukavemet. Beta Yayıncılık. Ġstanbul. Yazıcıoğlu, O. (1999). Makine Elemanları. Beta Yayıncılık. Ġstanbul.
View more...
Comments