04_Capacity_management.pdf

Share Embed Donate


Short Description

Download 04_Capacity_management.pdf...

Description

3G RANOP RU20 Module Module 4 – Capacit Capacity y Ma Manag nagemen ementt

Confidential 1 © Nokia Siemens Networks

Presentation / Author / Date

Course Content KPI overview Performance monitoring Air interface and neighbor optimization Capacity management Paging and inter-RNC optimization

Confidential 2 © Nokia Siemens Networks

Presentation / Author / Date

Module Objectives

At the end of the module you will be able to: Describe 3G RAN traffic, load, blocking due to different scenarios Describe 3G monitoring and potentials of capacity enhancement load features Describe 3G/HSPA counters & KPI’s to improve capacity by less blocking

Confidential 3 © Nokia Siemens Networks

Capacity optimization Principles of capacity monitoring - Capa Capacity city bott bottlene lenecks  cks  - Reactive Reactive / proactiv proactive e monitoring  monitoring  - RU RU20 20 Impro Improvem vement ents  s 

Monitoring of R99 blocking - Air inter interfac face e TCP / RTWP  RTWP  - Chan Channel nel Cards Cards / Code Tree, Tree, - UTRAN interface interfaces s Iub / Iur Iur - Features Features to reduce reduce blocking  blocking 

Monitoring of HSPA congestion and blocking - Bott Bottle lene neck cks  s  - HSDPA HSDPA power power consump consumption tion / CQI  - Dynami Dynamic c HSDPA HSDPA powe power  r  - Chan Channel nel Cards Cards / Code Tree  - User User Equipm Equipment  ent 

Confidential 4 © Nokia Siemens Networks

Capacity bottlenecks RNC

WBTS

UE

IuCS Interface User Plane  User Plane 

AIR Interface

WSP  Resource 

IuB Interface CNBAP 

PRACH 

Throughput  Connectivity  Unit Load 

PCH 

Code  Capacity 

WCDMA network interfaces and internal resources should be monitored

User Plane 

DSP Usage 

 U   s  e r  P  l    a n  e

D-RNC

Confidential 5 © Nokia Siemens Networks

IuPS Interface

DNBAP 

FACH-c&u 

DCH 

SS7 (RANAP) 

User Plane  SS7 (RANAP) 

Iur Interface

Reactive / proactive monitoring KPIs • Daily BH analysis needed for Reactive monitoring • Weekly analysis enough for Proactive monitoring

W-BTS Iub Confidential 6 © Nokia Siemens Networks

RU20 improvement Capacity “Upgrade” 

-  -

RU 20 features Power Saving Mode for BTS new  Fractional DPCH HSPA over Iur HSUPA 2ms TTI Flexible RLC (DL) HSDPA 64QAM  Continuous Packet Connectivity (DTX for signaling DPCCH) HSPA 72 Users Per Cell  CS Voice over HSPA* MIMO 2x2* DC-HSDPA 42Mbps* Dual carrier new  HSUPA 5.8 Mbps  24 kbps Paging Channel (normal 8 kbps) Fast L1 Synchronization Interworking and Network Evolution LTE Interworking* HO to LTE

Confidential 7 © Nokia Siemens Networks



-  -

value drivers - improvements less total interference within networks Fractional DPCH less signaling via Iu interface, less load within transmission HSUPA speed will increase less overhead (PDU) Higher spectral efficiency (Mbps/MHz) new  less signaling load, more capacity more users can be managed DCH switched off, more speed more HSPA PwR High data and better antenna efficiency More speed, but second carrier activation UL high dedicated data More access capability Quicker access for service (RRC setup 70 ms improvement) 3G NW interact with LTE (Dual mode)

Capacity optimization Principles of capacity monitoring

OSS monitoring  Performance department is more happy

Confidential 8 © Nokia Siemens Networks

Capacity optimization Principles of capacity monitoring - Capacity bottlenecks  - Reactive / proactive monitoring  - RU20 Improvements 

Monitoring of R99 blocking - Air interface TCP / RTWP  - Channel Cards / Code Tree, - UTRAN interfaces Iub / Iur - Features to reduce blocking 

Monitoring of HSPA congestion and blocking - Bottlenecks  - HSDPA power consumption / CQI  - Dynamic HSDPA power  - Channel Cards / Code Tree  - User Equipment 

Confidential 9 © Nokia Siemens Networks

Air interface TCP / RTWP blocking (1/3) • First – – evaluation of TCP / RTWP blocking • Then – – channel cards / code tree • Finally Iub/Iur interfaces and RNC

Power & interference management 

• Too many RB assignments • Radio interface quality and coverage (Ec/Io, RSCP) • Neighbor cell interference • UE (terminal problem)

Confidential 10 © Nokia Siemens Networks

Air interface TCP / RTWP blocking (2/3) UL (RTWP)

Blocking due to congestion

Noise Rise [dB]

Overloaded Area Marginal Load Area

PrxTarget [dB] + PrxOffset [dB] Prx Tar et dB

Feasible Load Area

RB allocation by AC/PS

Confidential 11 © Nokia Siemens Networks

η) [0..1] load (η

Max load

Air interface TCP / RTWP blocking (3/3) DL (TCP)

Blocking due to congestion

total transmitted power [dBm]

Overloaded Area Mar inal Load Area

Ptx Target [dBm] + PtxOffset [dB] Ptx Target [dBm]

Feasible Load Area RB allocation by AC/PS

load (η η) Range Ptx Total [0… Ptx BS total] Confidential 12 © Nokia Siemens Networks

Max load

Channel card / code tree blocking (1/3) Example: Less CE usage with throughput based optimization AVE_CE_USED_AMR (Cellres)

