08.2.7-Kks Ge Standard Codification Identification Handbook-389a9076_d

February 25, 2018 | Author: tr_esa | Category: Valve, Hvac, Steam, Instrumentation, Air Conditioning
Share Embed Donate


Short Description

It can be useful for designers who are working with KKS codes...

Description

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 1/39

GE Energy

KKS IDENTIFICATION HANDBOOK

PART A

GENERAL APPLICATION

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 2/39

GE Energy

CONTENTS

STATE OF MODIFICATIONS

3

1. PREAMBLE

4

2. INTRODUCTION TO KKS

8

2.1.

DESIGNATION AND TYPE OF DATA CHARACTERS

8

2.2.

PROCESS-RELATED IDENTIFICATION

9

3. STRUCTURE AND CONTENTS OF THE BREAKDOWN LEVELS

Revision D

9

3.1.

BREAKDOWN LEVEL 0, TOTAL PLANT "G" & LEVEL 1, "F0"

9

3.2.

BREAKDOWN LEVEL 1, FUNCTION PREFIX NUMBER

11

3.3.

BREAKDOWN LEVEL 2, EQUIPMENT UNIT A1, A2, AN, A3

12

3.4.

BREAKDOWN LEVEL 3, ITEM B1, B2, BN

18

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 3/39

GE Energy STATE OF MODIFICATIONS

INDEX

Revision D

DATE (dd/mm/yy)

A B

30/01/09 20/12/2010

C

11/02/2011

D

08/02/2012

DESCRIPTION

First issue, GE Energy standard including GT, ST and Gen. unit Chapt 1, VGB references updated. Appendix F7d revised. BPA is used for LCI instead of MBJ. System numbering cancelled and assigned in Part C. Chapt.3.3.4.b enhanced. Chapt. 3.5. cancelled. References to Part’s and chapters corrected. Chapter 3.2 Fn allocation rewritten,. Appendix A, miscel.correction. Chapter 1& 2.1: point of installation and location labelling included. Chapter 1 included Field mounted wiring & junction boxes for Foundation Field Bus devices & Foundation Field Bus Segment. Electrical portion cancelled, chapter 3.3.5 makes references to Part E. Appendix A simplified, appendix B and D completed. Appendix C: not used replaced by blocked.

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 4/39

GE Energy

1. PREAMBLE

It is absolutely essential for the parties participating in the construction and operation of a power plant to agree upon a standard system for the designation and classification of the plant, its part and components.

Due to the size of power plants and the fact that the large number of parties participating are all in different locations, communication problems arise which can incur costs which cannot be estimated in advance. A standard designation system enables each party, irrespective of language and assignment, to identify uniformly and unambiguously, those parts of the plant within its responsibility. The Power Station Designation System KKS satisfies these requirements. The planners and operators of power stations employ a common, standard system for identifying installations, and parts thereof , with which the data required to plan, construct and operate power stations can be collected and processed. This publication reviews the GE Power System application of the Power Station Designation System KKS based on KKS VGB B106e edition dated 2007 & B105e PowerTech GmbH 7th edition dated 2010. Abbreviations used KKS

Power Station Designation System (Kraftwerk Kennzeichensystem)

VDEW

Association of German Power Stations

VGB

Technical Association of Large Power Plant Operators

DIN

German Industrial Standard

IEC

International Electrotechnical Commission

ISO

International Standard Organization

ISA

Instrument Society of America

P&ID

Piping and Instruments Diagram

I&C

Instrument and Control

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 5/39

GE Energy

INTRODUCTION OF GE POWER SYSTEM CODING SYSTEM The purpose of this publication is to summarise the structure, contents and application of the KKS. Illustrations of the structure, and the code section of the VGB book without definitions, are used to describe the system. For their internal use, GE Energy have reduced the VGB - KKS code to the specific parts for:  conventional Gas Turbine unit,  thermal plant,  Combined Cycle power plants. The scope of tasks coded in KKS includes the following wherever applicable: Labelling on drawings of:  GT, ST, Generator, and instrument, valves, and equipment in BOP and GE scope of supply using the “process related” coding.  Cubicles, panels, cabinets and junction boxes in BOP and GE scope of supply using the “process related” coding.  Piping.  Interconnect Cables.  Main machinery equipment in DCS HMI’s graphic displays.  BOP DCS signals including group control.  Foundation Field Bus Segment.  Equipment in PLC's displays. The above scope requiring KKS labelling shall be documented on the following “process related” drawings, namely P&Ids / schematics, device summaries, one line diagram, circuit / wiring diagrams of main equipment (GT, ST, Gen, HRSG and their associated modules), Operation and Maintenance manuals narratives, DCS software, site cable diagrams/list. Tagging of equipment:  GT, ST, Generator, and instrument, valves, and equipment in BOP and GE scope of supply using the “process related” coding.  Cubicles, panels, cabinets and junction boxes in BOP and GE scope of supply using the “process related” coding.  Interconnect piping.  Interconnect Cables.  Field mounted wiring & junction boxes for Foundation Field Bus devices. The above scope requiring KKS tagging consist of Name plates / Tagging on physical equipment Tagging of the plant Control and Monitoring system :  Turbines HMI graphics.  DCS graphics.  DCS Input, output and processed signal.  PLC's graphics. The above scope requiring KKS tagging consist of text shown on Graphics close to equipment symbols and text in the DCS toolbox along with signal. The following tasks are excluded of the KKS labelling/tagging:   

Revision D

Tagging of wires, cards, and electrical components, etc… within cubicles, panels, cabinets or junction boxes. Tagging of wiring of prefabricated equipment, modules and plant components (such as GT, ST, Gen, associated skids, etc.) Tagging of signal, internal controls variables in control system of prefabricated equipment, modules and plant components (such as GT, ST, Gen, etc).

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g    

389A9076 6/39

GE Energy Tagging of non-functional equipment and component such as supports, civil work pedestal, blades, frames, screws, bolts, shafts, etc. Labelling on all documentation except those mentioned in the inclusiveness. Document numbering based on KKS. KKS Level 3 other than signal, and except where necessary process instruments (sensors and transmitters) and electrical components of process mechanical equipment.

Special consideration shall be given to the following: 

  

Revision D

The systems related to the ST, GT and their generator would be identified using the GE coding system known as “legacy” codes. In addition, a secondary KKS functional code will be given and shown on the P&ID’s (i.e. double identification). Similarly the field devices will also be tagged with KKS coding in addition to the original standard GE tagging. In the DCS all the signals transmitted from the turbine controllers will be given a code according to the KKS identification. A cross-reference list will be provided for all signals exchanged between the turbine controllers and the DCS. This will not be labelled on a GE P&ID. Part ordering system will nominally be based on the GE part number or specific vendor part number for a particular component. For “Package Plants” such as chemical plants, compressors, auxiliary boilers, etc., which are supplied by a vendor in accordance with his standard practice or as catalogue items, the KKS system is not fully applied. However KKS identification is used in case of electrical or I&C interfaces of these package plants with the rest of the plant (i.e. DCS).

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 7/39

GE Energy

REQUIREMENTS TO BE MET BY THE DESIGNATION SYSTEM In order to perform the tasks established, the designation systems must be capable of meeting the following requirements:  Determination of all installations and subsystems  An adequate number of reserve codes must be available for future developments in power plant engineering  Clear identification of all subsystems  A designation used in a power plant must be unique  Subdivision with graded details and a fixed meaning for the data characters  Plausibility check of applied tagging, especially for data processing  Existing standards, guidelines and recommendations must be taken into consideration In order to facilitate the application of KKS for a project managed by a consortium of vendors, GE reserves sections of the sequence numbers for codes used on their GT, ST and Generator drawings. These codes should be reviewed on a project basis to ensure they are consistent with scope and reflect the plant configuration. Exception to reserved codes could be accepted by the parties on a project basis assuring duplication does not occur, and are explicitly outlined during the initial project agreement by all parties.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g 2.

389A9076 8/39

GE Energy

INTRODUCTION TO KKS 2.1.

DESIGNATION AND TYPE OF DATA CHARACTERS

In consideration of the various requirements placed on the identification of plants, sections of plants and items of equipment in power stations, KKS has three different types of code: Process-related code Process- related identification of systems and items of equipment according to their functions in mechanical, civil, electrical and control and instrumentation engineering. Used by GE Energy for every process. Point of installation code Identification of points of installation of electrical and control and instrumentation equipment in installation units 'e.g. in cabinets, panels, consoles) Mainly used by GE Energy for electrical cubicles and cables. Location code Identification of locations in structures, on floors, in rooms and also of fire areas. Rarely used by GE Energy. May be used for complex installation based on location areas The uniform composition of process related code is used by all engineering disciplines in their planning and engineering tasks, thus ensuring effective integration of information coupled with unambiguous recognition by all concerned. The titles of the breakdown levels of the process related of code will henceforth be as follows: Serial no. of breakdown level

0

1

2

3

Process-related identification

Total plant

System code

Equipment unit code

Component code

Point of installation identification

Total plant

Installation unit code

Installation space code

Location identification

Total plant

Structure code

Room code

Table 1 summarises the designation and type of data characters of the breakdown levels for all three different types of designation appearing in the KKS. TABLE 1 : Breakdown Level Structure Serial number of breakdown level Designation of data character Type of data character

0

1

2

3

G

F0 F1 F2 F3 FN

A1 A2 AN

(X)

(N) A A A N N

A A N N N (A)

A3

B1 B2 BN A A

N

N

A = Alphabetical symbols (letters, special symbols) N = Numerical symbols (digits) ( ) = These data characters may be omitted Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 9/39

GE Energy

X = A or N, To be coordinate with all parties

2.2.

PROCESS-RELATED IDENTIFICATION

In this type of designation the entire system is subdivided according to the function or process. The equipment units and items must be identifiable in relation to the process. The process-related designation is for many applications the most important designation. It permits identification of equipment, instrumentation and signals, by location function and type. In the mechanical, electrical and instrumentation control engineering sectors, the equipment for auxiliary services, power supply, open-loop control, instrumentation, protection, etc., is treated as a process engineering function. This identification has the prefix sign "=". According to the standard, the prefix sign can be omitted provided that the designation remains unambiguous.

3. STRUCTURE AND CONTENTS OF THE BREAKDOWN LEVELS The individual breakdown levels of the KKS have an alphanumeric structure. TABLE 2 : Title and contents of the breakdown levels Breakdown levels

0 Total plant

1 Function

2 Equipment unit

3 Item

Total plant

System code System Structure, floor Structure, floor System System System System Switchgear Transformer System

Equipment unit code Pump unit Rolling door Fan unit Measuring circuit Open-loop control Closed-loop control Measuring circuit Switchgear assembly Terminal box Junction box

Item code

Process-related code Mechanical engineering Civil engineering Control and instrumentation (for mechanical and civil engineering) Electrical and control and instrumentation engineering

3.1.

Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit

Transducer Pushbutton Controller Signal

BREAKDOWN LEVEL 0, TOTAL PLANT "G" & LEVEL 1, "F0"

It may be necessary to identify units, unit-free plants or expansion stages within a power station, such that a clear and unambiguous distinction exists between them. In such a case, all parties concerned must agree upon this designation with regards to the contents and type of data character (A or N).

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 10/39

GE Energy

The block identifies set of main machinery as gas turbines ,steam turbines or any other type of machine set or production plant and use two characters G F0: G : The block identification: G represent the block within the plant. A block is a set of units that together make a complete production features such as a combined cycle STAG209E (two Gas turbine units, two HRSG and one Steam Turbine unit). F0: The unit or train identification within the block: In power plants, data character F0 shall be a numeric character used for the numbering of the similar systems and plants in the parts of a power station, identified with character G. F0 is part of level 1 but is associated to G in order to clearly identify any unit or sub plant production. G and F0 usage is as follows: The first digit represents the power block, while the second digit is the train, with 0 representing common equipment. For single-shaft blocks 00 11 21 31 41 For multi-shaft blocks 00 10 11 12 13 14 20 21 22 23 24

Common system between blocks (subdivision is possible) Single-shaft block 1 (GT, ST HRSG, & related systems) Single-shaft block 2 Single-shaft block 3 etc. Common system between blocks (subdivision is possible) Steam turbine and its generator for block 1 and common systems for block 1 First gas turbine, its generator, first HRSG and their auxiliaries for block 1 Second gas turbine, its generator, second HRSG and their auxiliaries for block 1 Third gas turbine, its generator, third HRSG and their auxiliaries for block 1 etc. Steam turbine and its generator for block 2 and common systems for block 2 First gas turbine, its generator, first HRSG and their auxiliaries for block 2 Second gas turbine, its generator, second HRSG and their auxiliaries for block 2 Third gas turbine, its generator, third HRSG and their auxiliaries for block 2 etc.

If there are single-shaft units and multi-shaft units in the same site, a combination of the above should be used. The first character G identifies the block (single-shaft, multi-shaft or common systems) and F0 can adopt the values indicated above, depending on the block type (single or multi-shaft). It is not necessary to display Level GF0 on a drawing if it is clearly defined or stated in a note for the project.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g 3.2.

389A9076 11/39

GE Energy BREAKDOWN LEVEL 1, FUNCTION PREFIX NUMBER

F1, F2, F3 The alphabetical characters of this breakdown level are used to classify and divide the overall plant into subsystems, systems or building structures. Wherever possible, all three alphabetical characters are permanently allocated, including their associated boundary constraints and task allotment in modern power plant technology. Please refer to Appendix A for a complete list of GE system codes. Subdivision of systems, FN FN numbering allows for a further breakdown and delimitation of a system so that specific sections can be uniquely defined. GE uses a combination of decadal and consecutive numbering based on system complexity. Decadal numbering in subsystem has the advantages over consecutive numbering where subunits (e.g. parallel trains) of piping systems form a subgroup. In each system the main line is divided in decades, and, if not sufficient, with unit numbers within a decade. Other lines (return, bypass, vent, drain, recirculating...) are numbered by unit numbers as subsystems of the relevant decade. Devices on a pipe run will have a matching system coding as the pipe run, except when the primary function of the device is to actuate or influence the action of another device that falls on a pipe run in different system. FN allocation The table in Appendix A presents the most used systems codes F1F2F3 in a combined cycle power plant. Pre-engineered design such as the main product has allocated rigid codes for standardization purposes and are dispatched along with the process need. The site arrangement could defer from project to project and will induce different configuration what may shown a non strict consecutive system ranges. More over the alternation of scope could show alternation of F1 system codes. Refer to the project wise Part C for exact Fn range allocation. Several ranges are devoted to GE product, to the installation engineering and to other equipment scope owners. .

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 12/39

GE Energy

3.3.

BREAKDOWN LEVEL 2, EQUIPMENT UNIT A1, A2, AN, A3

3.3.1.

General

In the process-related designation the first two alphabetic characters (A1 and A2) are used to distinguish the type of device as listed below: Main Groups of Equipment Units, A1 : A B C D E F G H

Mechanical equipment Mechanical equipment Direct Measuring circuits Closed-loop control circuits Analogue and binary signal conditioning Indirect measuring circuits Electrical equipment Subassemblies of main and heavy machinery

Refer to Appendix B. Equipment unit code A1A2. In the process-related designation in breakdown level 2, the numerical digits (AN) typically have no classification significance, with the exception of the items outlined in Appendix C.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 13/39

GE Energy

3.3.2.

Coding of process valves and pipes

The alphabetical characters assigned to piping and accessories in the second level are BR. Numbers must be, nominally, assigned in ascending units in the direction of the main flow (increasing in the downstream direction). The pipeline or BR number must only be changed:  When they have different functions from the point of view of process  When there are changes in the process conditions (Pressure, Temperature, Flow)  When there is a change of material  Optionally when there is a change in diameter associating the reducer with the line of greater diameter Changes in diameter caused by reducers for the purpose of inserting valves and instruments will be accepted, as long as the diameter of the inlet pipe is equal to the diameter of the outlet pipe. The number of the line (in the second level) will not be modified when elements considered as integrating parts are installed in the line; for example, valves, temporary filters, expansion joints, restrictive orifices, flow elements, etc. For reserved sequence numbers (AN) for BR units refer to Appendix C. In the field, the interconnect piping is tagged by a coloured ring over marked with the first two letters or the three letters of the KKS system code. a) VALVES The process valves are identified in the first level with the code of its associated pipe (or equipment) and in the second level with the alphabetical characters AA. In the same respect as the sequence numbers (AN) for BR units increase, the different valves will be numbered correlatively. An attempt will be made to adopt numbering that ascends in the direction of the main flow. Appendix C reserves blocks of numbers (AN) specific to valve function in order to provide information concerning the type of valve that is being denominated. With the exception of pilot valves shown on P&IDs, which use the main valve code plus the breakdown level A3, set to A, B, C, etc. in order of need. Refer to Appendix F, example number 5. b) BYPASSES In order of importance, denomination of a bypass is determined as follows:  Consecutively within the corresponding decade in accordance with the numbering established in the first level for the system to which they pertain (system bypasses).  Consecutively within the corresponding unit numbering of sections in accordance with the numbering established in the first level for the system to which they pertain (sub system or main equipment bypasses).  Fully integrated as part of the system to which they pertain (equipment bypasses or valve bypasses). c)

DRAINS AND VENTS

Drains and vents are denominated in the first level as a bypass of the system to which they are designed to drain or vent. Such denomination covers up to the last closing device or the discharge pipe to the atmosphere. d) HEAT EXCHANGERS

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 14/39

GE Energy

Because of their function, heat exchangers form part of at least two systems. However, because of the need to establish single identifications, they must be assigned to just one of the systems. Heat exchangers are assigned to the system that requires its services; the system that absorbs heat in the case of heaters and the system that gives out heat in the case of coolers. e) IDENTIFICATION OF PIPING SYSTEMS The following specifications are valid for identification and representation in P&IDs: Numbering in the first breakdown level is effected for parallel piping legs in increasing increments, counting in the flow direction. A hollow needle represents delimitation of the system identification in the first breakdown level (F1F2F3FN).

For better recognition of the coding delimitation, the needle is not placed directly in the branching or junction point, but in the line concerned. A solid needle represents delimitation of the piping identification or BR number in the second breakdown level (AN).

Identification of the piping systems is carried out using "flags". The direction of the "flag" is to indicate the flow direction. The flag shall contain the 1st Breakdown level. The unit code BR.. is written below the flag as follows: LBA10 BR010

LBA20 BR010

Flow direction

Flow direction

If two flow directions are possible, lines are placed on both ends of the box. LBA30 BR010

Flow direction

Please refer to Appendix C for (AN) ranges for “BR” codes. Refer to the Appendix F for specific rules and case study.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g 3.3.3.

389A9076 15/39

GE Energy Coding of equipment

Labelling of equipment is done in two rows or blocks on a drawing. The top block is for the level one code (Refer to Appendix A). And the second block is for the second level code (Refer to Appendix B). The legacy code or standard code used by suppliers, may be mentioned either in a third row or beside the tagging block.

FH30-1 For some components such as valves, in order to keep visibility of the drawing the label may only include the level 2 and referring to the level 1 of the system on which they are located to.

3.3.4.

Measuring Point representation in P&I Diagrams

An oblong bubble typically represents the measuring points in a plant. These bubbles have 2 lines of coding inside them. On line 1 is the measurement type and the associated function(s) in the plant. On line 2 is the KKS tag of the instrument. The legacy code or standard code used by suppliers, is mentioned either in a third line or beside the bubble. Line 1: Function letter of the measuring point according to paragraph 3.3.4 a Line 2: KKS level 2 – identification mark of the measuring point

a) MEASUREMENT TYPE & FUNCTION (LINE 1) To describe the measured variable and function, each measuring symbol is provided in line 1 with a number of identification letters. These identification letters are determined according to ISA S5.1. The first set of letters, identifies the measured variable. The second set of letters indicates the signal processing of the measured variable. The ISA table below is used as appropriate for instrumentation use only. Note: Table and standards are copyright of Instrument Society Of America (1992). All rights reserved.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 16/39

GE Energy

Measuring Instruments

A B C D

FIRST LETTER (GROUP 1) MEASURED OR INITIATING MODIFIER VARIABLE ANALYSIS BURNER, FLAME, COMBUSTION USER'S CHOICE USER'S CHOICE DIFFERENTIAL

E VOLTAGE F FLOW RATE G H I J

USER'S CHOICE HAND CURRENT (ELECTRICAL) POWER

K TIME, TIME SCHEDULE L LEVEL M USER'S CHOICE (MOISTURE) N USER'S CHOICE O USER'S CHOICE

SENSOR (PRIMARY ELEMENT) RATIO (FRACTION) GLASS, VIEWING DEVICE HIGH INDICATE SCAN TIME RATE OF CHANGE

QUANTITY OR HEAT DUTY RADIATION SPEED, FREQUENCY TEMPERATURE MULTIVARIABLE VIBRATION, MECHANICAL V ANALYSIS W WEIGHT, FORCE X UNCLASSIFIED

CONTROL STATION LIGHT

MOMENTARY USER'S CHOICE USER'S CHOICE ORIFICE RESTRICTION POINT (TEST) CONNECTION

P PRESSURE, VACUUM Q R S T U

SUCCEEDING LETTERS (GROUP 2) READOUT OR PASSIVE OUTPUT FUNCTION MODIFIER FUNCTION ALARM USER'S CHOICE USER'S CHOICE USER'S CHOICE CONTROL CLOSED

LOW MIDDLE, INTERMEDIATE USER'S CHOICE OPEN

INTEGRATE, TOTALIZE RECORD SAFETY MULTIFUNCTION

WELL UNCLASSIFIED

X-AXIS

Y EVENT, STATE OR PRESENCE

Y-AXIS

Z POSITION DIMENSION

Z-AXIS

SWITCH TRANSMIT MULTIFUNCTION VALVE, DAMPER, LOUVER

MULTIFUNCTION

UNCLASSIFIED UNCLASSIFIED RELAY, COMPUTE, CONVERT DRIVERS, ACTUATOR, UNCLASSIFIED FINAL CONTROL ELEMENT

b) Measurement counting range (Line 2) On line 2 is the KKS tag of the instrument. The tags may omit the unit number (characters GF0) as long as there is no ambiguity for the site, and as long as the drawings are identical for several units. Counting is performed by the use of 3 numeric characters, thus a range 001-999 is available for each measurement type. Measurement coding is made according to Appendix C. Primary element which is not connected and is used for on site testing, sampling, or tuning, shall be tagged in the series of 8's. Primary element which is connected to a local control shall be tagged in the series of 1's. Primary element which is connected to a local instrument shall be tagged in the series of 5's. Primary element which is connected to a remote instrument shall be tagged in the series either of 0's (ana) or 3's (digital). Primary element which is connected to a local and a remote instrument, shall be consider as remote as the remote function is having a highest priority. c)

Place of Measured Value Processing

The place of measured value processing is identified by the following symbols: Local measured value processing/monitoring Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 17/39

GE Energy

Measured value processing/monitoring on the local control panel or sub panel (black box)

Measured value processing in the central control room (DCS)

d) Specific rules Refer to the Appendix F for specific rules and case study for instrumentation application.

3.3.5.

Electrical equipment

The electrical equipment are coded with A1 as “G”, refer to Appendix B. The AN sequence number does not have a specific meaning except for the below exceptions. Refer to part E for specific requirements for tagging electrical systems and equipment.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 18/39

GE Energy

3.4. BREAKDOWN LEVEL 3, ITEM B1, B2, BN 3.4.1.

General

Level 3 is further breakdown of KKS coding to designate unique components of a larger assembly as a whole. Below is an example of a complete Blower coded as “AN” in level 2. It shows the driving motor and the blower itself as mechanical component.

SAE43 AN001

M

-M01 88BL-2

KN01

Alphabetic characters at this breakdown level are : Main Groups of items, B1 : K M Q X Y Z -

Mechanical items Mechanical items Instrumentation and control items Signal related to its origin Signal related to its application Signal gated (internal variable) Electrical items

At this breakdown level the numerical digits are used for counting only. See Appendix D for list of mechanical and I&C B1B2 codes. See Appendix E for list of electrical B1B2 codes.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g 3.4.2.

389A9076 19/39

GE Energy Signals

The list of signal B1B2 codes and relevant rules of usage are described in Part F documentation.

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 20/39

GE Energy

APPENDIX A: ELEMENTAL SYSTEMS CODE Main Functional Groups, F1:

A

Grid and Distribution Systems

B

Power Transmission and Auxiliary Power Supply

C

Instrumentation and Control Equipment

D

Instrumentation and Control Equipment (for use only when the function codes C is insufficient for the identification)

E

Conventional Fuel Supply and Residue Disposal

F

Handling of Nuclear Equipment

G

Water Supply and Disposal

H

Conventional Heat Generation

J

Nuclear Heat Generation

K

Nuclear Auxiliary Systems

L

Steam, Water and Gas-Cycles

M

Main Machine Sets

N

Process Energy supply for External Users (e.g. District Heating)

P

Cooling Water Systems

Q

Auxiliary Systems

R

Gas Generation and Treatment Systems

S

Ancillary Systems

U

Structures

W

Solar Systems

X

Heavy Machinery (not main machine sets)

Z

Workshop and Office Equipment

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 21/39

GE Energy

The list below are the main systems used in the thermal Power Plant and is only given for information. Please refer to the Part C for exact scope and assignment of each system trigrams and system numbering.

F1 F2 F3

SYSTEMS DESCRIPTION

ACA

SWITCHYARD 380KV-420KV

ADA

SWITCHYARD 220KV-245KV

AEA

SWITCHYARD 110KV-150KV

AFA

SWITCHYARD 60KV-72KV

AGA

SWITCHYARD 45KV-50KV

AHA

SWITCHYARD 30KV-35KV

AJA

SWITCHYARD 20KV-25KV

AQA

Energy metering

ARA

GRID & DISTRIBUTION PROTECTION EQUIPMENT

ASU

GRID & DISTRIBUTION DECENTRALIZED PANEL & CABINET

AXP

Cathodic protection system

BAA

GT & ST Generator power evacuation

BAB

GT & ST Generator foundation cabinet

BAC

GT & ST Generator circuit breaker

BAT

Generator Step-up Transformer

BAU

Grounding network

BAY

Electrical Protections and Control

BBA

Normal MV switchgears

BBB

MV non segregated phase bus bars

BBT

Auxiliary Transformers

BDA

Emergency MV distribution

BDT

Emergency MV transformer

BFA

Normal LV switchgears # A

BFB

Normal LV switchgears # B

BFC

Normal LV switchgears # C

BFD

Normal LV switchgears # D

BFE

Normal LV switchgears # E

BFF

Normal LV switchgears # F

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 22/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

BFT

MV/LV distribution transformers

BJA

Normal LV motor control centres

BLA

Normal lighting switchgears

BLE

Welding panel

BLL

Normal lighting panel

BLS

Safety lighting

BLT

Normal lighting transformers

BMA

Emergency LV switchgears

BMB

Emergency LV switchgears

BMC

Emergency LV switchgears

BMT

MV/LV transformers for Emergency LV distribution

BNA

Emergency 2ndary switchgears

BNB

Emergency 2ndary switchboards

BNT

MV/LV transformers for Emergency 2ndary LV distribution

BRA

Permanent 230 V production and distribution board

BRB

Unit 230 V production and distribution board

BRT

400/230 V bypass transformers

BRU

Permanent 230 V production and distribution inverters

BTA

Up to 230 VDC production & distribution

BTB

250 V Battery

BTC

DC 48 V production and distribution

BTL

DC 125 V power production - Battery Charger

BTM

DC 250 V power production - Battery Charger

BUA

DC 125 V power distribution

BUB

DC 250 V power distribution

CAA

PROTECTIVE INTERLOCKS

CBP

Generator Synchronisation & Coupling

CCA

BINARY SIGNAL CONDITIONING

CDA

DRIVE CONTROL INTERFACE

CEA

ANNUNCIATION AND ALARMS

CFA

RECORDING, MEASUREMENTS

CGA

CLOSED-LOOP CONTROL (EXCL. POWER SECTION)

CHA

PROTECTION

CJA

UNIT CONTROL SYSTEM (overall block automation)

CJD

START UP CONTROL, SETPOINT CTRL

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 23/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

CJF

BOILER CONTROL SYSTEM

CJJ

STEAM TURBINE CONTROL CABINET

CJP

GAS TURBINE CONTROL CABINET

CJY

UNIT CONTROL SYSTEM SAFETY (overall block automation)

CKA

ON LINE AND DIAGNOSTIC COMPUTER

CKJ

ACCESS CTRL COMPUTER

CSA

DCS I/O CABINETS

CSY

DCS I/O CABINETS for SAFETY

CVA

marshalling boxes and cubicles

CWA

Control room: control consoles

CWF

Control room: control panels

CWQ

Control room: printers

CXA

LOCAL CONTROL STATIONS

CYA

Telephone system

CYB

Loudspeaker System

CYD

Data Communication Systems

CYE

Fire fighting control system

CYF

Time distribution, clock system

CYQ

Gas detection system

CYN

Interphone

EGA

Fuel-oil unloading

EGB

Fuel-oil storage

EGC

Pumping system

EGD

Fuel-oil piping

EGS

Fuel-oil treatment

EGT

Heating medium system

EKA

Inlet Pipe line

EKC

Heating

EKD

Gas feeding (Common site gas station, RMS)

EKE

Gas scrubber

EKG

Gas piping

EKH

Main pressure boosting system

EKT

Gas heating (CC) (gas heater) (heating media (systems)

GAC

Piping. Tank connection = Raw Water System

GAD

Water pump tank

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 24/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

GAF

Raw water pumping (intake) (Pumping)

GBK

Water treatment system

GCF

Reverse osmosis + EDI aux. Equipment

GCN

Chemical dosing water treatment plant

GDD

Pretreatment and aux. Equipment

GDF

Reverse osmosis system and aux. Equipment

GDQ

Potable water production plant

GHA

Service water

GHC

Demineralised water storage and distribution

GKB

Drinking water

GMA

Waste Water (Oily)

GMB

Miscellaneous Process Water Drains and Blowdown

GMT

Process drainage system (GT water wash drain)

GNK

Process drain treatment

GRK

waste water treatment

GUA

Rain water collection and drainage

HAC

HRSG economiser

HAD

HRSG evaporator

HAG

HRSG circulation

HAH

HRSG Superheater

HAJ

HRSG reheat steam

HAN

HRSG Pressure system drain and venting

HB’s

HRSG Support, structure, enclosure and interior

HBK

HRSG interior

HC’s

HRSG soot blowing and flushing

HD’s

HRSG ash and slog removal

HH’s

HRSG main firing system

HJF

HRSG fuel oil preparation and recovery

HJG

HRSG Gas Pressure Reduction And Distribution

HJQ

HRSG burners sealing air and flame scanner cooling

HLB

HRSG forced draught fan system

HNA

HRSG Exhaust Ducting system

HNE

HRSG Outlet stack

HNY

HRSG Flue gas exhaust control and protection equipment

HSJ

HRSG NOx catalytic reduction

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 25/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

HYA

HRSG control and protection

HYC

HRSG safety

HYR

HRSG analogue control and instrumentation

LAA

Feedwater Storage and deaeration

LAB

Feedwater piping

LAC

Feedwater pumping

LAE

HP Desuperheating

LAF

IP Desuperheating

LAV

Lubricant supply

LAW

Sealing fluid supply

LBA

Main steam

LBB

Hot reheat steam

LBC

Cold reheat steam

LBD

Extraction / Low pressure steam

LBG

Auxiliary steam distribution

LCA

Condensate piping

LCB

Condensate pumps

LCC

Main condensate heating system

LCE

Condensate desuperheating spray system

LCP

Condenser make-up (Stand by condensate system storage and piping)

LCR

Stand by condensate system distribution

LD’s

Condensate polishing plant

MAA

Steam turbine itself (HP Part)

MAB

Steam turbine ( IP Part)

MAC

Steam turbine ( LP Part)

MAD

Steam turbine Bearings

MAG

Main Condenser

MAJ

Condenser vacuum

MAK

ST Standby turning gear

MAL

Steam and Drains

MAN

Turbine bypass station

MAP

Turbine bypass piping and steam dump

MAV

ST lubrication, jacking oil

MAW

ST Turbine gland steam sealing

MAX

ST control fluid skid for governing & protection

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 26/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

MAY

ST protection

MBA

Compressor and Turbine itself (if MBC not used)

MBB

Turbine casing and rotor

MBC

Compressor casing and rotor

MBD

Bearings

MBE

Coolant System

MBH

Cooling and sealing gas system

MBJ

Start-up unit and static frequency converter

MBK

Transmission gear (incl Turning gear)

MBL

Intake air, cold gas system (open cycle) Anti icing Bleed heating

MBM

Combustion Chamber

MBN

Liquid Fuel System

MBP

Fuel-gas system

MBR

Exhaust gas

MBT

Motive gas generation unit

MBU

Additive system

MBV

GT and generator lubrication/oil transfer and vent

MBW

Sealing oil supply system

MBX

Control fluid

MBY

Logic and analogue control

MKA

Generator complete

MKC

Generator excitation & automatic voltage regulator

MKD

Generator Bearings

MKF

Generator stator and rotor liquid cooling

MKG

Generator H2 cooling

MKH

ST generator Nitrogen cooling system

MKQ

Generator exhaust gas system

MKV

Generator lubricant oil system

MKW

Generator sealing fluid supply

MKX

Generator fluid supply system for control

MKY

Generator protection system (mech protection which trip Generator)

MV’s

Lube oil treatment system

NAA

Piping system (steam)

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 27/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

NAB

Piping system (condensate)

NAD

Process heat transmission system

NDA

Piping system (forward)

NDB

Piping system (return)

NDC

Process hot water pump system

NDD

Process heat transfer

NDE

Hot water storage system

NDF

Distribution system

PAA

Main Cooling water filtration

PAB

Main cooling Piping

PAC

Main Cooling water pumping

PAD

Outfall Cooling system

PAE

Cooling Tower

PAH

Condenser cleaning system

PAR

Make up water piping system

PAS

Make up water pump system

PBN

Main Cooling water chemical supply system (conditioning)

PCA

Intake and cleaning facilities

PCB

Piping

PCC

Pumping

PCD

Cooling tower (secondary cooling)

PGB

Piping

PGC

Pumping

QCA

O2 scavenger system

QCB

Amine system

QCC

Phosphate system

QCD

Corrosion inhibitor system

QCE

Antifreeze agent system

QFA

Instrument and Control air production (if separate from SCA)

QFB

Instrument and Control air distribution

QHA

Auxiliary steam production (auxiliary boiler)

QHE

Blowdown system, flash drain system

QHH

Auxiliary boiler burners

QJA

Nitrogen storage and distribution system

QJB

Hydrogen storage and distribution system

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 28/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

QJC

CO2 storage and distribution system

QLB

Auxiliary steam distribution ( from auxiliary boiler)

QUA

Chemical control and sampling

RSA

Condensing and feed water heating plant cleaning (temporary)

RSB

Steam blowing piping (temporary)

RSC

HRSG cleaning (temporary)

SAA

Building ventilation

SAC

ST generator and compartment ventilation

SAD

ST forced air cooling

SAE,SAF

GT and generator compartment ventilation

SAK

Building air conditioning, heating and ventilation

SAL

GT control compartment air conditioning

SAM

Turbine hall ventilation

SAU

Building heating

SBB

Electrical heat tracing

SCA

Compressed air production

SCB

Service air distribution

SCC

Stationary compressed air system

SDL

(Lube oil cleaning)

SDP

(Liquid fuel purges)

SDT

(Washing skid and distribution)

SGA

Fire fighting water systems

SGC

Spray deluge systems

SGE

Sprinkler systems

SGG

Tank roof, tank shell cooling system

SGJ

CO2 fire fighting systems

SGK

Gaseous clean agents fire fighting systems (FM200)

SGL

Powder fire fighting system

SGY

Control and detection system

SMA

Cranes and Hoists Steam turbine & Generator

SMB

Cranes and Hoists Gas turbine

SMC

Cranes and Hoists

SNA

ELEVATORS

SQA

ROAD INSTALLATION

STA

WORKSHOP, LABORATORY EQUIPMENT

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 29/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

UAA

Structures for Switchyard structures

UBA

Structures for Switchgear building

UBE

Structures for MV aux transformers

UBF

Structures for Generator transformers

UBG

Structures for Start up transformer

UBH

Structures for Oil collecting pit

UCA

Plant control room building

UCB

Control station building

UEJ

Structures for Liquid fuel facilities

UEN

Structures for Gas fuel facilities (except Regulating and Metering Station)

UER

Structures for Gas fuel facilities (RMS)

UGA

Structures for Raw water supply

UGC

Structures for Waste water

UGD

Structures for demineralised water

UGF

Structures for fire protection water

UGG

Structures for drinking water

UGH

Structures for rain water

UGU

Structures for effluents

UHA

Heat recovery steam generator structures

UHB

Heat recovery steam generator enclosure structures

UHN

Smoke stack and chimney Str.

UHW

HRSG blowdown Str.

ULA

Structures for feedwater pumps house

UMA

Structures for Steam turbine

UMB

Structures for Gas Turbine

UMC

Main Turbine Hall

UMJ

Diesel generator building

UPC

Structures for Circulating cooling water intake

UQA

Structures for Circulating and Cooling water pump house

URA

Structures for Cooling towers and basin

URD

Structures for Cooling tower water pump house

URE

Structures for towers auxiliary services building

USA

Structures For HVAC

USC

Structures For Compressed air

USD

Structures For Ancillary Systems free for use

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 30/39

GE Energy

F1 F2 F3

SYSTEMS DESCRIPTION

UTH

Auxiliary boiler building

UYA

Structure for Offices building

UYF

Structure for access control building, gate house

UZA

Roads, paths

UZJ

Fences

UZJ

Outdoor area

XKA

Emergency LV power supply

XKB

Emergency MV power supply

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 31/39

GE Energy

APPENDIX B: EQUIPMENT UNIT CODE Main Groups of Equipment Units, A1:

A

Mechanical equipment (with moving parts)

B

Mechanical equipment (without moving parts)

C

Direct Measuring circuits

D

Closed-loop control circuits

E

Analogue and binary signal conditioning

F

Indirect measuring circuits

G

Electrical equipment

H

Subassemblies of main and heavy machinery

A1 A2 :

A AA

KKS DESIGNATION Mechanical equipment: Valves, dampers, etc., incl. actuators, also manual; rupture disk equipment

AB AC AE AF AG AH AM AN AP AS AT

Isolating element, air locks Heating, cooling and air conditioning units Turning, Driving, Lifting, and slewing gear Conveyors Generator unit Heating, cooling and air conditioning unit Mixer, agitators Compressor units, fans Pumps units Adjusting and tensioning equipment for non-electrical variables Cleaning, drying, filtering and separating equipment

AU AV AW AX

Braking, gearbox, coupling equipment, non electrical converters Combustion equipment Stationary tooling, treatment equipment Test and monitoring equipment for plant maintenance

A1A2

Revision D

Issue date 08/02/2012

EXAMPLES hand valve, check valve, pressure safety valve, solenoid valve, motorised-valve, operated valve Heat exchanger,

Filter, Separators, knock out drum.

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g B BB BE BF BN BP

389A9076 32/39

GE Energy

BQ BR BS BU C CD CE

Mechanical equipment: Storage equipment Shafts (for erection and maintenance only) Foundations Jet pumps, ejectors, injectors Flow restrictors, limiters (incl. rupture disk equipment), orifices (not metering orifices) Hangers, support, racks, piping penetration Piping, ductwork, chutes Silencers Insulation, sheathing Direct measuring circuits Density Electrical variables

CF

Flow, rate

CG

Distance, length, position, direction of rotation

CH CK CL

Manual input as manually operated sensor Time Level (also for dividing)

CM CP

Moisture, humidity Pressure

CQ

Quality variables (analysis, material properties), other than CD, CM, CV

CR CS CT

Radiation variables Velocity, speed, frequency (mechanical), acceleration Temperature

CU CV CW CX CY D E F G GA GB

Combined and other variables Viscosity Weight, mass Neutron flux Vibration, expansion Closed loop control circuits Analog and binary signal conditioning Indirect measuring circuits Electrical equipment: Junction boxes and cable/bus bar penetrations Junction boxes and cable/bus bar penetrations

GC

Junction boxes and cable/bus bar penetrations

GD

Junction boxes and cable/bus bar penetrations

Revision D

Issue date 08/02/2012

vessels and storage tanks

Current, voltage, energy, frequency flow transmitter, flow meter, flow switch, flow orifice, flow venturi, flow valve, flow controller position transmitter, potentiometer, end switch Fire manual call point level control valve, level transmitter, level gauge, level switch, level controller dew point transmitter pressure transmitter, gauge, switch, pressure controller, pressure valve CO2 concentration in flue gas, contaminant concentration Partial discharge measurement Shaft line measurements temperature transmitter, thermocouple, temperature switch, glass thermometer, wells, temperature controller, temperature valve corrected values

(2) (2) (2) For voltage over 1kV (1) For voltage equal or less than 1kV (1) Contain at least a control signal (1) Contain at least a conventional instrument signal (1) 389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 33/39

GE Energy

GE

Junction boxes and cable/bus bar penetrations

GF GG GH

Junction boxes and cable/bus bar penetrations Junction boxes and cable/bus bar penetrations Electrical and instrumentation and control installation units identified as per process system (e.g. cubicles, boxes)

GK

Information display and operator ctrl equipment for process computers and automation systems

GL GN GR GS

Limiting equipment Network equipment DC generating Electrical equipment: switchgear equipment (if not identified under process equipment) Transformer equipment

GT GU GV GW GZ

Convector equipment Structure-related earthing and lightning protection equipment, surge arrestors Power supply equipment Hangers, supports and racks for electrical and instrumentation and control equipment

Contain Frequency based signals, serial links, networks, FFB,etc. (1) Not used Not used Generic electrical and electronic enclosure, cubicles, cabinet, panel,etc. (1) Printer, Video screen, Keyboards, Computer drive, Operator station or interface unit

Battery, rectifier Voltage transformer Current transformer Winding, Coil surge arrestor, surge capacitor Frame, Enclosure, support, field instrument panel

(1) Refer to Part E (2) Refer to Part F

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 34/39

GE Energy

APPENDIX C: AN RESERVED COUNTING RANGES AA Counting range

Valve type

001-199 200-299 300-399 400-499 500-599 600-699 700-799 800-899 900-999

Main manual or process check valves Pneumatic & Hydraulic control valves (regulating or on/off) Motor-driven process valves Electric process valves Manual drain and vent valves Self-regulating valves (pressure, temperature, level, etc.) Instrument root valves blocked Safety and relief valves

BR Counting range

Type of Piping

001-199 200-299 300-399 400-499 500-599 600-699 700-799 800-899 900-999

Main process, any type Drain & Vent, any type Instrument as long piping run Sample & metering test blocked blocked blocked blocked

Cx Dx Counting range

Measurement type

001-099 100-199 200-299 300-399 400-499 500-599 600-699 700-799 800-899 900-999

Remote Analog local control blocked Remote Binary (or local with) blocked Local indicator/gauge blocked blocked test tapping point Combined data

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 35/39

GE Energy

APPENDIX D: MECHANICAL COMPONENT B1B2 CODE KKS DESIGNATION

A1A2

K KA KB KC KD KE KF KJ KM KN KP KT KV KW M MB MF MG MK MM MQ MR MS MT MU Q QB QH QN QP QR QS QT

Remarks

Mechanical component: Valves, dampers, cocks, rupture disks, orifices. Gates, doors, dam boards Heat exchangers, coolers Vessel, tank, pools, surge tank Turning, Driving, Lifting, and slewing gear Continuous conveyors, feeders Size reduction machines Compacting, packaging machines Compressors, blowers, fans Pumps Cleaning, machines, dryers, separators, filters Burners, grates Stationary tooling and treatment machines for maintenance Mechanical component: Brakes Foundations Gear boxes Clutches, couplings Engines, not electrical Permanent connection Piping components, ductwork components Positioners, not electrical Turbines Transmission gear, non electrical, converters and boosters other than couplings and gearboxes Instrumentation and control component (non electrical) Sensor if not structurally integral with *QP*, metering orifices Signalling devices Controllers, fly bolt governor Measurement instruments, testing equipment Instrument piping Condensation chambers (datum reservoir) in measuring circuits Thermowells and pockets for protection of sensors

Revision D

Issue date 08/02/2012

globe valve, gate valve,

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 36/39

GE Energy

APPENDIX E: ELECTRICAL COMPONENT B1B2 CODE B1B2

KKS DESIGNATION

-A

Electrical components: assemblies and subassemblies

-B

Electrical components: transducers for non-electrical to electrical variables and vice-versa

-C

Electrical components: capacitors

-D

Electrical components: binary elements, delay devices, memory devices

-E

Electrical components: special components

-F

Electrical components: protective devices

-G

Electrical components: generators, power supplies, inverters

-H

Electrical components: signalling devices

-K

Electrical components: relays, contactors

-L

Electrical components: inductors

-M

Electrical components: motors

-N

Electrical components: amplifiers, controllers

-P

Electrical components: measuring instruments, testing equipment

-Q

Electrical components: power switchgear

-R

Electrical components: resistors

-S

Electrical components: switches, selectors

-T

Electrical components: transformers

-U

Electrical components: modulators, convertors from electrical to other electrical variables

-V

Electrical components: tubes, semiconductors

-W

Electrical components: transmission paths, waveguides, aerials

-X

Electrical components: terminals, plugs, sockets

-Y

Electrical components: electrical positionners, e.g. Solenoids (not motor)

-Z

Electrical components: terminations, balancing equipment, filters, limiters, cable terminations, equalizers, hybrid transformers

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 37/39

GE Energy

APPENDIX F: EXAMPLES IN USE AND CASE STUDY 1° Redundant instrument:

Redundant instrument measuring the same processing value are segregated by the A3 code MBP70 CP003A redundant remote pressure measurement MBP70 CP003B redundant remote pressure measurement MBP70 CP003C redundant remote pressure measurement 2° Measurement of identical process value used in different control loops:

Multiple instrument at the same point of installation measuring values used for different control loops or controllers, they are differentiated by the AN code. MBP70 CG311 limit switch closed MBP70 CG312 limit switch open

3° Multiple measuring circuits housed in the same body This pertains to thermocouple having several sensors housed in the same body in order to get a back up instrumentation in case of failure of the main. This is avoiding dismantling the thermocouple by stopping the system. Each sensor is a component of the thermocouple and is tagged as follow on circuit diagrams: MBP70 CT001–B01 MBP70 CT001–B02 MBP70 CT001–B03 In the P&ID’s this thermocouple is shown as a unique control point as MBP70 CT001. 4° Equipment or Piping mounted in parallel: The example codes below show the different methods for changing coding for items in parallel on a P&ID. Example for Piping Line, 3 pipes in parallel depending on the importance of the lines it will change the Level 1 (decade or unit) or the level 2: MBA10 BR001 MBA20 BR001 MBA30 BR001

Revision D

OR

MBA11 BR001 MBA12 BR001 MBA13 BR001

OR

MBA11 BR001 MBA11 BR002 MBA11 BR003

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 38/39

GE Energy

Example for Equipment: (3 pumps in parallel) MBA10 AP001 MBA20 AP001 MBA30 AP001

OR

MBA11 AP001 MBA12 AP001 MBA13 AP001

OR

MBA11 AP001 MBA11 AP002 MBA11 AP003

5°Change in system coding for actuating instruments (pilot valves)

6° example of a relief valve and relevant lines

7° example of ISA coding a) A pressure switch on a pressure very high alarm. PSAHH LBA10CP101

b) A level transmitter used to make a remote indication.

LTI LBQ20CL001

Revision D

Issue date 08/02/2012

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

DWG Number 389A9076

Rev D

Released 7/9/2012

g

389A9076 39/39

GE Energy

c) A temperature switch used to make an alarm and an automatic control: TSLH LBQ20CT101

d) A thermowell for maintenance TW LBQ20CT801

e) A pressure gauge PI LBQ20CP121

8° Instrumentation Valves The piping valves are always shown on the P&ID. Instrumentation valves could be omitted on the P&ID. (Implicit Instrumentation component) if considered as a component of the instrument PI LBA11CP001 PSH LCQ20CP301

LBA11 AA702 Piping Limit LBA11 AA701

LCQ20

AA701

LBA11 BR010

Revision D

TI LCF10CT551

LCQ20 BR010

Issue date 08/02/2012

LCF10 BR010

389A9076

GE Proprietary Information - Class II (Internal) US EAR - NLR

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF