1 Fotogrametrija
January 20, 2023 | Author: Anonymous | Category: N/A
Short Description
Download 1 Fotogrametrija...
Description
4/1/13
Uvod u fotogrametriju i daljinsku detekciju
Literatura !
Karl Klaus "
!
Photogrammetry: Geometry from Images and Laser Scans
Ocene "
Prisustvo 5
"
Zadaci 6X5=30
"
Kolokviju 1= 20
"
Kolokvijum 2 = 20
"
Usmeni = 25
1
4/1/13
Sadr !aj
!
Uvod Matemati"ke postavke
!
Fizikalna realnost fotogrametrijskog snimka
!
Stereorestitucija
!
Fotogrametrijska triangulacija
!
Ortofoto
!
Digitalna fotogrametrija
!
Daljinska detekcija
!
#ta je fotogrametrija? !
Fotogrametrija je tehnologija za prikupljanje pouzdanih 3D informacija informacija o fizi!kim objektima i okru"enju kroz proces snimanja, merenja i interpretacije fotografskih slika.
!
Cilj fotogrametrije je verna rekonstrukcija snimljenog 3D prostora.
2
4/1/13
Primena fotogrametrije Od fotografija se dobijaju Stvarne koordinate ta!aka na snimljenim objektima " Karte i planovi "
!
topografske karte
Ortorektifikovane fotografije " Digitalni modeli terena " Digitalni 3D modeli objekata
"
bez kontakta sa objektom (ili povr povr #inom) koji se meri, i sa unapred poznatom ta !no#$u. Na ta!nost najvi#e uti!e razmera fotografije.
Aerofotogrametrija
3
4/1/13
Bliskopredmetna fotogrametrija
4
4/1/13
5
4/1/13
6
4/1/13
Klasifikacija
7
4/1/13
Primena fotogrametrije !
Fotogrametrija se koristi kada je potrebna 3D rekonstrukcija "
proizvodnja karata; geografski informacioni sistemi (GIS); premer (arhitektura, analiza udesa)
"
snimanje u medicini (rekonstrukcija organa)
"
vozila (izbegavanje sudara)
"
rudarstvo i te#ka industrija (onlajn kontrola kvaliteta)
"
virtualna realnost (simulatori)
Za$to fotogrametrija? !
Zna!ajna u#teda vremena i novca
!
Vi#e informacija o snimljenom objektu
!
Merenje nepristupa!nih objekata
8
4/1/13
Principi fotogrametrije
Principi fotogrametrije
Lokacija bilo koje ta !ke na slici mo"e biti predstavljena predstavljena sa samo dve koor koordinate: dinate: (x,y). Fotografije su samo dvodimenzionalne.
Lokacija bilo koje ta!ke u realnom svetu mo"e biti opisana sa tri koordinate: koordinate: (x,y,z), (geografskom #irinom, geografskom du"inom, visinom), itd. Realni svet je trodimenzionalan.
Fotogrametrija je nauka o kori#$enju 2D fotografija za ta!na merenja u 3D prostoru. Da bi to bilo mogu mogu$e potrebno je na neki na!in rekonstruisati informacije izgubljene u procesu snimanja.
9
4/1/13
Principi fotogrametrije Problem: zrak svetlosti koji pada na dati piksel slike je mogao sti $i sa bilo koje ta!ke du" pravca tog zraka. %i"na daljina
Centar perspektive
Fotografski senzor Mogu$e ta!ke sa kojih je zrak po#ao
Pogled odozgo
Principi fotogrametrije Re#enje: dodavanjem jo# jedne fotografije snimljene sa druge lokacije mo"emo da na&emo presek zraka i odredimo 3D lokaciju ta !ke sa koje su zraci stigli.
Fotografski senzor
Jedinstvena 3D lokacija!
Pogled odozgo
10
4/1/13
Centralna projekcija !
!
!
!
Matemati"ke osnove formiranja slike O: Projekcioni centar (pozicija kamere)
negativ
PP: Osnovna ta"ka (presek opti"ke ose i slike) f: !i!na daljina, osnovno rastojanje, konstatna za kameru
!
P: ta"ka u prostoru
!
P’: slika ta"ke P
dijapozitiv
Ako je poznata "
"
"
ta"na lokacija kamere, O, ta"na orijentacija ravni slike u odnosu na neki koordinatni sistem rastojanje PP-P’(u koordinatnom sistemu senzora)
Linija na kojoj se nalazi ta"ka P je jedinstveno odre%ena. Ali ne postoji na"in da se odredi ta"na lokacija ta"ke P na toj liniji. Da bi se ta"no odredila pozicija ta"ke P, potrebna je jo$ jedna linija koja preseca prvu liniju u ta"ki P. To je osnova fotogrametrije.
11
4/1/13
Stereoskopska vizija The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
Stereoskopska vizija !
Ako je objekat fotografisan iz dve dve razli"ite pozicije, linija izme%u dva projekciona centra se naziva osnova . Ako obe fotografije imaju pravce posmatranja, koji su me%usobno paralelni i normalni na osnovu (takozvani, „normalni slu"aj“), onda one imaju sli"e osobine kao i dve slike koje hvataju ljudske o"i. Zbog toga, preklopna povr $ina takve dve fotografije (koja se naziva „stereopar“) mo!e biti posmatrana u 3D, simuliraju&i ljudski stereoskopski vid. “
”
12
4/1/13
Principi stereofotogrametrije PP1
P’1
PP2 P’2
O1
O2
f
P Pozicija ta!ke P je jedinstveno odre &ena presekom linija P’1O1 i P’2O2
Koordinatni sistemi i transformacije Koordinatni sistem digitalne slike Koordinatni sistem senzora
1. 2.
Koordinatni sistem modela Koordinatni sistem terena
3. 4.
Interna orijentacija 1.
Relativna orijentacija 2.
Apsolutna orijentacija 3.
4.
13
4/1/13
Koordinatni sistem digitalne slike The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
Koordinatni sistem senzora
14
4/1/13
Koordinatni sistem modela
Koordinatni sistem terena
15
4/1/13
Unutra$nja orijentacija !
Da bi se iskoristila centralna projekcija, potrebna je metri"ka slika i dobar koordinatni sistem slike:
!
potrebno je poznavati "
" " "
lokaciju PP, osnovne ta"ke, na slici (sa koordinatama x=0, y=0 u koordinatnom sistemu senzora). pravac x ose (k.s. senzora) !i!nu daljinu f . ovo se obi"no odre%uje u procesu kalibracije kamere (!i!na daljina i koordinate fiducijalnih markera u k.s. senzora su izmereni i zapisani u izve$taju)
Unutra$nja orijentacija
16
4/1/13
Odre%ivanje spolja$nje orijentacije Relativna orijentacija: ! !
!
Lokacije ta!aka se mere u proizvoljnom koordinatnom sistemu Razmera se obi!no odre&uje tako #to je poznato rastojanje izme&u pozicija kamere i/ili rastojanje rastojanje izme&u ta!aka na sceni Sve fotografije u projektu moraju biti me&usobno povezane “
”
Apsolutna orijentacija: !
!
Lokacije svih ta!aka se odre&uju u koordinatnom sistemu realnog sveta pomo$u poznatih ta!aka (kontrolne ta!ke i/ili projekcioni centri kamere) Zahtevane su najmanje tri ta!ke sa poznatim koordinatama (bez obzira koliko se fotografija koristi)
Vezne ta"ke
17
4/1/13
Spolja$nja orijentacija - relativna The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
Spolja$nja orijentacija - apsolutna
18
4/1/13
Spolja$nja orijentacija z y Projekcioni centar
$
x
Z
(X0,Y0,Z0)
y x
P
#
Y !
X
Spolja$nja orijentacija X0 - X koordinata projekcionog centra kamere ! Y - Y koordinata projekcionog centra kamere 0 !
Z0 - Z koordinata projekcionog centra kamere ! !
!
"
!
# "
!
rotacija koordinatnog koordinatnog sistema slike oko X ose rotacija koordinatnog koordinatnog sistema slike oko Y ose
$ "
rotacija koordinatnog koordinatnog sistema slike oko Z ose
19
4/1/13
Snimanje terena
Merenje kontrolnih i veznih ta"aka
20
4/1/13
Digitalni model terena (DTM) !
Digitalni model terena predstavlja matemati"ku reprezentaciju povr $ine terena.
!
TIN
!
DEM
!
Izohipse
Stereopar
21
4/1/13
Anaglyph nao"ari !
leva slika se konvertuje u plavo/zeleno=cijan, a desna slika u crveno
!
obe slike se prikazuju istovremeno kao jedna slika
!
!
nao"ari sa cijan/crvenim filterom omogu&uju da svako oko vidi odgovaraju&u sliku ovaj pristup je veoma star, ranije se koristio u filmovima i televiziji !"
Shuttered nao"ari
!
Levo i desno so"ivo se otvaraju i zatvaraju sinhronizovano sa prikazom leve i desne slike na ekranu
22
4/1/13
TIN
DEM The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
23
4/1/13
Izohipse
Princip ortorektifikacije Kao $to se to vidi sa slike, za svaku ta"ku terena, neophodno je utvrditi korekciju V, a zatim i odgovaraju&u korekciju za korespondentni piksel digitalne slike. Ove korekcije su u funkciji elemenata spoljne orijentacije snimka, rastojanja R posmatrane ta"ke od nadira snimka i visinske razlike dH. Kao $to se sa slike mo !e zaklju"iti ove korekcije su proporcionalne udaljenosti date ta"ke terena od nadira snimka i visinskoj razlici.
24
4/1/13
Ortofoto plan
25
View more...
Comments