Average CE Used

Avg CE used PS UL Avg CE used PS DL

6

  r   e   r   a   e    b    /    E    C

5

4

2

1

0        7        0        0        2        /        7        /        9

       7        0        0        2        /        8        /        9

       7        0        0        2        /        9        /        9

       7        0        0        2        /        0        1        /

       7        0        0        2        /        1        1        /

       7        0        0        2        /        2        1        /

       7        0        0        2        /        3        1        /

       7        0        0        2        /        4        1        /

       7        0        0        2        /        5        1        /

       7        0        0        2        /        6        1        /

       7        0        0        2        /        7        1        /

       7        0        0        2        /        8        1        /

       7        0        0        2        /        9        1        /

       7        0        0        2        /        0        2        /

       7        0        0        2        /        1        2        /

       7        0        0        2        /        2        2        /

       7        0        0        2        /        3        2        /

       9

       9

       9

       9

       9

       9

       9

       9

       9

       9

       9

       9

       9

       9

Average CE used for AMR traffic kept in same level as before Average CE used for PS traffic reduced by 30 – 40% both on UL and DL Confidential 13 © Nokia Siemens Networks

AMR needs 1 CE PS 64/128 needs 4 Ces PS 32 kbps needs 2 CEs

Channel card / code tree blocking (2/3) Example: code tree blocking rate in dependence on SF Pink is SF8 blocking rate – SF8 blocking/SF8 requested

Blue line represent the whole code tree blocking rate

100

Yellow is SF16 blocking rate – SF16 blocking/SF16 requested

80

In this case, major part of blocking is coming from SF8 - Blocking can be relative high and still there can be enough capacity to set initial bitrate

60

40

20

0 1

4

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

-20 Code_Tree_Blocking_Rate

SF8_Blocking_rate

SF16_Blocking_rate

SF32_Blocking_rate

SF64_Blocking_rate

SF128_Blocking_rate

SF256_Blocking_rate

Confidential 14 © Nokia Siemens Networks

Channel card / code tree blocking (3/3) KPIs for code tree blocking (and HSDPA downgrade due to lack of codes)

PI

Name

Unit

Object

Formula

WCEL

(1-100*(sum( THE NBR OF SUCC CODE THREE ALLO)/sum( CHANNELIZATION CODE SF4 REQUESTED+ CHANNELIZATION CODE SF8 REQUESTED+ CHANNELIZATION CODE SF16 REQUESTED+ CHANNELIZATION CODE SF32 REQUESTED+ CHANNELIZATION CODE SF64 REQUESTED+ CHANNELIZATION CODE SF128 REQUESTED + CHANNELIZATION CODE SF256 REQUESTED)

RNC_949a

SF code blocking rate

RNC _ 512b

SF4 blockin rate

RNC_513b

SF8 blocking rate

%

WCEL

100%*(NO_CODES_AVAILABLE_SF8 / CHAN_CODE_SF8_REQUESTED)

RNC_514b

SF16 blocking rate

%

WCEL

100%*(NO_CODES_AVAILABLE_SF16 / CHAN_CODE_SF16_REQUESTED)

RNC_515b

SF32 blocking rate

%

WCEL

100%*(NO_CODES_AVAILABLE_SF32 / CHAN_CODE_SF32_REQUESTED

RNC_516b

SF64 blocking rate

%

WCEL

100%*(NO_CODES_AVAILABLE_SF64 / CHAN_CODE_SF64_REQUESTED)

RNC_517b

SF128 blocking rate

%

WCEL

100%*(NO_CODES_AVAILABLE_SF128 / CHAN_CODE_SF128_REQUESTED)

RNC_518b

SF256 blocking rate

%

WCEL

100%*(NO_CODES_AVAILABLE_SF256 / CHAN_CODE_SF256_REQUESTED)

M1000C266

HSDPA CH code downgrade due RT

#

WCEL

CH_CODE_DOWNG_RT

M1000C267

HSDPA CH code downgrade due NRT

#

WCEL

CH_CODE_DOWNG_NRT_DCH

Confidential 15 © Nokia Siemens Networks

%

*

 _

_

_

_

_

_

Iub / Iur interface blocking (1/2) Example: Less reserved ATM cell rate with throughput based optimization • As the consequence of

1180000

lower PS RB allocation, Maximum Reserved AAL2 (cell rate) VCI 36 the maximum reserved cell rate in AAL2 has reduced considerably Sum of MAX_RESERVED_CE LL_RATE (Aal2cac)

1160000 1140000 1120000 1100000 1080000 1060000 1040000 1020000 1000000        7        0        0        2        /        7        /        9

       7        0        0        2        /        8        /        9

       7        0        0        2        /        9        /        9

       7        0        0        2        /        0        1        /        9

       7        0        0        2        /        1        1        /        9

       7        0        0        2        /        2        1        /        9

       7        0        0        2        /        3        1        /        9

       7        0        0        2        /        4        1        /        9

       7        0        0        2        /        5        1        /        9

Time Confidential 16 © Nokia Siemens Networks

       7        0        0        2        /        6        1        /        9

       7        0        0        2        /        7        1        /        9

       7        0        0        2        /        8        1        /        9

       7        0        0        2        /        9        1        /        9

       7        0        0        2        /        0        2        /        9

       7        0        0        2        /        1        2        /        9

       7        0        0        2        /        2        2        /        9

       7        0        0        2        /        3        2        /        9

Iub / Iur interface blocking (2/2) Example: Less VCI blocked with throughput based optimization Numb er of AAL2 CAC Rejected VCI 36

120000

Sum of AAL2_CAC_REJECTED (Aal2cac)

100000

80000

60000

40000

20000

0        7        0        0        2        /        7        /        9

       7        0        0        2        /        8        /        9

       7        0        0        2        /        9        /        9

       7        0        0        2        /        0        1        /        9

       7        0        0        2        /        1        1        /        9

       7        0        0        2        /        2        1        /        9

       7        0        0        2        /        3        1        /        9

       7        0        0        2        /        4        1        /        9

       7        0        0        2        /        5        1        /        9

       7        0        0        2        /        6        1        /        9

       7        0        0        2        /        7        1        /        9

       7        0        0        2        /        8        1        /        9

       7        0        0        2        /        9        1        /        9

       7        0        0        2        /        0        2        /        9

       7        0        0        2        /        1        2        /        9

       7        0        0        2        /        2        2        /        9

       7        0        0        2        /        3        2        /        9

Time

• Thanks to less AAL2 occupancy, the number of AAL2 CAD rejects reduced by more than half Confidential 17 © Nokia Siemens Networks

Features to reduce blocking (1/10) Feature list

RNC PS features  Data highway • • • • • Confidential 18 © Nokia Siemens Networks

Priority Based Scheduling (PBS) Enhanced Overload Control Throughput Based Optimisation (TBO) Flexible Upgrade of NRT DCH Dynamic Link Optimisation (DyLo)

Features to reduce blocking (2/10) Priority Based Scheduling Existing NRT allocations can be downgraded or released if there are other users requesting initial capacity in the following congestion situations: PrxTotal > PrxTarget (Marginal Load Area) PtxTotal > PtxTarget (Marginal Load Area) Lack of DL spreading code  Lack of BTS HW (CE)

bit rate

NRT RB 1

Reconfiguration of RB1

NRT RB 2

RT traffic Capacity request RB2 Confidential 19 © Nokia Siemens Networks

time

Features to reduce blocking (3/10) Example: PBS parameter settings for different test cases PBS Policy, Initial bit rate and PtxTarget vary between test cases 

PtxTarget was changed either “favour” DL spreading code triggering or DL power triggering  Initial bit rate was high, either 384 or 128 during test  Iub user plane size was set smaller and HSDPA call was running, too *TC= Test Case

Confidential 20 © Nokia Siemens Networks

→ see

one result example in the appendix

Features to reduce blocking (4/10) Enhanced Priority Based Scheduling and Overload Control Downgrade or release NRT DCH in congested situation: • Priority Based Scheduling  –  Existing NRT allocations can be downgraded or released if there are other users requesting initial capacity in the congested situation  –  Prx/PtxTotal > Prx/PtxTarget (Marginal Load Area)

• Enhanced Overload Control  –  In an overload situation PS start modification or reconfiguration of

.

 –  Prx/PtxTotal > Prx/PtxTarget+ Prx/PtxOffset (Overload Area)

Overload Load Margin

Enhanced Overload control can be “deactivated” by setting PtxOffset to high value Confidential 21 © Nokia Siemens Networks

Enhanced Overload Control Priority Based Scheduling Normal load

Prx/Ptx Target+Prx/Ptx Offset Prx/Ptx Target [dB]

Features to reduce blocking (5/10) Priority Based Scheduling and Enhanced Overload Control KPIs

Confidential 22 © Nokia Siemens Networks

Features to reduce blocking (6/10) Throughput Based Optimisation and Flexible Upgrade of NRT DCH • RAN 409:Throughput based optimization of the PS algorithm adapts the DCH resource reservation to meet the actual utilization (or used bit rate) of the DCH.  –  TBO Downgrades UL/DL radio bearer allocation due to low throughput

• RAN 202: Flexible upgrade of NRT DCH data rate upgrades to higher bit rate only if current bit rate is fully utilised =>

 –  NRT PS radio bearer allocations will decrease for same amount of traffic  –  Average WBTS hardware resource (CE) usage for NRT will decrease  –  Iub AAL2 reservation and amount of AAL2 rejects (CAC) will decrease • Throughput based optimisation and flexible upgrade is very useful also for HSDPA associated uplink DPCH (enabled with DynUsageHSDPAReturnChannel parameter)

Confidential 23 © Nokia Siemens Networks

Features to reduce blocking (7/10) Example: Downgrade causes without / with TBO

RB_DOWNGR_DUE_THRPOPT (Cellres) RB_DOWNGR_DUE_PRE_EMP_BTS (Cellres) RB_DOWNGR_DUE_PRE_EMP_AAL2 (Cellres) RB_DOWNGR_DUE_PBS_INTERF (Cellres) RB_DOWNGR_DUE_PBS_BTS (Cellres)

RB Downgrade Cause Distributions

RB_DOWNGR_DUE_PBS_AAL2 (Cellres) RB_DOWNGR_DUE_OLC_TFC_SUBS (Cellres) RB_DOWNGR_DUE_OLC_RL_RECONF (Cellres) RB_DOWNGR_DUE_DYLO_RL_POWER (Cellres)

1400000

• Most of RB downgrades /

1200000

releases are triggered by 1000000

reconfigurations) • At the same time, the triggers due to pre-emption and DyLo decrease significantly

800000

600000

400000



200000

→see

next slide

0        7        0        0        2        /        7        /        9

       7        0        0        2        /        8        /        9

Confidential 24 © Nokia Siemens Networks

       7        0        0        2        /        9        /        9

       7        0        0        2        /        0        1        /        9

       7        0        0        2        /        1        1        /        9

       7        0        0        2        /        2        1        /        9

       7        0        0        2        /        3        1        /        9

       7        0        0        2        /        4        1        /        9

       7        0        0        2        /        5        1        /        9

       7        0        0        2        /        6        1        /        9

       7        0        0        2        /        7        1        /        9

       7        0        0        2        /        8        1        /        9

       7        0        0        2        /        9        1        /        9

       7        0        0        2        /        0        2        /        9

       7        0        0        2        /        1        2        /        9

       7        0        0        2        /        2        2        /        9

       7        0        0        2        /        3        2        /        9

Features to reduce blocking (8/10) Example: Downgrade causes without / with TBO RB_RELEASE_DUE_PRE_EM P_BTS (Cellres)

RB Dow ngrade/Release due to Pre-emption or DyLo

RB_RELEASE_DUE_PRE_EM P_AAL2 (Cellres) RB_DOWNGR_DUE_PRE_EMP_BTS (Cellres)

40000

RB_DOWNGR_DUE_PRE_EMP_AAL2 (Cellres) RB_DOWNGR_DUE_DYLO_RL_POWER (Cellres)

35000

30000

25000

20000

15000

10000

5000

0        7        0        0        2        /        7        /        9

       7        0        0        2        /        8        /        9

       7        0        0        2        /        9        /        9

Confidential 25 © Nokia Siemens Networks

       7        0        0        2        /        0        1        /        9

       7        0        0        2        /        1        1        /        9

       7        0        0        2        /        2        1        /        9

       7        0        0        2        /        3        1        /        9

       7        0        0        2        /        4        1        /        9

       7        0        0        2        /        5        1        /        9

       7        0        0        2        /        6        1        /        9

       7        0        0        2        /        7        1        /        9

       7        0        0        2        /        8        1        /        9

       7        0        0        2        /        9        1        /        9

       7        0        0        2        /        0        2        /        9

       7        0        0        2        /        1        2        /        9

       7        0        0        2        /        2        2        /        9

       7        0        0        2        /        3        2        /        9

Features to reduce blocking (9/10) Example: Flexible upgrade parameter settings for different test cases • In Case of flexible upgrade, parameters are not changed during measurement  –  HTTP download cases are tested with flexible upgrade “on” and flexible upgrade “off”  –  HTTP download is also tested by setting initial bit rate same as maximum bit rate =384 When FlexUpgrUsage is set “on” and DCHUtilHighAveWin > 0, throughput measurement are activated

ex e upgrade of NRT DCH Data Rate feature is here now activated

Confidential 26 © Nokia Siemens Networks

The parameters (TrafVolThresholdUL/DLHighBitRate) are in use if the Flexible Upgrade of NRT DCH Data Rate feature is activated by the FlexUpgrUsage parameter. Otherwise the traffic volume threshold for the uplink/downlink direction is defined by the TrafVolThresholdUL/DLHigh parameter.

Features to reduce blocking (10/10) Dynamic Link Optimization DyLo for NRT Traffic Coverage 128kbps

Ptx ave  is averaged radio link

384kbps

power, measured and reported to RNC by BTS and checked in RNC against Ptx max  (defined by

UE

Admission Control)

distance

PtxRL

Ptxmax Offset

Triggering of DyLO Ptxave Confidential 27 © Nokia Siemens Networks

time

Radio link is modified to use lower bit rate when Tx power of the radio link is getting close to maximum

Capacity optimization Monitoring of R99 Blocking issues

That’s blocking  Confidential 28 © Nokia Siemens Networks

Capacity optimization Principles of capacity monitoring - Capacity bottlenecks  - Reactive / proactive monitoring  - RU20 Improvements 

Monitoring of R99 blocking - Air interface TCP / RTWP  - Channel Cards / Code Tree, - UTRAN interfaces Iub / Iur - Features to reduce blocking 

Monitoring of HSPA congestion and blocking - Bottlenecks  - HSDPA power consumption / CQI  - Dynamic HSDPA power  - Channel Cards / Code Tree  - User Equipment 

Confidential 29 © Nokia Siemens Networks

Bottlenecks (1/3) HSDPA setup failures  ALLO_ HS _ DSCH _ FLOW _ INT + ALLO_ HS _ DSCH _ FLOW _ BGR+ DCH _ SEL_ MAX _ HSDPA_ USERS _ INT +

_ SEL_ MAX _ HSDPA_ USERS _ BGR+ REJ _ HS _ DSCH _ RET _ INT + REJ _ HS _ DSCH _ RET _ BGR+ + SETUP_ FAIL_ RNC _ HS _ DSCH _ INT + SETUP_ FAIL_ RNC _ HS _ DSCH _ BGR+ SETUP_ FAIL_ UE _ HS _ DSCH _ INT + + SETUP_ FAIL_ UE _ HS _ DSCH _ BGR+ SETUP_ FAIL_ BTS _ HS _ DSCH _ INT + SETUP_ FAIL_ BTS _ HS _ DSCH _ BGR+ + SETUP_ FAIL_ IUB_ HS _ DSCH _ INT + SETUP_ FAIL_ IUB_ HS _ DSCH _ BGR + DCH 

 RNC_614a=



Capacity bottleneck analysis RNC_614 tells the HS_DSCH setup attempts => after this the HS-DSCH setup can fail due to: •

Too many simultaneous Users



Radio interface quality



BTS (lack of CE for UL)



Iub (lack of Iub for UL)



RNC (lack of DSP resources)



Iu-PS (lack of Iu-PS capacity)



IP-BB (lack of capacity on any “leased” IP-BB links)



UE (terminal problem)

Confidential 30 © Nokia Siemens Networks

RNC_614 HS-DSCH selections –  the number of times when HS-DSCH has been selected by the PS scheduler Note that also the setup failures are included and also the success allocations Based on M1002 traffic counters In RU20 also the streaming counters in the formula

Bottlenecks (2/3)

RNC_914c – HSDPA setup success ratio – chapter 1 page 43 (packet level counters) RNC_609a – HSDPA success ratio - chapter 1 page 41 (retainabilty) RNC_608a – HSDPA data volume Iub – chapter 1 page 57

Example: HSDPA data volume versus HSDPA setup success Data volume MAC d (bytes)

Success rate (%)

7000000

100.000 98.000

6000000 96.000 5000000

94.000 92.000 90.000

3000000

88.000

2000000

1000000

No blocking yet

86.000

HSPA Success Ratio is bigger than RNC_614a

84.000

0

80.000

   8    8    8    8    8    8    8    8    8    8    8    8    8    8    8    8    8    8    8    8    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   1   1   1   1    2    2    2    2    2   3   3   3   3   4   4   4   4    5    5    5    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0  .  .  .  .  .  .  .    8 .    5 .    8 .    5 .    2 .    9 .    7 .    8 .    8 .    5 .    2 .    9 .    6 .    0  4   1  1   1    2    0  1    0   1    2    2    0   1  4    2  1    2    0  4   1  1   1    2    0    0   1

Confidential 31 © Nokia Siemens Networks

82.000

R NC _614a_HS -D SC H selections

R NC _608a_HS DP A data volum e (M AC -d) a t Iub

HSDPA Setup Success Ratio from user perspective

HSDPA Success Ratio from user perspective

Bottlenecks (3/3) Feature list to overcome bottlenecks RNC processing load  Air interface TCP / RTWP 

CPICH

Channel Cards, Code Tree  WBTS

UTRAN interface load Iub/Iur

HSPA Data highway • • • • • Confidential 32 © Nokia Siemens Networks

Dynamic HSDPA Power Allocation MAC-hs Throughput CQI Management Dynamic NRT DCH Scheduling Dynamic Resource Allocation Dynamic HSDPA Code Allocation

HSDPA power consumption (1/3) HS-SCCH power control HS-SCCH inner loop power control algorithm • Node B estimates the HS-SCCH Tx power according to PHS-SCCH = PCPICH + Γ + λCQI + P0

 –  PCPICH CPICH power  –  Γ measurement power offset  –  λCQI power offset taken from CQICOMPENSATED by look up table (next slide)  –  P0 correction estimated by HS-SCCH outer loop power control algorithm • HS-SCCH Tx power  –  Estimated for each HSDPA connection individually  –  Updated with each CQI report

HS-PDSCH HS-PDSCH

High-Speed Physical DL Shared Channel High-Speed Physical DL Shared Channel

HS-SCCH HS-SCCH

Shared Control Channel for HS-DSCH Shared Control Channel for HS-DSCH

HS-DPCCH HS-DPCCH

Dedicated Physical Control Channel (UL) for HS-DSCH Dedicated Physical Control Channel (UL) for HS-DSCH

associatedDCH DCH associated Dedicated Channel Dedicated Channel

Confidential 33 © Nokia Siemens Networks

HSDPA power consumption (2/3) HS-SCCH power control example Example: PCPICH + Γ = 6 W (37.8 dBm) P0 = 0 CQI

TBS Throughput

λCQI

PHS-SCCH

4

317

-7.7 dB

(37.8 - 7.7) dBm = 30.1 dBm (1.0 W)

13

2279 1140 K

-16.6 dB

(37.8 - 16.6) dBm = 21.2 dBm (0.13 W)

159 K

Confidential 34 © Nokia Siemens Networks

HSDPA power consumption (3/3) Measurement power offset – initial HSDPA power • UE reports CQI assuming transmit power PHS-PDSCH SIG = PCPICH + Γ + Γ   ∆ Γ  –  Γ calculated Γ   by RNC Γ   

Γ = Γ   0.7 (PtxMax – PtxNonHSDPA) – PCPICH Γ PtxMax = maximum cell power PtxNonHSDPA = total power allocated to R99 and DL control channels (latest report is taken)

 –  With Γ simplification to PHS-PDSCH SIG = (0.7 (Ptxmax – PtxNonHSDPA)) (dBm) + ∆ Γ   Γ  –  Γ signalled Γ   to UE in case of Γ  

HS-DSCH setup Serving cell change

 –  actual CQI (only applied, if below 0) Example PtxMax = 20 W PtxNonHSDPA = 10 W Actual CQI = 24 UE class 6 ⇒ Maximum TBS = 7168 bit (Maximum of 5 HS-DSCH codes received ) Need CQI = 22 ⇒ ∆ = (22 - 24) dB = -2 dB 0.7 (PtxMax – PtxNonHSDPA) = 0.7 (20 W - 10 W) = 7 W = 38.5 dBm PHS-PDSCH SIG = 38.5 dBm - 2 dB = 36.5 dBm Confidential 35 © Nokia Siemens Networks

CQI Example: throughput versus CQI Huaw ei E870 Throughput (L1) v CQI PtxMaxHSDPA = 43dBm

N95 Throughput (L1) v CQI PtxMaxHSDPA=43dm

7000000

4000000

   ) 6000000   s    /    b    (    t 5000000   u   p    h 4000000   g   u   o   r    h 3000000    T   s    h   - 2000000    C    A    M1000000

   )   s    /    b    ( 3000000    t   u   p 2500000    h   g   u 2000000   o   r    h    T 1500000   s    h      C 1000000    A    M 500000

3500000

0

0 5

10

15 Ave Reported CQI

20

25

0

5

10

15

20

25

Ave Reported CQI

Actual MACMAC-hs throughput characteristics are quite different, and idle TTIs are impacting. Samples sitting below the curves are typically in the slowslow start or servingserving-cell change periods.

Confidential 36 © Nokia Siemens Networks

30

Dynamic HSDPA power (1/10) HSDPA and non HSDPA power BTS periodically reports the total transmission power value PtxTotal and non-HSDPA power • “Transmitted carrier power of all codes not used for HS-PDSCH or HS-SCCH transmission ” if BTS supports only HSDPA or • non-HSPA power (“Transmitted carrier power of all codes not used for HS-PDSCH HS-  SCCH E-AGCH E-RGCH or E-HICH transmission) if BTS supports HSUPA to RNC in RRI messages • These two are referenced as “HSxPA ower” The reported values are in range 0…100% representing the power value relative to the cell maximum transmission power, defined by MIN[PtxCellMax, MaxDLPowerCapability ] From the difference of reported PtxTotal and HSxPA power, RNC can calculate the used HSPApower value and update that to statistics counters • The counters are updated only when there is at least one HSDPA allocation in the cell RNC updates the HSxPA power value counters when nbap_radio_resource_ind_s message including PtxTotal and HSxPA power information is received from BTS and there is at least one HSDPA allocation in the cell. The unit for all counter updates is watt

Confidential 37 © Nokia Siemens Networks

Dynamic HSDPA power (2/10) Dynamic NRT DCH load target RNC affects the HSDPA power allocation indirectly by scheduling NRT DCH bit rates When there is at least one HS-DSCH MAC-d flow allocated in the cell, PtxTargetPS is used for packet scheduling and handover control purposes (this was PtxTargetHSDPA for R99 in RAS5.1) PtxTargetPS is adjusted between PtxTargetPSMin and PtxTargetPSMax 

PtxTargetPSMin ≤ PtxTargetPS ≤ PtxTargetPSMax  PtxTargetPSAdjustPeriod defines the adjustment period for the PtxTargetPS in terms of Radio Resource Indication (RRI) reporting periods If PtxTargetPSMax and PtxTargetPSMin are set to the same value, RNC does not adjust PtxTargetPS  Dynamic NRT DCH scheduling disabled

Confidential 38 © Nokia Siemens Networks

Dynamic HSDPA power (3/10) Power congestion Adjustment of the PtxTargetPS is executed when power congestion for DL transport channel type (HS-DSCH or NRT DCH) is detected by the RNC The definition of the power congestion for DL transport channel type in this context is defined as follows • Power congestion for DL HS-DSCH transport channel type is detected when the following condition is effective:  –  PtxTotal ≥ PtxHighHSDPAPwr  

• Power congestion for DL DCH transport channel type is detected when the following condition is effective:  –  PtxNonHSPA ≥ (PtxTargetPS – Offset)  –  Fixed value 1 dB used for Offset

Confidential 39 © Nokia Siemens Networks

Dynamic HSDPA power (4/10) Adjustment of dynamic NRT DCH load target Initial value of the PtxTargetPS is the lower from the following ones: PtxTarget or PtxTargetPSMax  • Initial value is taken into use when the first HS-DSCH MAC-d flow is setup • Usage ends when the last HS-DSCH MAC-d flow is deleted • PtxTarget remains as a target for non-controllable load even if there are one or more HSDSCH MAC-d flows setup in the cell PtxTargetPS is adjusted based on received PtxTotal (Transmitted Carrier Power) and

• PtxNonHSPA = Transmitted carrier power of all codes not used for HS-PDSCH, HSSCCH, E-AGCH, E-RGCH or E-HICH transmission PtxTargetPS is adjusted only when there are NRT DCH users - in addition to the HS-DSCH MAC-d flow(s) - in the cell. Adjustment of the PtxTargetPS is done in fixed steps, defined by the PtxTargetPSStepUp  and PtxTargetPSStepDown management parameters

Confidential 40 © Nokia Siemens Networks

Dynamic HSDPA power (5/10) Dynamic power share With no active HSDPA users: 1) NRT DCH scheduling to the PtxTarget+PtxOffset &RT DCH admission to PtxTarget 

With active HSDPA users: 2) NRT DCH scheduling to PtxTargetPS 3) RT DCH admission to PtxTarget 

HSDPA active

No HSDPA users

No HSDPA users PtxMax 

PtxTotal 3

PtxTarget  +PtxOffset 

1 PtxTargetPS

2

PtxNRT PtxNonHSPA PtxNC Confidential 41 © Nokia Siemens Networks

Dynamic HSDPA power (6/10) HSDPA Congestion 1) HSDPA power congestion, if Ptxtotal ≥ PtxHighHSDPAPwr

Decrease by PtxTargetPSStepDown in case of HSDPA congestion

PtxMax 43 dBm PtxHSDPA

PtxHighHSDPAPwr  -10..50; 0.1; 41 dBm

PtxTotal -10..50; 0.1; 40 dBm

PtxTargetPS

PtxTargetPSMin  -10..50; 0.1; 36 dBm

PtxNonHSDPA

PtxNRT PtxNC

High threshold of PtxTotal for dynamic HSDPA pwr alloc: PtxHighHSDPAPwr (WCEL) (-10..50 dBm) (∆ = 0.1 dB) (41 dBm) Confidential 42 © Nokia Siemens Networks

Dynamic HSDPA power (7/10) DCH Congestion 2 ) NRT DCH power congestion 

PtxNonHSDPA ≥ PtxTargetPS - 1dB (hard coded margin)

Increase PtxTargetPS up

to PtxTargetPS ideal 

Increase by PtxTargetPSStepUp in case of DCH congestion PtxMax 43 dBm PtxHSDPA

PtxHighHSDPAPwr 

PtxTotal PtxTargetPSMax 

PtxTargetPS

2

PtxTargetPSMin 

PtxNonHSDPA

PtxNRT PtxNC

Confidential 43 © Nokia Siemens Networks

Dynamic HSDPA power (8/10) Summary: congestion situations

HSDPA active

1

PtxMax 

PtxHSDPA

PtxTotal

PtxHighHSDPAPwr  PtxTarget +PtxOffset 

PtxTargetPSMax 

PtxTargetPSTarget

PtxTargetPS

PtxTargetPSMin 

2 PtxNonHSPA

PtxNRT PtxNC

Confidential 44 © Nokia Siemens Networks

Dynamic HSDPA power (9/10) Calculation of ideal load target Target (ideal) value for the PtxTargetPS is calculated for each adjustment period defined by the management parameter PtxTargetPSAdjustPeriod  Target (ideal) value for the PtxTargetPS is calculated as follows (in a linear fashion): PtxTargetPSTarget = MAX {MIN {P tx_nc  + [(P max - P tx_nc ) x Weight Ratio ], PSMax }, PSMin }

Current available power for NRT DCH + HSDPA

• • Ptx_nc is the total non-controllable transmitted DL power • PSMax is the maximum allowed value for PtxTargetPS defined by the management parameter PtxTargetPSMax  • PSMin is the minimum allowed value for PtxTargetPS defined by the management parameter PtxTargetPSMin  • WeightRatio is the relative weight of DCH , i.e. WeightDCH / (WeightHSDPA + WeightDCH)  –  WeightHSDPA is the summed weight of the HS-DSCH radio access bearers (MAC-d flows) and WeightDCH is the summed weight of the NRT DCH radio access bearers Confidential 45 © Nokia Siemens Networks

Dynamic HSDPA power (10/10) Limitation of dynamic HSDPA power • HSDPA power is limited by the PtxMaxHSDPA parameter even with DRA • PtxMaxHSDPA should be increased from RAS5.1 value close or equal to Cell Maximum Tx Power for efficient HSDPA resources with DRA • Without DRA Max HSDPA power =min(PtxMaxHSDPA, PtxMax PtxTargetHSDPA) Ptx

Cell maximum TX power

PtxCellMax = 46 dBm (40W WPA)

HSDPA

Non-HSDPA power

Time

Common chs

Confidential 46 © Nokia Siemens Networks

Maximum HSDPA power (PtxMaxHSDPA) Dynamic Resource-Allocation: DRA

Channel Cards Example: Setup failures versus BTS WSP resource 140

Occupation of Channel Elements (CE usage)

120

100

There is clear correlation between UL CE usage and HSDSCH Setup Failures • When max usage of CEs drops to the level 124 (from max 128) the SETUP_FAIL_BTS_HS_DSCH_ 

80  _

Elements moves to maximum - then Setup_Fail_BTS increases

60

_

_

MAX_USED_CE_UL (Wbtshw) SETUP_FAIL_BTS_HS_DSCH_BGR (Traffic)

• BGR drops significantly  –  64/128 kbps UL return channel

40

will require 4 CEs in UL  –  Less fails with RAS06 16 kbits/s return channel (1 CE required)

20

0 1

16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331

Confidential 47 © Nokia Siemens Networks

(CE utilisation period)

Code Tree (1/4) Maximum code allocation with HSUPA • Allocation of 15 is not possible when HSUPA is enabled in the cell SF=1 SF=2 SF=4 SF=8 SF=16 14 HS-PDSCH codes

SF=32 SF=64

Codes for common channels in the cell

Codes for associated DCHs and non-HSDPA users

SF=128 SF=256

Up to three HSSCCH codes

E-AGCH (256)

E-RGCH/E-HICH (128) Confidential 48 © Nokia Siemens Networks

Code Tree (2/4) SF128 code occupancy versus number of codes for HSDPA With similar calculations it the results are with 10 codes 86 codes blocked from SF128 (67.2 %) with 14 codes 119 codes blocked 99.2 from SF128 (93 %)

120

100

93 86.7

   %     y 80   c   n   a   p   u   c   c 60   e    d   o   c    8 40    2    1    F    S

80.5 74.2 67.2 60.9

SF128 occupancy

54.7

ree

48.4

co es

42.2 31

35.2 20

20

18

16

14

12

10

8

3.1

6

4

2

0

13

14

15

0 0

5

6

7

8

9

10

11

12

Number of allocated HS-PDSCH codes

Confidential 49 © Nokia Siemens Networks

Code Tree cupancy.xls (122 K.

Code Tree (3/4) Code congestion

• RNC downgrades HS-PDSCH code(s) due to DPCH code congestion • RNC does not downgrade HS-PDSCH codes lower than the minimum allowed number of HS-PDSCH codes

• If RT request is congested due to lack of DPCH code(s), HS-

• If NRT DCH scheduling is congested due to lack of DPCH



code(s), HS-PDSCH codes are downgraded in order to admit NRT DCH request IF # HS-PDSCH codes > Maximum code set DPCHOverHSPDSCHThreshold  The number of HS-PDSCH codes after downgrade will be the highest possible from the HS-PDSCH code set

Confidential 50 © Nokia Siemens Networks

Code Tree (4/4) HS-DSCH code downgrade parameters   s   e    d   o   c    8    2    1    F    S    d   e   v   r   e   s   e   r    f   o   r   e    b   m   u

  s   e    d   o   c    6    1    F    S    d   e    t   a   c   o    l    l   a    f   o   r   e    b   m   u    N

128 118 108 98 88 78 68 58 48 38 0 15 14 13 12 11 10 9 8 7 6 5

Confidential 51 © Nokia Siemens Networks

HSPDSCHMarginSF128 

Periodical HS-DSCH code downgrade if the number of currently available SF128 codes is lower than HSPDSCHMarginSF128 (default 8) HS-DSCH code downgrade due

Maximum in code set DPCHOverHSPDSCHThreshold 

allowed if number of currently allocated HS-PDSCH codes is greater than maximum code set DPCHOverHSPDSCHThreshold (default 0, no downgrade possible due to NRT congestion !!!)

User Equipment Example: Throughput per UE Type and PtxMaxHSDPA Nokia N95 • Category 6 terminal

Throughput CDF v U E Type & PtxMaxHSDPA

• 16QAM modulation • Support a max of 5 codes

1 0.9

• Max theoretical throughput ~3.6 Mbps

0.8 0.7 E870 39dBm

0.6

   %    F 0.5    D    C

E870 43dBm N95 39dBm

0.4

N95 43dBm

0.3

Huawei E 870

0.2 0.1

• HSDPA Category 8 terminal

0        0

       0        0        5

       0        0        0        1

       0        0        5        1

       0        0        0        2

       0        0        5        2

       0        0        0        3

       0        0        5        3

       0        0        0        4

       0        0        5        4

       0        0        0        5

       0        0        5        5

       0        0        0        6

       0        0        5        6

Throughput (kb/s)

• HSUPA Category 5 terminal • 16QAM modulation • Support a max of 10 codes • Max theoretical throughput ~7.2Mbps

Gain for N95 ~ 150kb/s with higher HSDPA power For E870 gain is higher ~ 500kb/s Confidential 52 © Nokia Siemens Networks

Capacity optimization Monitoring of HSPA Blocking

That’s blocking in HSPA

Confidential 53 © Nokia Siemens Networks

Appendix

Confidential 54 © Nokia Siemens Networks

Presentation / Author / Date

Example result with TC 1: Initial 384, PBSPolicy “any” PtxTarget 40 Add PS NRT Background class bearers until PBS triggers. Monitor which bearer is downgraded and verify PBS triggering reason from the counters Please note that because the PtxTarget is 40dBm then the reason for PBS in this case is the code congestion

Bearers in allocation order

Confidential 55 © Nokia Siemens Networks

5th Incoming PS DCH downgrade first one due the Spreading code congestion => Longest allocation time

TBO Examplre- RB Downgrade RB_DOWNGR_DUE_THRPOPT (Cellres) RB_DOWNGR_DUE_PRE_EMP_BTS (Cellres) RB_DOWNGR_DUE_PRE_EMP_AAL2 (Cellres) RB_DOWNGR_DUE_PBS_INTERF (Cellres) RB_DOWNGR_DUE_PBS_BTS (Cellres)

RB Downg rade Cause Distributions

RB_DOWNGR_DUE_PBS_AAL2 (Cellres) RB_DOWNGR_DUE_OLC_TFC_SUBS (Cellres) RB_DOWNGR_DUE_OLC_RL_RECONF (Cellres) RB_DOWNGR_DUE_DYLO_RL_POWER (Cellres)

1400000

1200000

1000000

800000

600000

400000

200000

0        7        0        0        2        /        7        /        9

       7        0        0        2        /        8        /        9

       7        0        0        2        /        9        /        9

       7        0        0        2        /        0        1        /        9

       7        0        0        2        /        1        1        /        9

       7        0        0        2        /        2        1        /        9

       7        0        0        2        /        3        1        /        9

       7        0        0        2        /        4        1        /        9

       7        0        0        2        /        5        1        /        9

       7        0        0        2        /        6        1        /        9

       7        0        0        2        /        7        1        /        9

       7        0        0        2        /        8        1        /        9

       7        0        0        2        /        9        1        /        9

       7        0        0        2        /        0        2        /        9

       7        0        0        2        /        1        2        /        9

       7        0        0        2        /        2        2        /        9

       7        0        0        2        /        3        2        /        9

RB_RELEASE_DUE_PRE_EMP_BTS (Cellres)

RB Dow ngrade/Release due to Pre-emption or DyLo

RB_RELEASE_DUE_PRE_EMP_AAL2 (Cellres) RB_DOWNGR_DUE_PRE_EMP_BTS (Cellres)

40000

RB_DOWNGR_DUE_PRE_EMP_AAL2 (Cellres) RB_DOWNGR_DUE_DYLO_RL_POWER (Cellres)

35000

30000

25000

20000

15000

10000

5000

0        7        0        0        2        /        7        /        9

       7        0        0        2        /        8        /        9

       7        0        0        2        /        9        /        9

       7        0        0        2        /        0        1        /        9

       7        0        0        2        /        1        1        /        9

Confidential 56 © Nokia Siemens Networks

       7        0        0        2        /        2        1        /        9

       7        0        0        2        /        3        1        /        9

       7        0        0        2        /        4        1        /        9

       7        0        0        2        /        5        1        /        9

       7        0        0        2        /        6        1        /        9

28.2.2008

       7        0        0        2        /        7        1        /        9

       7        0        0        2        /        8        1        /        9

       7        0        0        2        /        9        1        /        9

       7        0        0        2        /        0        2        /        9

       7        0        0        2        /        1        2        /        9

       7        0        0        2        /        2        2        /        9

       7        0        0        2        /        3        2        /        9

• Most of RB downgrades / releases are triggered by throughput base optimisation; • At the same time, the triggers due to pre-emption and DyLo decreased significantly;

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF