031- Cepilladora de Codo

April 6, 2017 | Author: HUANUCOCALLAO | Category: N/A
Share Embed Donate


Short Description

Download 031- Cepilladora de Codo...

Description

AUTORIZACIÓN Y DIFU$ÉN

MATERIAL DIDACflGO ESCRITO

FAM. OCUFACIONAL

:

METALMECAT.¡ICA

CARRERA

MEcANIco DE MANTENIMIENTo

NIVEL

PRoFE$toNru rÉcNtco

Con la flnalidad de facilitar el aprendizaie en el desarrollo de Ia f,ormación y capacitación en la especialidad de MECAN$O DE MANTENIM¡ENTO a nivet nacionat y dejando ta posibilidad de un rnejoramiento y actualizacién permanente, se autoriza la AFLICAGIóN y DIFUSIü{ de material didáctico escrito referidó CEPILLADORA DE CODO. 1

Los Directores Zonales y Jefes de Centro de Formación Profesional son los responsables de su difusión y aplicación oportuna.

DOcUilEtITO APROSADO POR EL GEREilTE AcADÉmrco DEL SENATI No-

R-egisfr,o de derecho de

;l

autor:

de Páginae...,,...,.

. . .¿1

S.......

N8/

z\/!o,r

ORDEN DE E'ECUCION

No

0r a2 03 o4 05

HERRAMIENTAS' INSTRUTIENTOS

Sujete la pieza Fije la herramienta Prepare la máquina Ce pille Verifique la superficie

- Util de desbasta r y acabar - Llave Francesa 10" - N¡vel de burbujas - Reloj comparador - Escu adra biselada - Calibrador vernier/micrometro exte ri o r

2t3

01

PZA.

CANT,

ffi

QUIJADAS

DENorrNecón¡

50 x 7A x 25,4

NoRtAr DtMENstoNEs

QUIJADA DE PRENSA a'

TECAÑICO DE IIATTITENIT¡EI{TC'

St 37

MATERIAL

I

OBSERVACIONES

01 REF. HO-02 TlEtlPO:08 IHOJA:111 ESGA[A:1:1 I ZOOZ HT

CEPILLADORA

OPERACIÓN: MONTAR PRENSA EN GEPILLADORA Es ubicar y frjar la prensa en la rnesa de la cepilladora de codo, mediante pernos de anclaje que entran en las ranuras en Tde la mesa. (Fig.1).

montaje permite sujetar el material que deba trabajarse, en forma rápida (Fig 2)

S_u

y sencilla

Fig. 2

PROCESO DE EJECUCIÓN

loPaso. Limpie la mesa y la base de la prensa.

OBSERVACIÓN

Use una brocha ylo

trapo

industrial. 20

Paso. Ubique la prensa sobre la mesa. (Fis. 3). OBSERVACIÓN

Las guías de la prensa deben penetrar totalmente en la ranura de la mesa.

Fig. 3

PRECAUCIÓN TRASTADE LA PRENSA CON AYUDA DE OTRAS PERSONAS PARA EVITAR RIESGOS DE SQBRE ESFUERZOS Y CAíDAS. MECÁNrcO DE

MANTENII,IIENTO

5

REF.

HO.OIIMII

112

¡'

CEPIL1ADORA DE CODO 3o

Paso.

Coloque los pernos de anclaje (Fig.4), en la ranura de la mesa hasta que encajen en la muesca de la prensa. PRECAUCIÓN

NO UTILIZAR TORNILLOS DE CABEZA HEXAGONAL, EN

VEZ DE

PERNOS

.

DE

ANCLAJE.

40

Paso.

Frje

la

prensa apretando las

tuercas (Fig. 5). OBSERVACIÓN

Mantenga

la prensa a

nivel

escuadra. Fig. 4

Fig. 5

vocABULARtO rÉC¡¡lCO

. Prensa: Morsa, Tornillo de banco. . Brocha: Cepillo, pincel. . Pernos de Anclaje: Perno de cabeza cuadrad a y I o rectangular.

REF.

Ho.ollmil

trñltrl

cEptLLADoRADEcoDo

oPERAclóru: CEPILLAR HORIZONTALMENTE SUPERFICIE PTANA Y PLANA PARALELA

Es la operación que consiste en cepillar sobre una superficie plana a través de la penetración

de una

herramienta con

desplazamiento horizontal de la mesa de forma manual ylo automática, a fin de que la viruta sea uniforme.

La operación puede ser de desbaste o acabado de ambas caras y a la vez que sean paralelas. Fig.l

Se

utilizan para fabricar piezas de con superficie plana de generatriz rectilínea paralela y prismáticas. maquinarias Fig.2 Ejemplo de piezas mecanizadas

A

Superficies de piezas prismáticas.

c

Superficie de piezas con ranuras.

D

Guías y conederas en cola de milano.

PROGESO DE EJECUCIÓN 10

Paso:

Sujete la pieza (Fig.3). a. Ubique la prensa perno de anclaje.

'

y

fije

b. Ubique la pieza y apriete las mordazas de la prensa.

OBSERVACóN lnterponer calzos en el fondo de la prensa con anchura inÉrior a la pieza. 20

Paso: .

30

Paso:

Fije la herramienta (Fig.4).

Fig. 3

OBSERVACIÓN La herramienta se elige según la operación (desbastar o acabar) y dirección de corte. Prepare la máquina.

a. Regule el curso del cabezal móvil.

Fig. 4 REF. HO.OI'MIUI

CEPILLADORA DE CODO b.

Regule el número de carreras por minuto.

la amplitud de la Regule el movimiento de Regule

carrera de trabajo (Fig.s). d.

alimentación. Ponga la máquina en marcha. t. Aproxime la herramienta a la pieza hasta rayar levemente. (Fis.6) g. Haga coincidir el trazo cero del anillo graduado carro porta-henamientas la referencia. a

del

con

OBSERVAGIÓN Con el fin de evitar el desgaste de los elementos lubricar las guías deslizamiento puesto que están sometidas fuertes rozamientos.

de

40

Paso:

'

--D

Fig. 6

a

Cepille a. Ponga la máquina en marcha efectúe pasadas de desbaste y acabado.

y

OBSERVACIÓN Con el fin de evitar vibraciones de la herramienta durante el mecanizado necesario reducir al mínimo la distancia entre el plano horizontal de las guías del carro y el plano de la superficie mecanizada. (Fig.7). b. El escuadrado se efectúa en el orden 1-2-3. c. Cuando las caras resultan perfectamente vertical, cepillar desbastando y dando acabado , a la cara d. Se invierte la pieza y se cepilla la cara 6 (Fig.8).

es

5.

Fig. 8

., ITECÁN|GO DE

IIANTENIMIENTO

8

REF. HO.O2/ilN/l A3

CEPILLADORA DE CODO 50

Paso :

Verifique la superficie.

a.

Compruebe paralelismo y planitud.

OBSERVACIÓN Compruebe verticalmente apo-

yando

mesa

el

y

comparador

en

la

después comparar deslizando sobre las caras laterales Fig. 9

b. Verifique medidas según plano.

OBSERVACIÓN

Utilizar calibrador vernier o micrómetro para comprobar paralelismo de la pieza mecanizada. Fig.10

CUIDADOS Reciclar virutas ambiente.

en recipientes adecuados para preservar nuestro medio

trñUfl

cEPILLADoRADEcoDo

CEPILLADORA DE CODO O LIMADORA

Es una máquina-henamienta en la cual se efectúan trabajos para producir superficies planas y curvas de generatriz rectilínea. Comunmente se llama: Limadora o Cepillo de Codo; por su similitud de trabajo con las cepilladoras. La diferencia entre estas dos máquinas está en el movimiento de la herramienta y la pieza a trabajar.

La cepilladora de codo y/o limadora (Fig 1) el movimiento fundamental se da la herramienta y el movimiento de alimentación se da a la pieza.

a

El movimiento de corte o de trabajo L es rectilíneo, alternativo, horizontal y lo efectúa la herramienta.

Fig.

1

El movimiento de penetración P es rectilíneo y, sea mecanizado, lo efectúa la herramienta o la pieza (Figura 3).

El movimiento de avance A es rectilíneo e intermitente y lo presenta la pteza (Figura 2).

10

CEPILI-ADORA DE CODO Cepilladora Los movimientos se aplican a la inversa, es decir el movimiento fundamental se da a la pieza (F¡g. 4) y el movimiento de alimentación se da a la herramienta (Fig. 5). El movimiento de trabajo lo efectúa la pieza L y es rectilíneo, alternativo y horizontal.

Los movimientos de avance y de penetración P los posee la herramienta.

En la (Fig. 6) se muestra un tipo normal de cepilladora, de tamaño medio con una longitud de la mesa de 3 metros. .

Se utiliza para operaciones de grandes superficies planas o perfiladas: bancadas de torno, de prensas de rectificadoras especialmente para la construcción de guías de las ,

y

máquinas.

Fig. 6

11

GEPILLADORA DE CODO En cuanto al funcionamiento, se pueden distinguir dos tipos de cepilladora.

1.

Cepilladora Mecánica En la cual los movimientos del cabezal, de la mesa y del porta-herramientas son de transmisión mecánica.

LIiIADORA ORTXHARIA

LITIADORA DE CABEZA TÍOVIL

2. Cepilladora Hidráulica El motor eléctrico acciona la bomba, la cual aspira aceite del depósito y lo introduce en

el circuito. El aceite llega, bajo presión, al distribuidor de cuatro vías. En la primera fase, el distribuidor dirige el aceite al cilindro hidráulico donde su vetocidad y presión se transforma en un empuje sobre los órganos de movimiento de la máquina.

En la segunda fase, el aceite retorna del cilindro al distribuidor que lo dirige al depósito concluyendo el ciclo.

12

SiENffl

cEPrLr-ADoRA DE coDo

PARTES PRINCIPALES DE LA CEPILLADORA DE CODO

En la limadora, ordinariamente conocida como cepilladora de codo se distinguen como partes principales. 1.- Bastidor o Bancada. 2.- Cabeza Móvil o Carnero. 3.- Carro Porta-herramienta o Vertical. 4.- La Corredera. 5.- La Mesa. 6.- Los Mecanismos de Mando.

CARRO PORTA-HERRAiIIENTA O VERTICAL

CABUA ilIOVIL

CORREDERA

13

t

r i r ¡

sE!ñttr

CEPILI-ADORA DE CODO

^

Bastidor o Bancada Es el armazón o cuerpo de la máquina (1), en el que se alojan los mecanismos de impulsión como los cambios de velocidades. Esta bancada es un zóe,alo de fundición de dimensión y forma .

En la parte superior dispone de unas guías generalmente en forma de cola de milano, perfectamente cepilladas y rectificadas que sirven de guía y apoyo para el carnero. En la parte anterior tiene otras guías verticales, unas veces en forma rectangular y otras en forma de cola de milano.

Estas guías sirven para el apoyo del carro portamesas y deben ser perfectamente perpendiculares a las del carnero. La base debe ser suficientemente amplia para dar gran estabilidad a la máquina, lleva ordinariamente unos agujeros para anclarla al suelo por medio de pernos de anclaje. Los organismos del Bastidor son: . Las ranuras de cola de milano. . El mecanismo de embrague. . La caja de velocidades. . Las guías cola de milano vertical . La base.

Gabezal Móvil o Garnero

Situado en la parte superior del bastidor (2) y se desplaza entre unas guí as regulables produciendo

el movimiento principal, cuyo ciclo

completo se compone de .dos caneras simples: de trabajo y de retroceso. El ajuste del carnero sobre las guías de la bancada debe ser suave y sin juego. Esto se logra por medio de una regleta de ajuste.

Se

encuentran

los siguientes

órganos:' . Carro portaherramienta. . Guías cola de milano. . Tuerca de fijación de carrera.

14

SlENtrl Garro Porta-Herra

cEPrLláDoRA DE coDo m

ientas

Situado en la parte delantera del cabezat móvil, tiene guías machos en cola de rnilano, las cuales acoplados. a las guías hembras permite el movimiento vertical, y se puede girar para el cepillado de superficies inclinadas.

Tiene corno misión soporta r y fijar la herramienta. Posee un sistema para la regulación de altura y un limbo graduado

que puede girar sobre su eje horizontal.

MANIVELA DE MANDO CON TORNILLO

t\ \

ESPARRAGOS DEL TAMBOR GRADUADO

TUERCA OE LA

MANIVELA

Se encuentran los siguientes órganos.

. Manivela de mando con tornillo. . Tuerca de la manivela. . Tambor graduado. . Espárragos del tambor graduado.

TAMBOR GRADUADO

GUIAS COI.A DE MILANO

Corredera Está formada por guías horizontales, sobre las cuales se sostiene y desliza la mesa. El movimiento se realiza sobre las guÍas verticales del bastidor, que se ajustan a las anteriores. Los elementos de la corredera son:

. Las Guías Horizontales. . El Trinquete. . El Tornillo del desplazamiento transversal. . El Tornillo del desplazamiento v.ertical. . Las Guías verticales.

trinquete

Tornillo transversal

Tornillo vertical

15

SgNfl

_crp¡MoonngEc

MESA Es un bloque provisto de varias ranuras en T, que se emplea en la sujeción de piezas, va montada en la parte frontal del bastídor y se desplaza horizontal y verticalmente.

Sirve para sujetar la prensa y/o la pieza a trabajar. La mesa puede ser diseñada también para disponerlas inclinadas en relación al plano horizontal y cepillar piezas cie gran superficie inclinada que no pueden cepillarse con ayuda del carro vertical.

La mesa puede deslizarse horizontalmente sobre el carro, que a su vez puede tener un movimiento vertical. El movimiento horizontal de la mesa puede constituir el movimiento de avance y se efectúa a mano o automáticamente. Los movimientos horizontal y vertical de la mesa del carro, respectivamente, se consigue por medio del husillo. El husillo de avance de la mesa suele llevar un tambor graduado. En la mesa se encuentran los siguientes elementos (Figura 4). A. Guías Transversales.

y

B. C. D.

Prensa. Ranuras en "T'. Soporte o Luneta de la mesa.

LOS MECANISMOS DE MANDO El mecanismo es el rnovimiento fundamental está compuesto por el engranaje principal y G

b

I d

Fig.5 1.-REGLAJE a. Piñón. b. Corona. c. Bíela. d. Manetón. e. Palanca de sujección.

la biela oscilante que va conectada

al

eabezal móvil.

Este mecanismo transforma al movimiento circular en rectilíneo. Para reducÍr al mínimo el tiempo perdido en la carrera de retroceso, el mecanismo principal está constituido de tal manera que permite que la carrera de 'retroceso sea más rápida que la de trabajo.

El engranaje principal es accionado por un piñón que va conectado a la caja de cambios de velocidad y ésta al motor eléctrico que produce la fuerza necesaria para el servicio de la limadora. (F¡g. 5).

16

trttltrl

cEPtLl-ADoRA DE coDo

NOMENCLATURA DE UNA CEPILLADORA DE CODO

OXMXNXLXE

I --*1"--

@ @ ¿+F

o

@

Fig.

A.- Palanca de embrague.

1

M.- Compensadores del juego de las correderas verticales de la

B.- Selector de velocidad. C.- Selector de velocidad. D.- Regulador de carrera. E.- Centrado de carrera. F.- Regulador de avance. G.- Tornillo de avance horizontal. H.- Tornillo de avance vertical. J.- Tornillo del carro vertical. K.- Dispobitivo avance automático del carro vertical L.- Regulador del avance aumático

mesa.

N.- Compensadores del juego de la corredera del cabezal móvil.

O.- Compensadores del juego de la corredera horizontal de la mesa.

P.- Compensadores del juego

de la corredera del carro vertical. O.- Conector del dispositivo de avance del carro vertical. R.- Soporte para sostener la mesa S.- Tornillos para el anclavamiento de la mesa al'soporte.

de

17

CEPILTADORA DE CODO

La longitud de la carrera del carnero se puede ajustar mediante el desplazamiento de la espiga o Gorrón a lo largo de la manivela.

!n gorrón C, alojado en una ranura del volante A, arrastra a la manivela B. El gorrón C recorre una trayectoria circular I un movimiento uniforme y al deslizar, junto con una corredera, en el interior de una ranura labrada, Bo la maniveia B, transmite un movimiento altemo al carro E a través de ra biela F. La variación de lg amplitud de la carrera de trabajo se consigue al des plazar radialmente, sobre el volante A, el gorrón C; esta se logra por medio del pár cónico G, tornillo y tuerca. El gorrón C, que recorre ta circunferenciá I con movimientb circutar uniiorme, arrastra la manivela adelante y atrás con movimiento pendular.

A. Volante B. Manivela

colisa

oscilante

C. Gorrón D. Centro de giro

E. Carro F. Biela

G. Par Cónico: Tornillo y Tuerca H. Tornillo t.

Circunferencia

R. Arbol

s. Tirante roscado T.

El extremo oscilante de la manivela se mueve de derecha a izquierda durante el tiempo en que el gorrón describe el arco LMN. Por el contrario, el efremo oscilante de la manivela se mueve de izquierda a derecha durante el tiempo en que el gorrón recone el arco NOL.

Fig. 2 18

Tuerca del tornillo

CEPILLADORA DE CODO La carrera h varía según la distancia del centro al gonón C. La longitud máxima de la carrera es de unos 800 mm. Si el gorrÓn de la manivela se desplaza hacia afuera en la rueda de la corredera describe un círculo mayor y la corredera oscilante oscila más ampliamente; la carrera aumenta. Si el desplazamiento del gorrón es hacia adentro, la carrera disminuye.

Para cepillar la superficie de una pieza que se encuentra a diferentes distancias del bastidor se procede de la siguiente manera:

-

Se afloja el tirante roscado S, con lo que se desvíncula el carro del elemento T formado por una turca unida a la manivela.

-

Accionando con una llave el árbol R, se gira el tornillo H, para situar el carro en la posición deseada respecto al bastidor.

-

Finalmente,se bloquea el tirante S apretando el elemento T la carrera del carro sigue siendo las mismas, pero se ha cambiado la zona de trabajo.

19

CEPILTADORA DE

coDo

PRENSA DE n¡ÁoulNAS HERRAMTENTAs

Son dispositivos de sujeción,_ generalmente de hierro fundido, compuestos de dos mandíbulas, una fija y otra que se desplazan sobre una guía, por *ááio de un ryróvil, tornillo y una tuerca, accionados por una manijá. tas mord;;r;o'n de ácero al carbono, estriados, templados y frjos en las mandíbulas. Existen varios tipos de prensas: de base fijá, base giratoria ángulo (Figs. 1,2,9 y 4).

e inclinable en cualquier

Flg.

I

Son utilizados para la

fijación de piezas en máquinas herramientas, tales como: taladradoras, fresadoras, cepillos, afiladoras de herramientas y otras.

Garacterísticas Las prensas de máquinas-herramientas se caracterizan por sus formas y aplicaciones.

Las de base fija y giratoria se encuentran en el comercio por la capacidad de abertura, ancho de las mordazas y altura. Las inclinables, por el ancho de las mordazas, capacidad máxima, inclinación máxima en grados, bases graduadas en grados y altura de la prensa.

Gondiciones de uso Los tornillos de frjaciÓn de las mordazas deben estar bien apretados. Las reglas de la mandíbula móvil deben estar bien ajustadas en las guías.

Conseruación La prensa debe estar limpia, lu.bricada y guardada en lugar apropiado. an

Sgñtmt,,.

ceplr4poRApE

Sistema de Suieción

En la (F¡9. 5)

podemos ver algunos de sujeción para facilitar el trabajo y la orientación de las piezas, dispositivos

rip^Slr I IE\4.J

pueden emplearse mordazas giratorias y

ffi

r-Eff

orientables.

SISTEMA DE

SUJEGIoN EN LAS MORDAZAS

Fig. 5

&.\

se

pueden usar elementos auxiliares de sujeción en conjunto con la prensa mordaza de cepillo para sujetar También

i

Culle

th

-=----

sujecíónl

hacn abalo

piezas de trabajo de características un poco especiales que resuften difíciles de sujetar por otros métodos. Es una cuña para sujeción hacia abajo

t

i n---------f

--8o

f-

Fis6 Ca¡

(Fig o)

Supcrficies tgrminadas

Pte?¡ úe su¡eción

Cuando se va a hacer el cepillado en una cara paralela a una superficie terminada, se

dc mdal dlando

puede usar un cilíndro de metal blando como: acero, latón o aluminio. En este caso la mordaza móvil se inclina ligeramente al

ap.retar. A medida que se apriete la pieza de trabajo se golpea suavemente hacia abajo sobre las paralelas con un martillo babit (Fig 7) Far¡teles

Fig,

7

Método de cepillado paralelo a una superficie terminada (cortesía de Cincinnati lncorported)

La prensa mordaza de tornillo doble (Fig. B) se emplea a menudo en los cepillos para

sujetar las piezas de trabajo que tienen superficies inclinadas o caras fuera de paralelismo. Este tipo de prensas mordazas puede obtenerse con base giratoria, pero para piezas de trabajo pesadas, se puede surtir con base simple y varios tornillos.

Fig.8 La prensa mordaza de doble tomillo

puede

sujetar piezas de trabajo de caras no paralelas (Cortesía de Cincinnati lncorporated). 21

SEftlñl

cEptLLADoRA DE coDo

HERRAMIENTAS DE CORTE Las cuch¡llas son henamientas de corte de una sola arista o filo cortante, fabricadas con acero de aleación y térmicamente tratados para resistir la presión del maqüinád;.

Material de la herramienta La cuchilla, necesariamente, debe ser mucho mas dura que el material a maquinar, debido a la ticción que se produce, y estas se eonstruyen de ios siguientes máteriales:

Aceros para herramientas El carbono es su principal componente. se conocen 2 tipos: Aleados y No Aleados. Los Alea9gs se.componen de acero al carbono, acompañados de cromo, manganeso, silicio, wolframio(tungsteno), vanadio, y níqué|, muy consistente'y ténaz, para soportar temperaturas de corte de 30Oo-m_olibdeno C como máximo.

Los Nol\leados contienen de 0.5 a O.iolo de carbón, más un porcentaje de 0.3% de silicio o_manganeso. Su resistencia se mantiene hasta los 250 oC, como máximo

(Figura l).

Acero rápido Su contenido de carbón es hasta un 2o/o. Caraúerística principal es su alto contenido de wolfiamio (tungsteno). Se agrupan por el mayor porcentaje en iu composición. Acero rápido al molibdeno 9.S o/o ) Acero Épido al ( 3 a 5 o/o ) Acero fápido al 9.S "/o )

( vanadio cobalto (

Estos aceros soportan temperaturas de corte hasta los 600 oc. se fabrican en pequeñas placas, adheridas a banas de acero más corrientes (Figura 2).

Carburadas (metales duros) se obtienen por fusión del woltramio, el t¡tan¡o, el molibdeno y el vanadio con aglomerantes de cobalto y níquel. se fabrican en pequeñas placas (pastillas) que se ajustan o adhieren a vástagos de acero más blando. Se caracterizan poi'ser henamientas muy duras y res¡stentes, hasta los 900 oc de temperatura de cortel esto, desde luego, supone una alta velocidad (Figura 3).

ACERO PARA HERRAMIENTAS

Figura

1

ACERO RAPIDO Figura 2

PASTILT.AS CARBURADAS

CARBURADA

Figura

3

CEPILLADORA DE CODO Angulos de Corte Las características geométricas de una herramienta usual de un solo filo, son.

Superficie de desprendimiento, sobre la cual se forma y resbala la viruta. Flanco del filo principal, vuelto hacia la pieza en la dirección del avance. Filo principal, dispuesto en la arista formadas por las caras

ayb.

p ángulo de filo o cuña

v ángulo de desprendimiento o salida e ángulo de incidencia d d Flanco del filo e Filo secundario, dispuesto en la arista formadas por las caras a y d. ángulo de la punta, comprendidos entre los filtros c y d. ángulo de regulaciÓn del filo principal formado en le plano de refurencia por las proyecciones del filo principal y de la superficie mecanizada. altura, igual a la distancia entre la base y el punto de intersección de los filos c y e.

a

secundario

t

Los tres ángulos fundamentales que caracterizan las herramientas son:

El ángulo de filo É ,el ángulo de incidencia a y el ángulo de desprendimiento / Como puede verse en la figura, los ángulos, a y / se miden en un plano perpendicular al filo. MATERIALES A CEPILLAR

ANGULOS DE AFII4DO EN GRADOS

R eÉ

ACEROS RAPIBOS

CAREURADAS

a

v

25

6

15

20

6

12

KgJmm.2

G

Aeros no aleados y debidamente

35á50

6

aleados laminados

55 á70

6

en caliente.

75 á90

6

15

5

10

Aceros moldeados

4Aá55 6Aá70

6

15

5

10

6

10

5

5

o

5

5

oá2

16á30

6

15

5

10

20 á30

6

15

5

10

25á45

6

5á10

o

5á10

35á45

6

30

6á8

15

Aceros r¡pldeados Fundiciones Fundraones gnses Fundiciones aeradas

Bronces Latones oñinaríos

Dunluminio

v

en

cascafa dura

GARACTERISTICAS DE AFI1 ADO 23

sEfiltrl

cEPILI-ADoRADE coDo

De los Angulos_de tag euqfu[as Es necesario que la persona que se inicia en tos trabajos del maquinado de metales sepa que para trabajar bien, debe preparar herramientas que tengan la debida forma y sobre todo ángulos correctos y bien definidos. En las herramientas de corte hay que distinguir los ángulos siguientes: (Fig.1)

CORTE A.B

4 = ángulo de incidencia F, = ángulo de filo o cuña

Q,+

B+T:eú

{ = ángulo de salida = ángulo de corte t = ángulo de la punta

d

rc =

ángulo de posición Fig.

1

1.- Angulo de incidencia.( a).- Es el que forma la cara inferior de la herramienta con la horizontal, o mejor dicho con la superficie de la pieza. Varía entre 3o y 10o, siendo mayor para materiales más blandos. Si es demasiado pequeño resbala sontra la pieza y produce vibraciones de la herramienta.

2,- Ángulo de.la.cuña (.B ).- Es el ángulo comprehdido entre la cara cortante y la cara inferior de la herramienta y su valor varía entre 50o y 87o dependiendo éste de los ángulos de incidencia y de salida. Si el ángulo de la cúna es mayor de lo necesario la herramienta corta con dificultad y consume mucha fuerza y si al contrario es menor,

corta con mayor facilidad pero pierde su filo rápido, lo que exige afilarlo con

. demasiada

frecuencia.

y

( ) - Es el que forma la vertical con la cara cortante de la herramienta; es llamado también ángulo de viruta, pues de él depende la facilidad de desprendimiento y enrulamiento de la misma. Como se puede observar este ángulo es complemento del ángulo de corte.

3.- Ángulo de salida

4.' Ángulo de corte ( d ).- Está formada por la cara cortante y la superficie de la pieza o sea la suma del ángulo de incidencia y de la cuña.

5'- Ángulo de la punta ( herramienta.

,

S ) - Es el án$ulo formado por las aristas de corte de la

6.- Ángulo de posición ( K) - Es el ángulo que forma la cara cortante con la superficie de la pieza en el sentido de alimentación. Se recomienda que E=ggo para resistir grandes esfuerzos.

Es por lo general de 45o si las exigencias del maquinado no aconsejan su

modificación.

24

Sgntmt

ceptunoonnoeco

PROCESO DE TRABAJO Y HERRAMIENTAS DE CORTE

Sujeción de

la

cuchilla

horizontal

en el

cepillado =,,{lll:.( -.}

#,'.tl

Para evitar todo riesgo de penetración de la pieza que se trabaja, en perpendicular mantenerla a la superficie de trabajo.

cuchilla

la

Sujeción incorrecta

La cuchilla tiene una trayectoria en la cual tiende a entrar en la pieza.

Sujeción correcta.

La cuchilla tiene su trayectoria en la cual tiende a salir de la pieza.

25

EPILI-ADORA DE CODO

Pieza de trabaio Correcto

Mantenga arriba corredera y sujete

lncorrecto

la la

Figura 4. Si cuelgan en exceso una corredera o una herramienta pueden causar vibración (Cortesía de Cincinnati

herramienta con voladizo corto, por rigidez

lncorporated).

Figura 3. Manténgase al mínimo la parte colgante en voladizo usando la posición más alta posible de la mesa para el trabajo (Cortesía de Cincinnati lncorporated).

Pieza de trabajo

Pieza de trabajo

lnconecto Herramienta de torno que se usa para perfilar se encajará en la pieza de trabajo.

Correctg

La herramienta de cuello de ganso oscilará hacia afuera de la pieza de trabajo.

Figura 5. El uso de una herramienta de cuello de ganso puede evitar la vibración (Cortesía de Cincinnati lncorporated).

26

,At

SENAT PROCESO DE TRABAJO

CEPILLADORA DE CODO

Y

HERRAMENTAS DE CORTE

Levantamiento de la herramienta Durante

la carrera de trabajo, el

esfuerzo que soporta

la

herramienta al arrancar material de la pieza, obliga a la placa oscilante a permanecer apoyada contra la placa .

Durante la carrera de retorno en vacío del cano, la herramienta roza

contra la superficie

recién

mecanizada, de manera que la placa tiende a girar levantando la herramienta.

En algunas limadoras, la rotación

de la placa y el

consiguiente levantamiento de la herramienta se consiguen mediante dispositivos automáticos.

Sentido de avance La pieza puede cepillarse tanto con avance a la derecha como a la izquierda.

En el primer caso, la herramienta presenta al filo a la derecha y se llama, precisamente herramienta a la derecha. En el segundo caso, mirada desde la eabeza y con los filos aniba,

presenta izquierda

el filo principal a

y, en consecuencia

(F

la se

llama herramienta a la izquierda.

Algunas herramientas tienen los filos simétricos y, por consiguiente, tanto pueden cepillar con avance a la izquierda como a la derecha.

27

i

*.t sEmtr

CEPILLADORA DE CODO

PROCESOS DE TRABAJO Y HERRAMIENTAS DE CORTE

Forma de las herramientas Las herramientas para cepillar se diferencian por la posición de su cabeza con respecto al I

mango.

l

Las herramientas pueden ser rectas, de I

cuello de cisne y curvadas.

La henamienta de la figura es una herramienta recta de acabar, construida en acero rápido. Herramientas americana

para acabar a

la

I

I

Herramientas rectas

Se trata de una herramienta destinad a al grandes superficies empleando un fuerte avance.

acabado

de

Henamientas para desbastar. Las herramientas para desbastar pueden ser a la derecha o a la izquierda. Están construidas en acero rápido o bien con plaquitas postizas de metal duro. Son muy robustas para que puedan arrancar viruta de gran sección.

de arco de círculo y trabaja con un avance aproximadamente igual a la

Estas henamientas pueden trabajar con una profundidad de pasada de hasta 10 mm.

Los surcos producidos de esta manera por la herramienta quedan muy visibles.

El filo de la herramienta es un segmento

mitad de su ancho, es decir, uno S a 7 mm.

El cepillado a la americana resulta muy adecuado para las superficies sobre las que se disponen fijaciones por brida y parq las superficies vistas, ya sea por razones de estética, ya para mejor garanlizar la buena conservación del

plano en caso de golpes, rayas, etc.

Herramientas para acabar. Las herramientas de acabar suelen ser herramientas que tanto pueden trabajar con avance a la derecha como a la izquierda.

N lI Ur VJ ñ

28

,\

SENtr

CEPILLADORA DE CODO

HERRAMIENTAS DE CORTE

f)=alaDerecha l=alalzquierda

1- Cuchilla de desbastar con cara de corte encorvada, para aceros

dulces y metales

blandos plásticas. originando virutas .

Si se lee i

t

"6'$r

\

';Ft*g

SENtrI

CEPILIáDORA DE CODO

HOJA DE TRABAJO

1.- ¿Qué movimientos

fundamentales'

cepilladora de codo?

y de alimentación se da en la

2.- ¿Cuantos tipos de cepilladora se distinguen en cuanto a

su

funcionamiento?

3.- ¿Cuáles

son las partes principales de la cepilladora de codo?

4.-

¿Qué mecanismos se alojan en el bastidor o bancada?

5.-

¿Qué misión cumple el carro-portaherramienta?

6.-

¿Qué función cumple la corredera de la cepilladora de codo?

7.-

¿Cómo se regula la longitud de canera?

8.-

¿Para qué se utilizan las prensas de las máquinas herramientas?

9.-

¿Qué elementos auxiliares se utilizan en la sujección con las prensas de las máquinas herramientas?

53

I

I

I

SENtrI

CEPILLADORA DE CODO

^

t

1.

HOJA DE TRABAJO

Calcular la velocidad de corte (VJ conociendo la longitud de la carrera (L=300 mm.) y el tiempo invertido en la carrera de trabajo (Tn = 0,02 minutos) Datos

L

=360mm

Vc=

XTA

1 000

TA = 0,02 mn Reemplazand o valores

Vc= RPta: Vc=18 m/mn

2.

la velocidad de retroceso (Vn), conociendo la longitud de la carrera (L=420mm) y el tiempo invertido en el tiempo invertido en el retroceso (T*=0,031 Calcular

mn).

Datos

L = 420 mm.

VR=

420 mn 1000 x Tn

rR- 0,014 mn RPta : Vn = 30 m/mn

Calcular la longitud de corte (Vc) y la velocidad de retroceso (Vn), si la longitud de la carrera L= 600 mm, el tiempo de trabajo Tn=0,04 mn y el tiempo de retroceso Tn=0,012 mn. Datos

L = 600mn Tn Tn

= 0,04 mn = 0,012 mn Rpta

: Vc = 15 m/n Vn = 50 m/mn

4.

Para 90 mm. de longitud de carrera qe da una velocidad de corte de 13,5 m/min. Calcule el número de carreras

buscando dado

Solución

n

n=

L=

90 mm = 0,090 m Vc= 13,5 m/min.

-¡ I

V^

2.L 13.5

2X:..

n = 75 1/min.

54

CEPILLADORA DE CODO Calcular la velocidad media para el cepillado de una pieza, si se conoce que la V" es de 15 m/mn y la V*, de 50 m/mn. Datos

Vc = VR 6.

Utilizar 15 m/mn

2 V" vm=.ffi VR

Rpta : Vm 23 m/mn

= 50 m/mn

Calcular el número de dobles carreras/minuto, conociendo que L=600mm y Vm=24 mlmn Datos

L

= 600mn

Vm = 24 mlmn

nD= Vm

x

1000

2L

Reemplazando valores

24mlmn

"u

2x

x 1000

600mm RPta: ño= 20 d-c/mn

7

Calcular

el

número

de dobles carreras/mn, conociendo que To=0,04

mn

Tn=0,02mn Datos

Aplicar:

| = 300mm la = 30mm lu = 10mm tn = 0,04 mn

a)L

=

b)Vm

=

l+la +lu 2L

1

000 (Te x T*)

tn = 0,02 mn nD

Rpta: 16,6 d.c/mn

55

y

SENtrI 8.

CEPILLADORA DE CODO

Calcular la velocidad de corte (Vc) del cepillado de una pieza, conociendo que L=250 ffiffi, y que Tn = 0,05 mn.

= 50 25 10 D)Vc= 5 E) Vc = 0,05 A) Vc

Vc = C) Vc = B)

I

m/mn m/mn m/mn m/mn m/mn

la velocidad de retroceso (V*) del cepillado de una pieza, conociendo que L=320, y que TR=0,016. Calcular

0,2 0,5 5 10 20

A) Vn B) Vn C) Vn D) Vn E) Vn

10. Calcular

el número de dobles carreras/minuto,

m/mn m/mn m/mn m/mn m/mn

conociendo que L=500mm. y

Vm'=16,5 m/mn

A)no = 8,25 d.dmn B)no - 16,5 d.c/mn

c)no

= =

D)no E)no =

33 49,5 66

d.c/mn c/mn d.c/mn

I

I

,,

Calcular el número TR = 0,015 mn.

de dobles

carreras/minuto, conociendo

A) no B) no C) no D) no E) no

56

11 19,16

22

22,11 22,16

que To=0,03

d.c/mn d.c/mn d.c/mn d.c/mn d.c/mn

mm.

SENtrl

cEPrLt-^ADoRA DE

cooo

HOJA DE TRABAJO

1.-¿Qué entiende usted por ecología?

2.-¿Gómo se clasifica la ecología?

3.-¿Defina cuáles son los elementos abióticos?

4.-¿Defina cuáles son los elementos bióticos?

5.-¿Porqué es importante la ecología?

57

+

N7/ ,v

I

i

t I

ORDEN DE EJECUCION

No

01

02 03 04 05 06

HERRAMIENTAS

Sujete la pieza Fije la herramienta lnclinar el portaherram ienta I Prepare la máquina Cepille Verifique la superficie

o2

01

Pz¡-

CANT

eutJADA

n¡óvtl

DENoMrNecrów

/

INSTRUMENTOS

- Cuchilla acod ada de desbastar - Cuchilla de corte lateral ylo escuadrar. - Reloj comparador - N ivel - Llave Francesa 10" - Llave Allen 3/8" 5o x 7o x 2s,4

NoRMA / DrMENsroNEs

PI.ACA ESCALONADA (BASE DE MORDAZA)

TECÁÑICO DE MANTENIilIENTO

34CrMo45

mnterual HT

02

I

oaseRvAcrouEs REF. H-O-03

TIEMPO:08 IHOJA:111 ESCAI-A:I:1 I 2OO2

SNtrI ^ OPERACIÓN

CEPILLADORA DE CODO :

CEPILLAR VERTICALMENTE SUPERFICIE PLANA Es la operación que consiste en cepillar sobre una superficie vertical paralela a la trayectoria del cabezal móvil, obteniendo el avance de corte al girar el manubrio del carro vertical durante la carrera de retroceso sea por corltrol manual o automático.

f

Se utilizan para construir piezas con superfrcies escalonadas. Ejemplo de piezas mecanizadas. Base de mordazas o superficies de piezas prismáticas.

,

Fig. 03

PROCESO DE EJECUCIÓN 10

Paso: Sujete la pieza OBSERVACIÓN

a) Comprobar paralelismo o perpendicularidad

::'5:"1"ü::='ff

de ra Prensa según sea

er

b) Nivelar pieza (Fig. 2) 20

Paso: F¡e la herramienta de corte.

Fig.02

(Fis. 3) OBSERVACIÓN Elegir la herramienta según la dirección de corte y sujetar lo más corto posible. 30

Paso: lnclinar el Porta-herramientas. (Fis 4) OBSERVACIÓT.¡

La inclinación es según la dirección de

la

superficie que se trabaja.

Fig. 03 nrecÁ

urco

DE Irr.ANTENtIra

E

NTo

59

REF. HO.O3/MM 1//2

sEmtr

^ 40 Paso:

5o

CEPILTADORA DE CODO

Prepare la Máquina a. Regule la longitud de la carrera (Fis. s) b. Regule el número de carreras por minuto. c. Aproxime la henamienta hasta rayar levemente (Fig. 6) d. Haga coincidir el cero del anillo graduado del porta-herramienta con la referencia.

\---\-Fr \

1

',.!a *-¡+--_

Paso: Cepille a. Ponga la máquina en marcha y gire manubrio del carro vertical durante la carrera de retroceso b. Efectúe la profundidad de corte con el mando de la mesa.

el

60

Paso: Verifique la superficie a. Compruebe paralelismo y planitud con el reloj comparador.

b. Verifique la superficie calibrador o vernier.

IIECANICO DE iJIANTENIiIIENTO

con

el

60

REF. HO.03/M]ú A2

SENtrI

CEPILI-ADORA DE CODO

ACCESORIOS DE LA CEPILLADORA Son proyectos para sujetar una o más piezas, según el tamaño y diseño de las mismas.

y

Los materiales

accesorios

de la limadora se clasifican como: de uso general

y

especiales.

Los de uso general son: las prensas y tornillos, los pernos de cabeza cuadrada, de cabeza en "T", los de uso especial son: la escuadra regulable, la mesa circular, el cabezal divisor, las brida, el calzo escalonado, las abrazaderas, los topes, etc. ACCESORIOS

Prensa

Escuadra Giratoria

Plato ó Morsa Circular

TOPES REGULABLES

TOPES FIJOS

t

.tl t'-''i

_ q 4'Ftt ,,7ffiL* L-- -';;U l.v l'r/ é ?=__i r't'

4¿'v'(--

-1

.../

Tope simple

4 #

ifr" *n

Tope de mordaza posüzo

D,

tY) \Y

Tope con talón

Tope con entalla para abrazadera

BORNES

CALZOS

A

14

M

Calzo ordinario

# tu

Borne de tomillo

Pendiente 2 a 5%

de escalerilla

Mordaza con apriete

tornillo

Calzo {e pendiente

cato iimpte

(cuña)

61

Borne de resorte

Gato con ta¡a de ftjación

'

Sgruml

-

cenu-noonnoeco

ACCESORIOS DE LA CEPILLADORA BRIDAS REGULABLES

BRIDAS DE UNA SOLA PIEZA

%TI %T!

olana

l

combada

I

7-

II'

en ounta

a

FIJACION DE t.A PIEZA

La presión de la brida sobre la pieza se obtiene al atornillar una tuerca a un tirante roscado de cabeza cuadrada introducido en una de las ranuras en

I

T de la mesa

portapiezas. En la figura se muestran dos tipos de fijación de la pieza mediante bridas.

En el primer caso, la regulación de la altura de la brida se obtiene mediante un apoyo escalonado (gradilla).

En el segundo caso, la pieza se fija mediante la acción combinada de una gradilla y un apoyo de altura regulable.

62

e n

(s

CEPILLADORA DE CODO ACCESORIOS DE 1.A GEPILLADORA

La sujeción no se limita a la pieza de trabajo sobre la superficie superior de la mesa. Conviene recordar que las piezas de trabajo también se pueden ajustar a los lados de la mesa.

lncno cDn ranura en T

Figura 1. Uso de un sujetador con perros de punta para una pieza de trabajo delgada (Cortesía de Cincinnati lncorporated).

Las piezas de trabajo delgadas se pueden sujetar directamente mesa con horquillas y perros de punta (Figuras 1 y 2) combinados con la utilización de un tope. La horquilla debe alinearse con el perro de punta, viéndolos desde la parte superior, para que trabajen corectamente. A las horquillas diseñadas para alojarse en una ranura en T en ocasiones se les llama pescadores.

a la

Figura 2. Dos vistas de

un

perro de punta.

nfl

il

,I--

63

\ {**

r

sEIutrl

CEPILHDORA DE CODO

^

HERRAMIENTAS DE LA CEPILLADORA Se caracterizan por su función, naturaleza o nombre de la operación a efectuar y por la forma de su cuerpo:

HERRAÍIIIET{TAS OE USO PARTICUTAR

HERRAMEilTAS

v'tne D

Conha- ecad¿da

I

,ffi útorl;úfe fifir Pr.

únnü¡a.

W'Nrcy;;

v"il'

2.Itansninta dc plcnsar en árg¡rfc.

w

3. Henrmicnfo

úñpar

cara61.

\}\],m HERRAN|EilTAS DE

HERRATIEffÍAS PARTIGULARES

T'T r i IL/^-,\\

DD

¡5 i&

,,,Yñ Eútffi 5. Prgprrnckto 6.

l#¡trlñttla de

MSilLT¡ D€ CARBURO

raltocp,r.

64

Cdcnt* ñ*nto.

F Pnsón.

,At

sEt\ttr

CEPILLADORA DE CODO

HERRAMIENTAS DE LA CEPILI-ADORA Principales cuchillas para el cepillado vertical.

4.- Cuchilla acodada de desbastar, la ventaja de esta cuchilla es de ser utilizado como cuchilla de planear y de corte lateral. 6.- Cuchilla de corte lateral y para enderezar ángulos.

65

CEPILLADORA DE CODO Cuchillas en acero rápido. Características de construcción y de afilado.

4- Cuchilla acodada de desbastar y de corte lateral.

K

. ángulo de ataque t : ángulo de punta A: ángulo de incidencia

p:

ángulo de filo

= 45o = 90o

=60

( acero R = 30 a 50 I = 5o a 70 I( """ro acero = sris I tunoición y bronce latón [.

66

EEO

Kg/mm Kg/mm

=

650 7trO

Kg/mm

=

7Oo

=

.80o

,t SE|NAT

CEPILLADORA DE CODO

Cuchillas en acero rápido. Características de construcción y de afilado.

6-

Cuchilla de corte lateral y para enderezar ángulos (acodada)

. ángulo de incidencia '. a, . ángulo de despejo lateral: d . ángulo de despejo frontal: d' '. t, . ángulo de punta . ángulo de filo .F

=60 = 10o ,t trO

=

65"

=

600

Para este tipo de quchilla el ángulo de corte es el mismo para todos los materiales a cepillar.

67

*a SNtr

CEPILLADORA DE CODO

Sujeción de la cuchilla en el cepillado vertical.

- Inclinar la porta-herramienta en dirección de la superficie que se trabaja.

- Sujetar la cuchilla vertical y lo más corta posible.

Chaveta

lnmovilizar la porta-herramienta con una chaveta, con el objeto que la cuchilla no deteriore la superficie trabajada durante el movimiento de retroceso.

68

sEñltrt

CEPILLADORA DE CODO

CABEZAL Y MOVIMIENTO DE AVANCE DE CEPILLADORA

Algunas limadoras, además del dispositivo manual, poseen otro dispositivo automático, para el desplazamiento vertical de la herramienta (movimiento de avance). Dicho dispositivo está formado por un trinquete D que, al girar arrastra la rueda de trinquete E; esta rueda hace girar al par cónico G que, a su vez, transmite el movimiento rotativo al tornillo H, lo que provoca el desplazamiento vertical del porta-herramientas l. La rotación del trinquete D se obtiene mediante el empleo de una leva B que se fija a la guía C, solidaria del bastidor en la posición deseada. Cuando el carro de la limadura se encuentra en su fase de retroceso (carrera de retorno), arrastra el dispositivo de trinquete D contra la leva B, provocando de esta manera la rotación del grupo. En esta fase, pues, la herramienta baja.

Durante la carrera de trabajo un muelle F retorna el grupo de trinquete D a su posición inicial, pero la forma del diente elástico hace que éste salte sobre los dientes de la rueda del trinquete E sin arrastrarla, por lo que la herramienta se mantiene en su posición. Para anular el desplazamiento automático, es deci¡ para dejar inactivo el dispositivo, basta con quitar la leva B o bien, levantar el diente L y girarlo 90o.

69

A

SENtr

CEPILLADORA DE CODO

CABEZAL Y MOVIMIENTO DE AVANCE DE GEPILLADORA El movimiento rotativo del motor eléctrico (transmitido a través de la caja de velocidades) es transformado en movimiento rectilíneo alternativo del cabezal, por medio de un sistema de palanca oscilante (Figs. 1 y 3) y de manivela instalada en volante o engranaje

el

principal(Figs. 1yZ).

loRNlLl

o

rlAYr

ruGn^ll^rt coil I co

qfl onlt

t$r I C{Jt

^RT 0c

rrtRR^'tr

l0r{

^C t"A tA 8rf

Ftl '-l

J

{

:J

0^fn

nrqt I 7nq¡¡

forl'lf lf",

t

^nIlfltLActf

Fig. 03

La longitud de la manivela puede variarse (Fig.2) de modo que aumente o disminuya el recorrido del cabezal. Para eso, la llave de regulación del recorrido mueve la rueda dentada cónica (Fig.2), hace girar el tornillo y desplaza el perno, variando dicho recorrido. La posición de carrera del cabezal es regulada por el mecanismo que se muestra en la figura 1. tornillo, tuerca, articulaciones, biela y dispositiVos de maniobra (llave, rueda dentada, cónica y traba).

70

SENffI

cEPTLLADoRA DEcoDo

MEcANtsMos DE AvANcE DE ALTMENTAcóII EN LA cEpILLADoRA Este mecanismo, que produce desplazamiento transversal de la mesa, queda fuera del cuerpo de la limadura (Figura 1).

A cada carrera del cabezal, la excéntrica B acciona con la palanca A, la uña U. Está engrana en la rueda R, que está montada en el eje del tornillo de avance transversal (figura 2). El tornillo de una fracción de vuelta y arrastra la mesa, por medio de una tuerca. Según la posición de la excéntrica será el avance transversal de la mesa.

ILAVE

DE

q€G{rt¡cto¡r

*|

RToRRIOO EXC€hTRICA

ol

ill Figuro

I

ENGRAilAJE

BIEI.A DE

sARR

oe

ARnCULaCtOf{

rrr¡Ce

TRIITQUETE

loRfrfiLLo DE f,EgA

Figuro

2

SEñlffl

cEPrLr-^ADoRADEcoDo

LONGITUD DE CARRERA Y MOVIMIENTO DE AVANCE

La longitud de carrera de una limadora con respecto a la longitud de la pieza es algo mayor para permitir el libre

desplazamiento de la herramienta antes y después de la superficie de la pieza. (F¡g. 3). Por ejemplo tomamos

una pieza de 150 mm. de longitud. La longitud de carrera de la máquina será: Longitud de la

pieza

+

Recorrido anterior + =

(P)

150

mm

+

(Ra) 20 mm.

+

Recorrido posterior. Longitud de carrera.

(Rp) 10 mm. (Lc) 180 mm.

MOVTMTENTO DE AVANCE(S)

El movimiento de avance de la mesa portapiezas debe ser alternativo y debe tener lugar, precisamente, durante la carrera de retorno del carro.

El movimiento, suministrado por

el árbol A, se transmite a la manivela F a través de las ruedas B y C; la manivela, mediante el vástago F, transmite movimiento pendular

un

alternativo al dispositivo H, el cual puede girar al rededor del

eje del tornillo N. El diente elástico l, que se muestra en

detalle en la figura, tiene una forma que le permite saltar los dientes de la rueda de trinquete L, sin anastrarla, cuando el dispositivo oscilante se mueve a la derecha; pero cuando se mueve hacia la izquierda engancha la rueda L y la arrastra. El tornillo N, que es solidario de la rueda L, gira a su vez y provoca el desplazamiento de la mesa A Al girar 1800 el diente elástico, se invierte el sentido del movimiento de la mesa

La variación del desplazamiento de la mesa se gobierna variando la excentricidad del botón E', que puede deslizar dentro de la guía E, y cuyo bloqueo lo efectúa la tuerca G. El vástago P, que une la manivela E con el grupo de trinquete H,.sirve para mantener constante la distancia entre ambos, a pesar de los desplazamientos verticales de la mesa.

72

SNATI

CEPILLADORA DE CODO

LONGITUD DE CARRERA El largo o longitud de la carrera es regulado por la rotación del eje "D", después de aflojar la tuerca moleteada que lo mantiene fijo. Es conveniente efectuar esta operación estando la máquina desembragada. El ajuste de la longitud de la carreray el centrado de la misma sobre la pieza debe ser efectuado como sigue: Seleccionar por medio de las palancas "B" y rrCrr la velocidad más lenta; desembragar la palanca "A" y poner en servicio el motor. Aflojar el perno rrE, de manera que quede libre el cabezal móvil, embragando y desembragando poco a poco la palanca "A". La lectura de la longitud de la máquina se obtiene por medio de la escala fijada al cuerpo de la limadora y la flecha indicadora montada en el perno "E". La longitud de carrera de la máquina se alarga o acorta, girando a la derecha o a la izquierda el eje 'rDrr hasta que finalmente se obtiene la longitud requerida y se ajusta la tuerca moleteada del eje "D". Una vez obtenida esta, se ñace avanzar lentamente el perno rrErr por medio del sistema descrito más arriba, hasta colocarlo en la posiciÓn más cercana al porta-herramientas. Colocar la herramienta en su soporte de tal manera que su filo quede 3 ó 4 mm. Sobre la superficie de la pieza a trabajar. Hacer correr el cabezal móvil por empuje manual para colocar la herramienta 15 o 20 mm. más adelante de la pieza. En esta posición ajustar el perno "E". Después de realizadas estas operaciones la máquina está en condiciones para empezar a trabajar. Fig.2.

Fig 2

73

sEtufrl

cEPILLADoRA DE coDo

cÁlculos DE LoNGtruDEs

DE cARRERA

y

EL AVANcE EN LA cEptLLADoRA

[ = Longitud de carre ra ( .t = .f, * Ia * [u) [ = Longitud de pieza a trabajar.

Ia = Arranque, recorrido anterior o anticipación a la entrada. Iu = Movimiento perdido, recorrido posterior o rebaje a la salida.

S = Avance (mm.) S' = Velocidad

de arranque = s.n (mm/min.)

b = Ancho de la pieza de trabajo. n = Número de dobles carreras (1/min.)

1. LONGITUD DE CARRERA EN EL GEPILLADO El recorrido total L para una carrera, se compone de la longitud de la pieza o de la longitud bruta, más el valor de arranque, más el movimiento pérdido

[=[*ta*[u DOBLE CARRERA, La carrera de trabajo y de retroceso juntas, se tiene.

2. AVANCE (S) Se da en mm. por cada doble carrera y el número de doble carrera se obtiene dividiendo el ancho de la pieza entre el avance.

La

sección

de viruta (F), se

(Z),

puede

considerar como un paralelogramo, a base de la profundidad de corte y del avance.

Atención. La magnitud del avance depende del material, de la henamienta, póro sobre todo de la potencia de la máquina. 74

SENtrl

cEPlLl-ADoRA DE coDo Para el cepillado de la pieza en una sola pasada, se tiene: La = 20; Lu =10;S= 1 mm.; PC = 0,5 mm. n = 22 1/min.

Calcular a) Longitud de carrera (mm.) b) Longitud de doble carrera (mm.) c) Sección de viruta. d) Número de dobles carreras cepillado. e) Velocidad de avance.

para

SOLUcIÓt¡

a.-

Cálculo de la longitud de la carrera.

L=1+la+lu

L=720+20+10

=

300mm

L = 300 mm. b.-

Cálculo de la longitud de la doble carrera.

LD =

2L

LD = 2(300)

= 600 mm

L = 600 mm. c.-

d.-

Cálculo de la sección de viruta. F

=PcxA

F

=

F

= 0.5 mm2

0,5 mm.

x1mm.

Cálculo del número de dobles carreras para el cepillado

Z = b.A

Z = 90.1 =

90

Z=90d.c e.-

Cálculo de la velocidad de avance

S'=Sxn

S'=1 mm.x22 1 min.

- oo lTllTl \,e, -12

min.

75

= 22

el

SENtrl

cEptLLADoRA DE coDo

MOVIMIENTO CIRCULAR Un cuerpo tiene movimiento circular cuando

la

trayectoria que

se sigue es

I I

una circunferencia. Por ejemplo, si al extremo de un hilo atamos un cuerpo y lo revoleamos, el

I

cuerpo se moverá con movimiento circula¡

porque se desplaza sobre

una

circunferencia.

Un cuerpo tiene movimiento rotacional cuando todos sus puntos describen

circunferencias alrededor de un eje circundado por el cuerpo. Una muela de esmeril, una hélice, una volante, un polea, etc., se mueven con movimiento rotacional.

En un cuerpo en rotación, cada una de sus partículas cumple un movimiento circular; luego, el movimiento de rotación comprende al cuerpo en sus totalidad, es decir, en toda su extensión.

El movimiento circular se relTere únicamente

a una partícula o un punto material del cuerpo en rotación.

Nótese que en

móvil y

el

el

movimiento circular el

de giro son puntos independientes, mientras que el movimiento rqtacional el eje de giro está rodeado por el cuerpo o forma parte de é1. centro

Son

,

/

f

radio vector, revolución y período

Radio vector (r), Es

el radio de la

circunTerencia descrita por el móvil.

I

l

Revolución,

I

t t

3:

Es una vuelta

completa

alrededor del centro o eje de giro.

\

\

Período (T), Es el tiempo que dura una

\

revolución.

76

SEItltrl

cEPILLADoRA DE coDo

VELOCIDADES DEL MOVIMENTO CIRCULAR 1. VELOCIDAD LINEAL ( v ).

o

velocidad periférica o velocidad tangencial. es la longitud de arco recorrido por el punto móvil en cada

unidad de tiempo.

En un cuerpo en rotación, los puntos describen circunferencias concéntricas, cuyas longitudes dependen de su distancia al eje de giro. Luego, en una revolución, no todos los puntos recorren una misma distancia pero emplean mismo tiempo. En consecuencia, sus velocidades lineales serán diferentes.

el

Para una revolución, la longitud recorida o longitud de la circunferencia descrita está dada por la fórmula: ll d; luego, para n revoluciones la longitud total será fitd n. Tenemos, entonces, según la definició n de velocidad lineal, la siguiente fórmula:

V= 7td.n

V d

velocidad lineal. diámetro, número de revoluciones.

tiempo empleado.

UNIDADES DE 1.A VELOCIDAD LINEAL.-

En la práctica, las unidades más usuales son m/seg.

o m/min., y para el Sistema lnglés pies/seg. o pies/min. En la técnica, generalmente las rotaciones gue se presentan no abarcan circunferencias de grandes longitudes como para considerar Km/h o Km/seg., por lo que estas unidades no tienen aplicación práctica.

77

A SENtr

CEPILLADORA DE CODO

2. VELOCTDAD ANGULAR

(

@)

Es el ángulo descrito por el punto móvil en cada unidad de tiempo.

S¡ sobre el radio vector de un cuerpo en rotación tomamos diversos puntos, los arcos que describen pertenecen siempre a un mismo ángulo 'central; luego, todos los puntos describen arcos de igual

valor angular empleando un mismo tiempo. En consecuencia, estos puntos describen un mismo ángulo en un mismo tiempo, o sea que tiene igual velocidad angular.

El valor angular del arco se puede dar en grados sexagesimales (o) o en radianes.

- Una revolución tiene 3600. Luego, en n revoluciones se tendrá 3600 n. - Una revolución tiene 2 n radianes, luego en n revoluciones se tend rá

2n n radianes.

Tenemos entonces, según la definición de velocidad angular, las siguientes fórmulas. ÚD

fi

= 3600 n

velocidad angular número de revoluciones tiempo empleado

t

UNIDADES DE TA VELOCIDAD AN.GULAR..

La' velocidad angular se expresa comúnmente en grados/seg. o grados/min., tomando el ángulo en radianes, radianes/seg. o radianes/min. Estos últimos son los que más se usan en la Física.

REVOLUCIONES POR MINUTO. (rpm).Esta unidad es la que más se usa en la práctica. La técnica la adopta en forma generalizada. Tanto la velocidad lineal como la angular pueden transformarse en esta unidad.

rpm

=*

rPm

=

u ztg

rPm

a

= g60.

78

CEPILLADORA DE CODO Problemas

1) La volante de una máquina tiene 0,90 m. de diámetro y gira a 4Bo rpm. ¿cuál es su velocidad tangencial y angular por segundo?

í d-tt-

Datos I n-

o,8om 4S0revoluciones

1min.=60s.

V= 3,14x0.80x480 60s (I)

=

2nn

v=

Fórmulas

2x3,14x480

=

t

20,09 m/s

= 50,24 radls

60s

2) una

rueda de 50 cm. de diámetro describe un arco de 78,5 cm. en un segundo. ¿Cuál es su velocidad en rpm.?

patos FÓmula

78

= = =

tI It

fpm =

50cm cm/s = 78,5 x 60 60s 78,5

V

fi

d

Sxcm/sx60s 3,14

x 50 cm.

=

30 rpm.

3) una faja transportadora es movida por un rodillo de 20 cm. de diámetro que gira a 120 rpm. ¿Calcular la velocidad de desplazamiento de la carga ?

pars Fórmula

V=

3.14

{l u-

= = =

20 cm. 120 revoluciones 1 min.

¡

_ 7td.n t

x 0,20m x 1 min.

120

=

75,,36 mlmin.

79

sEttltrl

cEPTLTADoRA DE coDo

VELOCIDAD DE CORTE EN EL TORNO Por cada revoluci_ón de la pieza que se trabaja, su perímetro pasa una vez por la cuchilla de útil correspondiente.

La velocidad lineal o periférica de la pieza es, al mismo tiempo, la velocidad con que se arranca la viruta y que se denomina velocidad de corte. El diámetro de la pieza (d) se toma siempre en milímetros, y el número de revoluciones (n) por minuto.

-t

Sus fórmulas son:

)

En el Sistema Métrico (en m/min

Vc

=

4-Q1

)

n

000

En el Sistema lnglés en pies.

Vc

- tld12 n

Cuando d está dado en pulgadas.

La velocidad de corte se tiene en m/min. que es la unidad práctica.

Ejemplot

.

Calcular la-velocidad de corte con que se tornea una pieza, cuyo diámetro e3 de 40 mm. y gira a una velocidad de 140 rpm.

\r^ vu- 3,14 x 40 mm. x 140 1 000

=

17,584 m/min

80

trNtrI

CEPILLADORA DE CODO

l. Representación dimétrica 1. Perspectiva caballera (no mormalizado)

ángulo a, = 45o ancho: escala :1 altura. escala 1:1 1

profundidad. escala 0,5 :

1

Cuando se dibuja en papel cuadriculado se recomienda una reducción de = 0,7:1, es decir que diagonal de un cuadro coresponde a l0 mm.

la

ancho

2. Representación dimétrica

Q,={lo, p =7o ángulo ancho: escala 1 :1 altura: escala 1 :1 profundidad. escala 0,5:1

ángulo ancho: altura: profundidad:

dimétrica ( d¡ = dos

)

Q = 30o, escala 1: 1 escala 1:1 escala 1:1

P =3oo

isométrica ( iso = igual

escalas:

dos escalas diferentes

sólo una escala

mostrar lo importante

las vistas de frente

todas las vistas

ancho: altura: profundidad como

1

:1:0,5

)

1.1:1

En columnas se parte de la superficie frontal, en cuerpos en punta (p ej. conos) se parte de la superficie de la base. Dibuja siempre primero el cuerpo básico (p. ej. paralelepípedo) y desarrolla de él la forma de la pieza.

81

I

SEtlltr!

cEpTLLADoRADE coDo

INTRODUCCIÓN A LA REPRESENTNCóN DE LOS SÓI.IOOS

Cuando se desea representar una pieza de determinadas características lo, primero que y representar una superficie que se tomará como referencia, y sobre ella deben tomarse todas las demás mebidas y distancias.

debe hacerse es lrazar los ejes

t

{

REGTAS FUNDAMENTALES (UNE i.031: DtN S) Para dibujar en perspectiva caballera, síganse estas reglas fundamentales:

1o

La recta vertical del espacio

será

también en perspectiva, y de la misma longitud y dirección.

20 Una recta horizontal de frente de objeto, será otra horizontal

.

un en perspectiva, de igual sentido y longitud, y de dirección fija.

las rectas de perfil, o sea a la vertical, se elegirá la dirección inclinada de fuga a 4So,

30 Para

perpendiculares

limitándose su longitud a una proporción de reducción, que es de Yz.

constante, llamada coeficiente

La figura arriba nos

representación de un cubo.

muestra ú

La otra figura , a vemos un eje dimétrico, es decir, de dos escalas diferentes, para la perspectiva caballera. Eje dimétrico.

82

sEnttrl

CEPILLADORA DE CODO

INTRODUCCIÓN A LA REPRESENTACIÓN DE LOS SÓLIOOS

peRspecrvl Rxon onnÉrRrct En la proyección axonométrica, las vistas y los planos principales resultan oblícuos, con determinado grado de inclinación. Según norma DIN 5, hay dos sistemas de proyecciones axonométricas.

Proyección bimétrica, que tiene dos escalas diferentes. Las medidas que siguen la inclinación del eje a 42o, se reducen a Yz. Esta proyección bimétrica, concuerda también con la norma UNE 1.031

'¡ñ

g

c .o

--i_

6

c o .E

o

I

I

a:b:c =1:1:% Perspectiva axonométrica ( proyección bimétrica) UNE 1031 YDINS ( proyección isométrica)

G o

c

;o

o c o

E

ñ

a:b:c: = 7:7:1 Proyección isométrica, eo que los tres ejes tienen la misma escala. Esta proyección conviene para las representaciones en que hay que mostrar claramente las tres vistas.

83

CEPILI-ADORA DE CODO INTRODUCCION A LA REPRESENTACIÓN DE LOS SÓI.¡OOS

INSTRUCCIONES

:

Antes de dibujar la presente lámina, se recomienda leer las reglas fundamentales de "Perspectivas" del texto teórico. La lámina de casa presenta 4 dibujos en perspectiva: los dos de la izquierda que están completos y sirven de ejemplo, y los 2 de la derecha que deben ser dibujados por el alumno. La información está dada por una perspectiva dibujada en el ángulo superior izquierdo. Las medidas indicadas deben tomarse como unidades de retícula. En el espacio reticulado con líneas de inclinación adecuada, dibujar las perspectivas correspondientes, isométrica y caballera respectivamente.

EJEMPLO

ISOMETRICA

84

CEPILTADORA DE CODO LOS ACCIDENTES AFECTAN A LOS ELEMENTOS DE LA PRODUCCIÓN CONCEPTO DE ACCIDENTE

Accidente

es un

suceso inesperado

que

normal del trabajo.

interfiere

o

interrumpe

el

proceso

El accidente puede afectar a: Hombre, materiales, maquinarias-herramientas, equipos y tiempo. Un accidente involucra algo más que lesiones.

LOS AGCIDENTES AFECTAN A LOS ELEMENTOS DE LA PRODUccIÓN Todo accidente causa daño, cuando menos, a uno o más de los siguientes elementos de la producción: CUERPO DE TRABAJADORES lncluye a empleados, desde el peón hasta el ingeniero, así como a los empleados de la oficina. Las lesiones de cualesquiera de estas personas dan como resultado: costos médicos, indemnizaciones, pérdidas de tiempo y de producción.

MAQUINARIA Y HERRAMIENTA lncluye la maquinaria para la producción, máquinas, herramienta y maquinaria auxiliar, así como cualquier otro implemento que se utilice en la instalación fabril. Los accidentes ocasionan daños en la maquinaria y la herramienta, que exige reparación o sustitución inmediata. Entorpecen, a su vez, el proceso de producción. MATERIALES lncluye materias primas, artículos en elaboración y productos acabados. Los accidentes inactivan temporalmente el desenvolvimiento de la producción. EQUIPO lncluye patios, edificios, instalación de energía eléctrica, ventilación, alumbrado, escaleras de mano, recipientes para materiales en elaboración, mesas, sillas, material distinto de la maguinaria y herramientas de usq. Los daños que se derivan de estos accidentes tienen como resultado mayores costos, así como entorpecimiento de la producción. TIEMPO La pérdida de tiempo de producción es el resultado del daño ócasionado a maquinarias, herramientas, materiales y equipos: también incluye la pérdida de tiempo qe producción del empleado accidentado.

EI aumento de accidentes, disminuye el vol¿imen de produccihn

85

SENtrl

cEPtLt-ADoRA DE coDo

MEDIO AI'IBIENTE

) I

/

Es el mundo que nos rodea, en el cual vivimos y del cual tomamos las sustancias necesarias para la vida. Conjunto de factores con capacidad física y química para hacer posible la existencia de la vida. Elementos del medio ambiente Aire Agua Suelo Animales Vegetales Energía solar

I EL HOMBRE Y EL MEDIO A]I'IBIENTE Desde un inicio, el hombre ha influido y cambiado el medio ambiente con sus diferentes actividades, casi siempre de manera negativa. Para el hombre común el medio ambiente nunm ha sido objeto de preocupación. En tiempos antiguos la destrucción del medio ambiente solo fue local; el hombre pudo emigrar de lugares que fueron destruidos y encontró espacios vacíos con tierras fértiles. Hoy en día la alteración del medio ambiente ya no solo es local, sino global (en todo el planeta). Todo esto debido a la explotación exagerada de las diversas materias primas como el petróleo y algunos metales. Los disturbios en procesos que observamos en el medio ambiente, son consecuencias de no respetar los límites. Los rí os pierden su capacidad de autopurificación, la producción de alimentos están en peligro por la ,erosión de los suelos, las enfermedades pulmonares aumentan fuertemente por la emisión de gases de combustible de aire.

86

SENtr ^

CEPILLADORA DE CODO

Precisamente por la capacidad racional de construir respetar reglas éticas como:

y destruir, el hombre tiene que

Reconocer y respetar el derecho a la vida de todas las especies animales y vegetales.

.

Respetar las leyes naturales desarrolladas durante millones de años para que la estabilidad y autorregulación en la tierra no.se alteren.

. .

Asegurar la diversidad de especies que forman la base de la estabilidad en la tierra. Encontrar las soluciones viables a los conflictos entre el hombre y el medio ambiente que lo rodea, que permitan la coexistencia entre el ser humano y otras especies.

87

*NtrI

CEPILLADORA DE CODO

HOJA DE TRABAJO

1.

Calcular la longitud de carrera para cada caso.

a b

l(mm)

la (mm)

lu

180

25 20 30 30

30 25 40 45

240 265 312

c d

L(mm)

l

2.

I

¿Qué longitud de carrera resulta para un

carril tensor de 1,35 m de longitud

cuando para el arranque y el movimiento perdido se cuenta respectivamente con 10 mm.? I

6

3

Un carril tensor de 144 mm. de ancho se desbasta con un avance de 0,8 mm. ¿Cuántas carreras son necesarias?

4.

¿Cuál es el avance por minuto para un avance de 1,25 mm. y 32 carreras por minulo?

5.

¿Qué longitud de carrera se necesita para mecanizar una pieza de 450 mm. de longitud. Si La = Lu = 10 mm?

6.

¿Cuántas carreras son necesarias para mecanizar una pieza de 320 mm. de ancho, si se desbasta con unavance de 0,8 mm.?

7.

¿Calcular el número máximo de carreras

dobles para mecanizar una pieza de 200 mm. de ancho con un avance de 0,5 mm.? b

¿Calcular el número de carreras dobles por minuto para cepillar una pieza con una velocidad de avance de 9 mm/min. y un avance de 0,5 mm.?

88

¿N7/

3 \,/fo,r

o !ü

48

HERRAMIENTAS' INSTRUMENTOS

Sujete la pieza Fije la herramienta Prepare la máquina C ep ille C,ompruebe y mida la ranura Desba rbe la pieza QUIJADA

FIJA

- Util para ranurar recta - Util para escuadrar - N ¡vel de bu rbu ja - Reloj comparador - Llave Francesa 10"' - Calibrador Vernier

50 x 115 x 25,4

PLACA RANURADA

HT

03

TIEMPO: 08 Hr

MECANICO DE IIANTENIMIENTO

REF. HO-04

HOJA: 1 I

1

trNtrl

cEPILLADoRA DE coDo

CEPILLAR RANURAS RECTAS

Es la

operación que consiste en cepillar ranuras iguales y equidistantes, sobre una superficie plana, a través de la penetración de una herramienta de perfil determinado. (Fig. 1). Las ranuras pueden ser paralelas planas; perpendiculares entre si y, algunas veces, superficies curvas de generatiz rectilíneas. Se emplea en chaveteros, para apoyo de pernos de anclaje, en cola de milano.

10

Paso : Sujete la pieza La posición de la morsa depende

de sentido de las b)

ranuras y paralelismo. Ubique la pieza y apriétela en la

Inc.Jr'r er,to

cof Ier]lo

Fig. 2

Calzar

y

relación

nivelar la pieza con

a sus planos de

referencia. En algunos casos embridar para evitar deformaciones. 2o

Fig. 3

Paso : Fije la herramienta ( Fig. 3 ) OBSERVACIÓN

'

Elegir herramientas rígidas, nivelar

sus puntas y asegúrese que el batiente pueda levantarse para evitar el rozamiento de la herramienta en retroceso..Fig. 3a Fig. 3a

30 Paso : Prepare la máquina

a.

Verifique

las guías de

las

máquinas y regule los juegos.

b. Determine el desplazamiento de la mesa, según la cantidad de ranuras o anchura de la ranura.

(Fig. 4) Trabajar con

anillo graduado, haciendo coincidir con cero de referencia. Puede portatrabajarse herramienta múltiple para muchas ranuras paralelas.

el

mecÁn¡co

con una

DE MANTENIMIENTo

90

ri rl \, )f li{

-l Fig. 4

REF. HO.o4ritM 1r3

CEPILLADORA DE CODO c.

Regule

el

número

de carreras

por

minuto. (Fig. 5) OBSERVAGION

Adoptar una velocidad de corte reducida para las herramientas estrechas. Vc = 50% de la velocidad

-l

normal.

.-\

d. Ponga la máquina en marcha.

Fig

5

v)

e.Aproxime la herramienta a la pieza con movimiento lento hasta rayarla levemente.

f. Pare

la

máquina

y

retorne

la

herramienta fuera de la pieza.

el lrazo cero del anillo graduado del carro portaherramienta

g. Haga coincidir

con la referencia. (Fig. 6). 40 Paso: Cepille

a. Dé la profundidad

de corte a través del carro porta-herramienta de acuerdo a la profundidad de la ranura (Fig. 7)

Fig. 6

Desbaste la ranura en una o muchas pasadas (caso: de ranuras anchas). (Fig 7a).

Cepille en una sola pasada cuyo ancho de la punta es igual al de la

Fig. 7

ranura. b.

c.

Pare la máquina y suba la herramienta hasta la referencia inicial correspondiente a la primera pasada.

Desplace la mesa el número de divisiones correspondiente al paso de la ranura.

.

Fig.7a

necÁuco

DE ITTANTENIMIENTo

91

REF. Ho.04/rrfn

A3

*\

SENtr

CEPILTADORA DE CODO

t)

50 Paso : Compruebe y mida la ranura a.

Compruebe paralelismo

planitud

y

después de haber trabajado la pieza o material (Fis. 8)

OBSERVACóN

Compruebe superficie con el reloj

trabajada

comparador

deslizándose

sobre la ranura. b. Medir el ancho de la ranura y la profundidad (F¡g. 9a y 9b)

OBSERVAClÓN Si las ranuras son más de una, controlar a distancia entre ranuras.

60

Fig. 9a

Paso : Desbarbe la pieza (Fig. 10)

Después de retirar la pieza, se procede con la lima a eliminar las rebabas que se han producido durante el mecanizado. .?

.--

l

LIIIA PTANI Fig. 10

SENtr

CEPILLADORA DE CODO

^

RANURAS Y FORMAS

Las máquinas herramientas destinadas a hacer ranuras son las cepilladoras de codo y las mortajadoras. Estas máquinas

sustituyen

Limadora o cepilladora de codo Es una máquina de dimensiones limitadas y, por lo tanto, sólo pueden planear y ranurar superficies limitadas, como máximo de un metro de largo.

los trabajos manuales

efectuados con la lima y con el cincel.

Las máquinas herramientas y

accesorios llevan ranuras

en

sus

Cepilladora Es una máquina de grandes dimensiones

T,

normalizadas y ranuras de chaveteo. Estas ranuras están constituidas por una

asociación paralelas

de

superficies

gue puede planear superficies

planas,

y perpendiculares entre sí

algunas veces superficies curva

longitud).

y de

Mortajadoras Se distinguen de la máquina anterior porgue trabaja siguiendo una dirección vertical, generalmente en el interior de agujeros de diámetro reducido.

generatriz rectil íneas.

Máquinas para ranurar Las máquinas que realizan operaciones de ranurado pertenecen al grupo de las cepilladoras y @mponen este grupo, tres

tipos de máquinas: limadoras,

cepilladoras y mortajadoras.

Ejemplo de piezas mecanizadas en las limadoras y cepilladoras. En las limadoras y en las cepilladoras es

posible mecanizar horizontalmente superficies planas exteriores de cualquier forma y dimensiones. A-B Superficies de piezas prismáticas. C Ranuras. D Guías y correderas en cola de milano.

Ejemplos de piezas mecanizadas en la mortajadora

Las

mortajadoras

se

utilizan

para

mecanizar superficies exteriores verticales, de cualquier perfil, y para la ' obtención de paredes de diferentes

¡

perfiles en el interior de agujeros.

A

Chavetero transversal.

C

ranuras superficies planas interiores. Superficies laterales en general.

B Agujeros con

muy

extensas (incluso de varios metros de

y

93

SENtr

CEPILLADORA DE CODO

^

MAQUINAS PARA PLANEAR Y RANURAR

Limadora mecánica o cepilladora de codo.

Se ha producido aquí otro tipo

de limadora mesánica, que se diferencia de la anterior tan sólo porque permite una mayor carrera del portaherramienta, desarrolla una potencia superior y posee un portaherramientas más robusto. F

Además, esta limadora

va

equipada con un dispositivo para el levantamiento automático del

portaherramientas durante la carrera de retorno del carro.

A Bastidor o bancada. B Guías transversales para el . deslizamiento

K Dispositivo para el levantamiento de la herramienta.

de la mesa.

C Volante para el

accionamiento

L

Guías verticales de la mesa.

M

Volante para

D Vástago que permite el movimiento mesa.

de

la

regulación

de

la

herramienta en altura.

manual del avance. N

Portaherramientas.

alimentación de la

E Volante de mando del carro. F Palanca del cambio

o Mordaza giratoria. Se trata de accesorio para

la

frjación

de

un la

pieza.

de

P

Mesa portapiezas.

a

Soporte de la mesa, el cual puede deslizar sobre un plano inclinado

velocidades

G

Guía del carro.

rasqueteado, dispuesto

H Carro. I Embrague.

bastidor.

94

en

el

CEPILLADORA Limadora oleodinámica Las limadoras oleodinámicas se diferencian de las meénicas tan sólo por tener la mayoría de sus órganos de mando y de transmisión de tipo hidráulico u oleodinámico. Las principales ventajas que ofrecen las limadoras oleodinámicas son : Grandes posibilidades de regulación de las velocidades de trabajo. Velocidades de trabajo más constantes y, por consiguiente, mayor regularidad de trabajo. Absorción más suave de los esfuerzos debido al movimiento de su pesado carro Seguridad contra los esfuerzos. Las limadoras oleodinámicas tienen un rendimiento global inferior al de las limadoras mecánicas y generalmente su costo es superior.

Sistema oleodinámico

D

tl

A B

c

D E F G H

Volante para el accionamiento manual de la mesa. L-L' Topes para la regulación de la carrera del carro. I

El sistema oleodinámico funciona tal como se ha representado, esquemáticamente, en la figura. El motor M acciona la bomba R la cual aspira aceite del de depósito V y lo introduce en el circuito.

El aceite llega, bajo presión, al

distribuidor de cuatro vías D. En una primera fase, el distribuidor dirige el aceite al cilindro hidráulico C, donde su velocidad su presión se transforma n en un empuje sobre los

y

ó

rganos

de

movimiento

de

la

máquina. En una segunda fase, concluid a ya carrera de trabajo, aceite retorna del cilindro al distribuidor, que lo dirige al depósito V; de esta maneraconcluye un ciclo conespondiente la carrera ida de retorno de un movimiento alternativo.

la

el

a

Bastidor o bancada. Carro. Portaherramientas. Mesa portapiezas. Guías horizontales de la mesa. Mandos oleodinámicos. Motor. Soporte de la mesa.

e

95

SENtr

CEPILL.ADORA DE CODO

^

Funcionamiento del circuito electrodinámico

El grupo motor-bomba A-B aspira el aceite del depósito C y, a través de la válvula de seguridad D y el orifico F, lo impulsa al distribuidor E. A través del orificio G y de la tubería 1, aceite bajo presión llega a la cámara de

derecha

del

el

RON

+

la cilindro hidráulico .l -pfthrel$Fn FWh|l"

provocando el desplazamiento hacia la izquierda del pistón L y el del carro, que es solidario del vástago M.

t .

Al mismo tiempo, el aceite de la eámara que queda a la izquierda del pistón L sale a través de la tubería 2 y pasando por los orificios H y P del distribuidor y por la tubería 3, se descarga en el depósito C.

Al moverse el carro hacia la izquierda, empujando por el pistón L y el vá stago M, el tope R choca con la leva S y provoca la rotación del piñón T que, por estar engranado con la cremallera del vástago U, desplaza los dos pistones del distribuidor E. De esta forma, el orificio F queda en comunicación con el orificio H y el orificio G comunica con el or.ificio O. El aceite bajo presión cambia su curso y, a través de los orificios F y H y de la tubería 2, penetra en la cámara izquierda del cilindro y empuja el pistón hacia la derecha. Al mismo tiempo, el aceite que se encontraba en la cámara derecha es empujado a través de la tubería 1 y de los orificios G. y O hasta descargar en el depósito de aceite, con lo que concluye el ciclo.

Movimiento de avance de la mesa Se basa en un sistema de trinquete, que permite un desplazamiento intermitente de la mesa. A través de un distribuidor accionado por los topes R y R1 del carro, el aceite se introduce alternativamente en las cámaras de la derecha y de la izquierda del cilindro A, moviendo adelante y atrás el vástago y la cremallera D. Esta engrana con el piñón E, que es solidario de la p'alanca I del trinquete y ñ lo hace oscilar adelante y atrás. Con su movimiento alternativo, la palanca l, por medio del diente de arrastre H, provoca la rotació n intermitente de la rueda F del trinquete. Esta rueda es solidaria del tornillo L que gobierna el desplazamiento transversal de la mesa por medio de la tuerca M. En efecto, el diente H provoca sólo el desplazamiento de la mesa cuando la cremallera D es impulsada adelante por el pistón B. Cuando la cremallera retrocede,. el diente de anastre salta sobre los dientes de la rueda F sin engancharlos. Para invertir el movimiento de la mesa N se desembraga

el diente de arrastre H' que actúa sobre la rueda

G,

provocando la rotación del tornillo L en sentido inverso.

,,

SEiñltrl

cEptLl-ADoRA DE coDo

Cepilladora

La cepilladora, en lo que se refiere a la

manera

de arran€r viruta y a

A Bancada B Guías horizontales para el deslizamiento de la mesa portapiezas. c Mesa portapiezas con ranuras en T. .D Montaje doble con traviesa superior, en el que han dispuesto las guías verticales para el desplazamiento del

la

herramienta empleada, no se diferencia de la limadora.

Pero se trata de una máquina bastante mayor y, por lo tanto, su campo de aplicación es diferente de la limadora.

E F

Se utiliza para operaciones de cepillado de

grandes superficies planas o perfiladas: bancadas de torno, de prensas y de rectificadoras y especialmente para la

construcción

de las guías

de desplazamiento de las máquinas citadas.

A

diferencia de

las

f-L

limadoras,

el movimiento de trabajo de las cepilladoras lo presenta la pieza que se mecaniza en tanto gue los movimientos de avance y de penetración los reali za la herramienta.

A

diferencia

de las

limadoras,

puente portah erram ientas. P uente portaherra m ientas.

Cabezales portaherramientas

que pueden desplazarse horizontalmente por medio de los tornillos G Vástago con cremallera para transmitir el movimiento de avance de las herramientas. e¿,rrera

el

movimiento de trabajo de las cepilladoras lo presenta la pieza que se mecaniza en tanto que los movimientos de avance y de penetración los reali za la herramienta.

regulación

de la mes.

M Palancas

N

la

de la para el mando de la

Topes para

inversión automática del movimiento de la mesa. Mecanismo de biela y manivela que, junto con el vástago con cremallera H, realiza el movimiento de alimentación del porta herram ientas.

En la figura se muestra un tipo normal de cepilladora, de tamaño medio (longitud de lá mesa 3 metros). F

o E H

o

Figuro ó

97

CEPILLADORA DE CODO Movimiento de trabajo de la cepilladora La mesa debe invertir su movimiento

al final de cada carrera y, además, debe efectuar el retorno a una

velocidad superior con el fin de ganar

tiempo, las cepilladoras modernas van equipas con un dispositivo electromagnético, situado en la caja L, llamado acoplamiento de inversión

A

partir del acoplamiento inversor, el movimiento se transmite, través de par de engranajes cónicos N, al tren de engranajes I situado en el interior de la bancada A, tren que tiene como misión reducir número de revoluciones. electromagnética.

el

La última rueda del tren engrana con la cremallera C, de igual longitud que la mesa B y fijada en su parte inferiot de esta forma, efectúa un movimiento de ida y vuelta.

Los topes D y E, dispuestos sobre la mesa y separados entre sí una distancia h que correspbnde a la carrera de trabajo, accionan las palancas F; estas palancas actúan sobre un relé, colocado en la caja G y enlazado con el acoplamiento inversor. Este relé tiene la misión de invertir el sentido de rotación y cambiar alternativamente el sentido de rotación del engranaje cónico N para obtener el movimiento alternado de la mesa. Movimiento de avance Los desplazamientos de avance de la herramienta son originados por la rnesa portapiezas al final de cada carrera de retorno, por medio de los topes D y E y de las.. ' palancas oscilantes F. Cuando la palanca choca contra el tope de fin de carrera de retorno (a la derecha), por medio del vástago 1 y de la manivela 2 provoca la rotación del disco de manivela 16

3.

El disco de la manivela, mediante la biela 4, obliga a la cremallera vertical S a moverse hacia abajo. La rueda 6, a la que va unido el trinquete 7, hace girar a la rueda del trinquete I y a la rueda dentada 9 solidaria con ella. La rueda 9, por medio del piñón 10, hace g[rar al tornillo 11 introducido en la tuerca del portaherramientas 12 que,

por lo tanto, se desplaza lateralmente y toma el

movimiento de avance en un determinado sentido.

Al final de la carrera de trabajo, el tope D de la izquierda de la mesa choca contra la palanca F y, a través de la misma cadena cinemática, obliga a la cremallera a moverse hacia arriba. La rueda 6 gira ahora en sentido inverso, pero no transmite su movimiento a

la rueda dentada 9 porque el trinquete 7 salta sobie I'os dientes de la rueda I sin arrastrarla. S¡ se quiere invertir el sentido del avance de la herramienta, es necesario

invertirel sentido de giro del tornillo 11. Esto se obtiene al sustituirel enlace 9-10-11 porel enlacel3-14-15-16, lo que $e consigue desembragando el piñón 10'y embragado el piñón 13. e8

sElutr

CEPILI-ADORA DE CODO

^

Mortaiadora mecánica la mortajadora es una máquina herramienta que se utiliza para cepillar las superficies interiores de los agujeros o los exteriores de perfiles cualesquiera. Trabaja con movimiento rectilíneo vertical alternativo de la herramienta. Los movimientos de avance y de penetración los efectúa la

pieza, que puede moverse en un plano horizontal tanto

transversal como longitudinalmente. Además, gracias a una mesa portapiezas que puede girar alrededor de su eje vertical central, el movimiento de avance puede ser también circular.

Las mortajadoras, pueden ser tanto mecánicas como oleodinámicas, según sean sus órganos de mando y de transmisión. Elementos principales de una mortajadora mecánica. A Bastidor o bancada B Montaje vertical sólidamente unido por tornillos al bastidor A c Carro portaherramientas, que se mueve en direrción vertical a lo largo de la guía E del montaje B. D Portaherramientas unido por tornillos al carro C. Puede girar 1800 en el plano horizontal. E Guía para el deslizamiento del carro. F Dispositivo para el ajuste de la carrera de trabajo. G Volante para regular la amplitud de la carrera de trabajo. H Mesa portapiezas giratoria situada en el .centro del carro superior O. En el centro de la mesa se encuentra un agujero

para

I L

el

centrado

N Volante O O

R

de la pieza. La

máquina puede girar 3600 alrededor de su eje vertical central. Volante para el mando de la rotación de la mesa. Carro transversal, que puede deslizar a lo largo de la guía M del bastidor.

para el mando

del

¡

desplazamiento transversal del carro O. Carro superior que puede deslizar a lo guías largo carro transversal. mando del Volante desplazamiento transversal del carro O. Vástago dispositivo de accionamiento alimentación automática de los carros 1- y O y de la ., mesa giratoria

S Árbol de transmisión de

de la P del para el del de la H.

T U

V 99

los movimientos de alimentación. Árbol ranurado para la transmisión del movimiento de rotación a la mesa giratoria H. Palanú de mando del cambio de velocidades. Palanca de mando del embrague Palanca de mando del embrague.

SENtr ^

CEPILI.^ADORA DE CODO

Carro inclinado

En algunas mortajadoras puede inclinarse el carro portaherramientas B, a fin de mortajar huecos inclinados para cuyo mecanizado sería necesario el uso de un complicado sistema de fijación de la pieza. Estas máquinas tiene una cuna C oscilante alrededor del eje D fijado al montante A. Sobre esta cuna se han dispuesto las guías a lo largo de las cuales desliza el carro portaheramientas, Cuna y carro pueden adoptar una inclinación máxima de unos 150, en un sentido o en otro. La cuna puede enclavarse en una posición de trabajo inclinada apretando a fondo la tuerca E.

Movimiento de trabajo. El movimiento de trabajo se transmite desde

el motor al cano portaherramientas a través de un grupo que transforma el movimiento rotativo en otro rectilíneo.

La rueda dentada A recibe el movimiento del cambio de velocidades y arrastra con ella el botón B de la manivela, botón al que va unida la corredera F. Esta corredera desliza dentro de las guías E de la palanca C cuyo apoyo es D.

E! botón de la manivela, al describir una trayectoria circular, imprime un movimiento oscilante, a la palanca C que, a travé s de la transmite carro portaherramientas l. De esta' manera, el carro se mueve con movimiento altemativo rectilíneo vertical.

biela N, lo

al

100

Una vez aflojada la palanca M, se cactúa

con una llave sobre el grupo cónico movido por el árbol R con lo que se consigue el giro del tornillo provoca el deslizamiento hacia arriba o hacia bajo del carro portaherramientas ya que aqué I se atornilla a la tuerca del dispositivo L.

Una vez conseguido el desplazamiento se enclava nuevamente el dispositivo L mediante la palanca M.

La amplitud de la carrera del carro se regula al variar la posición del botón de manivela B a lo largo de un radio de la rueda A, de forma análoga a lo que se ha visto para la limadora.

trNtrl

cEPILLADoRADEcoDo

Dispositivo para la transmisión automática del movimiento de alimentación

El dispositivo está formado, en esencia por los siguientes elementos:

A

Árbol de la rueda A (visible en

la

figura anterior) B Manivela con una ranura en T c Botón de manivela D Biela E Muelle F.G Trinquete H Arbol ranurado I

M N

Rueda dentada cónica, que puede deslizar a largo del árbol H. Grupo inversor del movimiento automático del carro superior. Grupo inversor del movimiento automático del carro transversal. Volante para avance manual circular de la mesa giratoria.

lo

el

' {,$ '\\

El árbol.A tiene sus giros sincronizados

'\r \Yl

con las carreras del carro portaherramientas y, a través de dos ruedas cónicas de igual número

."'i

)1, t'-.f''-' I

,/ll

de

dientes, transmite el mismo número de revoluciones a la manivela B.

El botón de manivela C gira por lo tanto movimiento circular uniforme y transmite un movimiento alternativo a la

con

La palanca del trinquete unida a la biela D movimiento

oscila entonces con un

pendular, arriba y abajo. Al subir, el trinquete G no hace girar la rueda del trinquete G, no hace girar la rueda del trinquete F, puesto que aqué I salta sobre los dientes de la rueda. Cuando baja, el trinquete engancha un diente de la rueda F y la arrastra. De esta manera, el árbol ranurado H, que es solidario de la rueda F, también gira. El á rbol H transmite el movimiento a los divérsos dispositivos de

Téngase en cuenta que el movimiento de alimentación intermitente está sincronizado con el movimiento del carro portaherramientas, de manera que cuando é ste vuelve a subir (carrera de retorno) se produce el desplazamiento de los otros carros. Por el contrario, cuando el carro portaherramientas baja (carrera de trabajo) los demás carros y la mesa permanecen quietos Para aumentar o diminuir el valor del avance de los carros basta con aumentar o disminuir la distancia del botón C al eje de rotación de la manivela B. Esto se logra bloqueando el tornillo que fija el botó n de manivela a una distancia conveniente del eje citado.

es

biela D.

'

avance : longitudinal, transversal, giratorio de la mesa (no representado en la figura).

101

y

Mortajadora oleodi ná m ica

Por lo que se refiere a la manera de trabajar de la herramienta y a los movimientos efectuados, las mortajadoras

oleodinámicas

se

diferencian

mecánicas porque tienen

de

las circuito

hidráulicos.

Elementos principales de una mortajadora oleodinámica A Bastidor o bancada. El carro portaherramientas incorpora

B I

un cursor sobre el que se

Guías horizontales sobre las que deslizan los carros y la mesa portapiezas.

C

.

por lo

Montaje, er cuya parte superior se ha dispuesto el alojamiento de la cuna

oscilante

han

montado dos topes regulables G que, al mover la palanca H, gobiernan la inversión de la carrera del pistón y, carro portaherramientas.

D que sostiene el caro

tanto, del

portaherramientas E.

Portaheramientas, igual en todo el de la mortajadora mecánica.

Sobre el montante se han labrado los alojamientos de los pernos y los agujeros colisos de deslizamiento de las espigas de bloqueo de la cuna en la

oleodinámicos.

Central de los mandos mecánicos y M

posición deseada.

(longitudinal, transversal

iguales a

Cuna oscilante situadd en el alojamiento del montante; puede oscitar unos 150 adelante, según las

necesidades del mecanizado. En la cuna se han dispuesto los alojamientos por las guías de deslizamiento del carro portaherramientas E. Carro portaherramientas, construido de

fundición, que.

Grupo de los carros

se

mueve, con movimiento alternativo, alojado en la cuna oscilante; lo acciona el vástago

del pistón del cilindro oleodinámico F el cilindro es solidario de la cuna, en tanto que el vástago del pistón es solidario del carro portaherramientag.

102

portapiezas y circular),

los descritos para

la

mortajadora mecánica.

Los avances se gobiernan

tanto manual, por medio de los volantes N y O, como automáticamente. N

Volante para

el

avance

manual

circular de la mesa giratoria.

Ajuste y regulación de la zona de trabajo. La regulación de la zona de trabajo y su ajuste se obtienen mediante el mismo sistema empleado en las limadoras oleodiná micas y se fundamenta en el desplazamiento de los topes G sobre el cursor del

GEPILLADORA HERRAMIENTAS DE CORTE

Herramientas especiales para ranuras En la figura pueden verse dos herramientas

para labrar ranuras en T, con

plaquita

postiza de metal duro.

Herramienta recta, para cortar el hueco central, de sección rectangular, en toda su profundidad.

Juego de dos herramientas, una

a

la derecha y otra a la izquierda, para labrar dos huecos laterales.

Amplitud de los ángulos principales

fr y

Los ángulos G, y varían según el tipo de herramienta útilizado y el material que se mee,aniza. Herromienlos de ocero rópido

0

Moleriol quo se meconizo.

l0'

Fundición y bronce. Acero Aleociones ligcros

tr

T

75"

5" 10" 15"

lo"

700

100

65"

Moleriol gue se meconizo.

fl

F

Fundición y bronce. Acero Aleociones ligeros

8" 8"

7Á'

óg'

8" 14"

80

62"

20"

Herromienlos con ploquilo poslizo de oleoción duro

\J

b

/j

+ Cot. de Tllrno

ñ

Ch¡vdtro E¡{¡rlor

tt

\

NÚF

ch¡Yü.ro I lntcrlor /

F-

R¡rrtf¡ ü.¡rv¡

103

"l

sENtrI

CEPILLADORA DE CODO

Herramientas de cuello de cisne Las herramientas de cuello de cisne tienen

La herramienta de cuello de cisne de la figura puede ser a la derecha o a la izquierda, y se utiliza para obtener superficies que deban formar entre sí

flectar.

'pequeño.

la

propiedad de no clavarse en la superficie que se mecaniza cuando, a causa de una resistencia imprevista del material, la herramienta es obligada a

ángulos con aristas

En la figura se muestra como el filo de una

herramienta recta

(A), que flecta

de radio muy

La misma herramienta sirve tanto para el desbaste como para el acabado.

al

soportar un esfuerzo excesivo, penetra en la superficie que se mecaniza.

Herramientas americana

El filo, al girar respecto al punto P de apoyo de la herramienta, describe un arco que pasa por debajo de la superficie mecanizada.

para acabar a

la

Se trata de una herramienta destinada al acabado de grandes superficies empleando un fuerte avance.

Por el contrario, la herramienta de cuello de cisne (B) tiene su cabeza curvada hacia atrás en el plano de la dirección de trabajo.

El filo de la herramienta es un segmento de arco de círculo y trabaja con un avance aproximadamente igual a la mitad de su ancho, es decir, uno 5* 7 mm.

Los surcos producidos de esta manera por la herramienta guedan muy visibles. Sin embargo, la superficie que se obtiene es múy regular y constituye un buen plano de apoyo. Este tipo de cepillado suele conocerse con el nombre de "cepillo a la americana".

El cepillado a la americana resulta muy adecuado para las superficies sobre las que se disponen fijaciones por brida y para las superficies vistas, ya sea por

Su filo se encuentra en la vertical del punto de apoyo P. Por lo tanto, cuando el filo gira respecto al punto P describe u arco que lo separa de la superficie que se mecaniza.

estética, ya para mejor garantizar la buena conservació n del razones

de

plano en caso de golpes, rayas, etc.

Herramientas de cuello de cisne para ángulos

104

sEñltrl

CEPILLADORA DE CODO

Herramientas para mortajar Las herramientas empleadas en las mortajadoras, al igual que las usadas en las limadoras, son herramientas de un solo

Herramientas

filo.

embargo, mientras que las herramientas

en

Son

que se mecaniza. La pieza avanza

Sin

utilizadas

para cortar.

herramientas de desbaste empleadas especialmente para arrancar trozos de material de la pieza

contra la

herra-

mienta.

la

limadora son del mismo tipo que empleadas en el torno, las herramientas de la mortajadora presentan ángulos incidencia de desprendi miento invertidos.

las

los

de

y

En efecto, la herramienta de la mortajadora

tiene su rnovimiento de trabajo en

Herramienta

para perfilar.

Son

herramientas robustas, dobladas hacia adelante y con el filo curvo.

Se utilizan para dar

las

la dirección de su eje y la viruta, al separarse de la pieza, frota contra su cara frontal.

pasadas de acabado a zonas de perfil recto o

Por lo tanto, el ángulo de desprendimiento y está formado por el plano perpendicular al eje de la henamienta y por la cara frontal de ésta.

sentido lateral respecto a

curvo.

La pieza avanza en la herramienta.

El ángulo de incidencia q, es el forma la cara superior con el plano perpendicular al anterior. El. ángulo de filo p es el formado por las dos cáras mencionaóas. Todas las herramientas de mortajar deben tener las caras laterales con una salida de 10 2o, a fin de evitar rozam ientos laterales.

a

Las herramientas para mortajar se dividen en:

Herramientas rígidas. Las heramientas rígidas se utilizan montadas en cabezales' portaheramientas oscilantes, por lo que pueden ser más robustas.

Herramientas oscilantes. Las herramientas oscilantes se utilizan en máquinas de cabezal portahenamientas fijo.

105

Herramientas especiales

para chaveteros. Las henamientas para tallar chaveteros pueden tener la cabeza de muy variadas formas. Los chaveteros pueden necesitar una tolerancia muy estrecha, normalmente H7, o no necesitar ninguna.

En el primer"caso, el ancho de la cabeza debe ser muy preciso, a fin de permitir labrar

el chavetero en una sola pasada.

*ñlffl

cEptLrADoRADEcoDo

Herramientas montadas sobre la barra Estas herramientas sirven para diversas operaciones de mortajado. La herramienta B está sujeta a la barra A mediante tornillo de precisión C. Este sistema permite evitar la repetición de la operación de centrado de la herramienta cuando se haya tenido que desmontar ésta para proceder a su afilado.

un

)

I I

!

C

A

Herra mientas oscilantes

Las henamientas oscilantes se montan en cabezales

portaherram ientas fijas.

B

El extremo inferior de la barra portahenamientas A presenta una ranura dentro de lo cual oscila la herramienta B que puede girar al rededor del eje C.

Durante la carrera de trabajo, la propia fuerza de arranque de la viruta empuja la herramienta contra el plano D y la mantiene en posición de trabajo. Durante la carrera de retorno, la herramienta roza con su dorso sobre la superficie mecanizada y su cabeza se ve empujada hacia abajo, comprimiendo el muelle E. Puesto gue la carga del muelle es baja, er rozamiento queda atenuado.

El muelle tiene la

de volver a situar ra

misión

herramienta en posición de trabajo cuando termina la carrera de retorno.

Amplitud de los ángulos principales de las herramientas de mortajar A'causa de rozamiento que sufre el dorso de la henamienta en las operaciones de mortajado que se efectúan con la henamienta oscilante o con cabezal portahenamientas oscilante, no se utilizan plaquitas postizas de metal duro. Si estas plaquitas tuvieran su dorso sometido a rozamiento perderían rápidamente su filo.

y

En la tabla se indica los ángulos ¿¡ , B 7 según el material que se mecaniza, pero sólo para herramientas'de acero rápido. Se indican también los ángulos de desprendimiento lateral (a.d.l). Material que se mecaniza

a

p

Acero

3o

720

Fundición

3o

v

a.d.l.

50

1030'

1

8o

Aleaciones lig.

1030'

200 700

Para mecanizar

bronce

se

utilizan

un ángulo de desprendimiento negativo de únos 50, en una longitud de 1,5

también a2mm.

150

el

herramientas que además del ángulo de desprendimiento positivo y =150, presentan

1030'

106

SENtrI

CEPILLADORA DE CODO

MOVIMIENTOS PRINCIPALES EN EL CEPILLADO

Fijación sobre

Fijación de la herramienta a la limadora La herramienta debe estar fijada al portaherramientas de la máquina de forma rígida y segura, dados los considerables esfuerzos a que está sometida al arrancar virutas de la pieza que se mecaniza.

la placa

oscilante gobernada En las limadoras de gran potencia varían

las

del

tanto portadimensiones herramientas como sistema de frjación. A.

El levantamiento de la placa tanto puede ser provocado por la propia herramienta, al rozar contra la superficie de la pieza, como por un dispositivo automático; en el primer caso, la herramienta está fijada a una placa oscilante libre, y en le segundo

B.

Placa con guía en cola de milano, fijada al carro; puede girar 90o a la derecha y a la izquierda, alrededor de un eje horizontal. Conedera deslizable a lo largo de la guía en cola de milano de la placa.

caso, a una placa gobernada.

C. Tomillo para gobernar los desplazamientos de la corredera

Fijación sobre la placa oscilante libre

D.

En las limadoras de pequeña potencia, la herramienta se fija con un solo tornillo a una placa libre. La placa A, que oscila alrededor del eje B, presentd un agujero en cuyo interior puede

E.

La

F.

moverse libremente la brida

C.

herramienta se introduce en la ventana de la brida y se bloquea, mediante el tornillo E, contra la @ra anterior de la placa oscilante. la acción del tornillo corresponden dos reacciones (Rr y Rr) de

A

G.

mediante el volante. Placa en forma de horquilla, unida a corredera, que puede girar ligeramente alrededor de un eje horizontal.

la

Placa oscilante alrededor del eje F. Sobre su cara anterior se apoya la herramienta. Bridas para bloquear la herramienta. Hilo deslizable dentro de su vaina (llamado cable Bowden) que actúa

al eje F. rotación de la placa

sobre un brazo unido

F

gobierna

la

la propia cara, las cuales aseguran un fuerte bloqueo de la herramienta. Durante la óarera de trabajo, la misma presión que ejerce la herramienta contra la pieza mantiene a la placa oscilante comprimida contra la placa frja del portahenamientas.

carrera de ráomo, si herramienta no se levanta roza con Durante

la

la el dorso de su filo contra la superficie recién mecanizada.

El rozamiento es perjudicial para todas las herramientas, pero deben evitarse por completo cuando se trata de herramientas con plaquitas postizas de aleación. 107

sEl{ffI

cenu-¡DoRA

DE

coDo

MOVIMENTOS PRINCIPALES EN EL CEPILLADO

Fijación

de la

herramienta

mortajadora

en

la

Accesorios exclusivos mortajadoras

para

las

La fijación de las herramientas en las Plato autocentrante mortajadoras depende de las 'Para fijar piezas circulares a la características de la propia máquina. S¡ mortajadora con el fin de efectuar ésta dispone de cabezal portaherramientas mortajadoras con avance circular, el fijo, es necesario emplear herramientas accesorio utilizado es el plato oscilantes como las ya descritas.

En la figura se muestra un tipo de

portaherramientas oscilante que permite atenuar el rozamiento de la heramienta

contra

la pieza durante la canera de

retorno del carro.

autocentrante. Este plato es de construcción similar al emplearlo en et

torno.

El plato se fija mediante bridas en el centro de la plataforma giratoria de la máquina.

La

herramienta F, al rozar contra la superficie de la pieza, recibe un empuje hacia abajo que provoca la rotación del portaherramientas C al rededor del perno D. Fijado al cabezal portaherramientas que, a su vez, está unido al carro A de la mortajadora. Como @nsecuencia de esta rotación se comprime el muelle H. Durante la siguiente carrera activa el muelle devuelve la herramienta a su posición primitiva. El tornillo con la contraturca I

sirve para regular la tensión del muelle.

A.

Cuerpo del plato, que

órganos para movimiento

B. C. D

contiene

Mordazas para centrar la pieza que se mecaniza respecto al eje

vertical de la plataforma giratoria. Perno frjado cuerpo del plato para centar al mismo respecto a la plataforma. Casquillo reducción, que se interpone entre el perno C el alojamiento plataforma para poder adaptar a éstos platos de dimensiones diferentes. diametralmente opuestas, a las que se aplican las bridas.

al

de

F. Dos ranuras

anterior del porta herram ientas.

-l

\---__ 108

el las

mordazas.

E de la

La posición de la herramienta se regula aituando sobre los tornillos G, y el tirante roscado E bloquea aquella contra la cara

I OS

gobernar simultáneo de

---'

y

JI SENtr

CEPILLADORA DE CODO

MOVIMIENTOS PRINCIPALES EN EL CEPILLADO

frontal. Al mover la mesa en direcció n perpendicular al eje de la pieza, la aguja del comparador debe permane@r inmóvil.

MORTAJADO DE CHAVETEROS

Elección de la herramienta Se utiliza una herramienta adecuada para mortajar chaveteros, cuya anchura deberá ser ligeramente mayor que la

.

'

del chavetero.

pone en contacto con el filo lateral de la herramienta. Girada la mesa 1800 y puesto en contacto el palpador con el otro filo lateral, la aguja del comparador debe indicar la misma lectura.

Gentrado y fijación de la pieza

.

El segundo control se realiza también con el comparador, cuyo palpador se

Ante todo, se procede a centrar la mesa actuando con los carros superior e inferior La pieza se fija, mediante bridas, sobre dos bloques V con escote, cuidando de que aquella quede perfectamente centrada respecto al eje de la mesa. Se comprueba el centrado de la pieza respecto a la henamienta, mediante un

comparador para interiores fijado al

portahenamientas. Se va girando manualmente la mesa y

se va corrigiendo la posición de

la

pieza, mediante ligeros golpes de mazo, hasta que la aguja del comparador perman eze,a inmóvil durante un giro completo. Se aprietan a fondo las bridas y se vuelve a controlar el centrado.

Moftajado del chavetero

. Se procede a

I" o*

. .

'

r-. *Dors¿

mortajar

el

primer chavetero con un avance normal de 0,05 mm. por canera que se leen en el tambor graduado del carro inferior. La herramienta flexa siempre, sobre todo si es pequeña.

Por esta razón, una vez alcanzada la cota indicada por el plano, se efectúan todavía algunas carreras con avance nulo.

De esta forma, se deja el fondo de la

Fijación de la herramienta . Se fija la herramienta poniendo especial cuidado en que su posición sea tal que su filo frontal quede perpendicular al eje del chavetero y que sus fijos laterales resultan perfectamente simé tricos respecto al mismo eje, que coincide con

ranura paralelo al eje de la pieza. La profundidad del chavetero se regula

mediante

Recordar que durante

caros que no deban moverse.

mortajado los

Para tallar el gegundo chavetero indicado en le plano, se gira la mesa 1200 y se procede de forma idéntica a la

El primer control se efectúa mediante un mesa cuyo comparador sobre palpador está en contactb .con el filo

la

el

la

deben estar bloqueados todos

el eje de la mesa.

.

el tambor graduado de

manivela del carro inferior.

y

indicada. 109

SENtrl

cEPILLADoRA pE copo

PROCESO DE TRABAJO

Mecanizado de una guía en cola de milano Partiendo de una pieza en bruto, procedente de fundición, que presenta un exceso de material de mm. en las superficies que deben mecanizar. Las superficies marcadas con el símbolo Sr (superficies rasqueteadas), deben mecanizarse en la limadora dejando sobre ellas un exceso de material de una décima de milímetro, a fin de poder proceder al rasqueteado. La indicación inclinación 5: 1000 significa que los dos planos inclinados 50o no deben ser paralelos entre sí , sino, que el plano de la derecha debe presentar una convergencia, respecto al de la izquierda, de 5 mm. por cada 1000 mm. de longitud de la pieza. El plano debe presentar la convergencia hacia adelante, es pieza eje de decir, deber acercarse conforme se va acercando a su e,ara anterior (que en la vista en planta corresponde a la parte de abajo del dibujo) La convergencia del plano derecho de la guía es necesario para poder colocar un listón entre la propia guía y la corredera, al montar ambos elementos. E¡ orden que siguen las operaciones es el siguiente:

3o4

a

al

la

1.2.-

trazado. Planeado de la cara inferior.. . -Se frja la pieza, apoyada sobre dos reglas, a un

tornillo muy rígido

y fuerte. Se emplea una

herramienta de cuello de cisne. . Se efectúan pasadas de desbaste de 1.5 mm. y de acabado de 0,3 mm. hasta'aleanzar la línea de trazado. Planeado de precisión de una superficie en la

fresadora. . Se procede a un planeado de precisión de una cara vertical paralela al eje, señalada con la letra b en el dibujo, que deberá servir de referencia para todos los alineamientos en las operaciones siguientes. 3.- Gepillado de la qara superior

Se utiliza la misma herramienta de cuello de cisne utilizada en planeado de la cara inferior.

Se pone la

herrarnienta en contacto con la cara a, rozándola

solamente después

la cota R. A posición

. Se efectúa después el planeado de la c;ra

superior de la guía, marcada con la letra A en el dibujo. . Tanto ésta como las operaciones siguientes se efectúan en la limadora. . Se sujeta la pieza, apoyadq sobre dos reglas, con un tornillo de mord azas. 110

en esta carrera,

de haber determinado

partir de esta

de roce, mediante

desplazamientos sucesivos, se

van

efectuando pasadas de desbaste con un profundidad de 1,5 mm. de acabado con profundidad de 0,3 mm. , sin dejar exceso de material.

y

CEPILLADORA DE CODO

y

Poner en marcha para la máquina cambiar el número de carreras/min. Regular la profundidad de pasadas. Regular el avance automático. Controlar las dimensiones de la pieza con pie de rey. Fijar y soltar la pieza. 'Montar y desmontar la herramienta, etc.

DETERMINACIÓN DEL TIEMPO

En los talleres de producción se asigna un tiempo para cada mecanizado gue deba realizar un tiempo operario. El tiempo se calcula desde el momento de la entrega del plano y del material al operario, hasta que éste devuelve las piezas acabadas.

Tie-mpo-prineipa_!

El tiempo principal es el tiempo

Se distinguen tres fases principales en el tiempo de cada mecanizado: Tiempo de

preparación, tiempo

tiempo principal.

de

maniobra

que necesita la herramienta para realizar una determinada operación, es decir, el tiempo durante el cual tiene lugar el arranque de viruta.

y

Tiempo de preparación. El tiempo de preparación es el tiempo necesario para leer y estudiar el plano de la pieza y para preparar la máquina de

manera

riempo=

que puede efectuar el

ffi

=+[r,{

El tiempo principal se calcula para una pasada de la herramienta sobre la pieza, y se multiplica después por el número de pasadas, si se efectúa en las mismas condiciones.

mecanizado gue se le ha asignado. y se determina directamente por cronometraje los conceptos, contenidos son, por ejemplo'

y

Unidad de tiempo

Recibir y estudiar el plano. Cambiar el número de carreras/min. Fijar la pieza en el tornillo de mord aza D con ayuda del comparador. Fijar la pieza con bridas. Regular la longitud de la carrera del carro. Aplicar la herramienta. Regular el avance automático, etc.

La unidad de tiempo para todos los mecanizados efectuados en máquina herramienta es el minuto, subdivido en centésimas de minuto.

Una simple proporción permite pasar de centésimas de minutos a segundos. Ejemplo'. 2,35 min. = 2 min y

Tiempo de maniobra El tiempo de maniobra es ei tiempo necesario para efectuar, en la máquina

=

2l

sesundos

=#q

preparada, todas aquellas acciones necesarias para situar las herramientas en condiciones de poder realizar el mecanizado y los tiempos de las

Cálculo del tiempo principal El cálculo del tiempo principal discurre

igual, tanto para las limadoras, mortajadoras y cepilladoras, como para

todas las máquinas cuyo movimiento de

operaciones normales de maniobra se indican en tablas adecuadas, que varían según las máquinas.

corte es rectilíneo alternativo. El tiempo principal depende :

Los conceptos que contienen dichas

De las dimensiones de la zona que se

tablas son, por ejemplo:

mecaniza. De la magnitud del avance.

Del número de carreras/min. que se

adopta. 111

I

Stlltrl

cEPTLLADoRA DE coDo

DETERMINAcIó¡¡ DEL TtEMpo y vELocrDAD MEDIA EN LA cEptLLADoRA i

I ;

l

L = Longitud de carrera. S = avance (mm.)Vc Vc = velocidad de corte (m/min.) VR = velocidad de retroceso (m/min.) b = ancho de la pieza Tiempo carrera de trabajo Tiempo carrera en vacio Tiempo carrera doble

L

Tc=

Vc . 1000 L

TR=

[= t.carreratrabajo

vR - 1000

(min.)

t . carrera en vacio

+

L+L

t-

t=Tc + TR

(min.)

vR

Va . 1000

. 1000

(min)

Número de carreras dobles necesarias

z

=

Anchura Pieza

7b

LS

Avance

Tiempo principal Tp = Número de dobles carreras

rp=* (#* r. Velocidad media

L

vR .tooo

Vm =2

. tiempo de cada doble carrera.

-lP = b



2L

6 *ilooo

/

ffi(m/min)

ó

Vm

= froL

,

.

(min )

(m/min.)

Ejemplo.

Calcular el tiempo principal para cepillar una pieza de acero con una velocidad de corte de 10 m/min. y velocidad de retroceso de 20 m/min. Si el ancho de la pieza es de 200 mm. por una longitud de carrera de 400 mm. y un avance de 5 mm. Datos

Vc VR L b S

= 10 m/min. = 20 m/min. = 400 mm. = 200 mm.

Tp

* t -b( S \Vc. 1000

Tp

l4OO -200 - s tlooo

=5mm. Tp

+

.= 2,4 min. 112

L\

vR . 1000 /

400 \_200_ 200001 s :

12oo 20000

sEIutrl

CEPILLADORA DE CODO

PROBLEMA$ DE APLICACIÓN Se trata de cepillar en una sola pasada una superficie de 280 mm. de longitud y 160 mm. de ancho, empleando una velocidad de corte Vó = 18 m/mn. El retroceso de la máquina es 1,8 veces más rá pido que la rnarcha de trabajo ; la + lu = 50 mm; el avance S = 0,6 mm/d.c; las velocidades que pueden ponerse en la máquina son 13 - 18 - 23 - 28 - 35 - 45 - 55 - 65 - 8s - 115 - 130 - 165. Calcular el número de dobles caneras nD y el tiempo principal (Tp). SOLUCIÓN 1. Cálculo de la velocidad de retroceso (Vn)

2.

VR =

1,8.Vc

VR =

32,4 m/mn

1,9 x 18 m/mn

Cálculo de la velocidad media de corte (Vm).

Vm =

2. Vc.V*

Vm =

23,14 m/mn

2.

Vc+VR

18

18 m/mn

m/mn

.

+

32,4 m/mn 32,4 m/mn

3. Cálculo del número de dobles carreras (n) a ajustar.

n= Vm.1000 2L

4.

23.14 m/mn

1 000

2 (280 mm + 50 mm.) = n=35d.c.lmn

Cá lculo del tiempo principal (tp)

b I 2L \ tp=t(vm.rrcoo) tp=

160 mm 0,6 mm Id. c.

tp=

7.60 mn

| 2 1280 mm t,,

113

+ 50mm) \

SEilrfl

cEPTLLADoRA DE coDo

DETERMINACIÓN DEL TIEMPO Y VELOCIDAD MEDIA Para las mortajadoras se deben considerar las siguientes dimensiones:

H H' L a

Espesor de la pieza Longitud de la canera de la herramienta. Profundidad de la ranura. Avance.

En ambos casos, el tiempo de mecanizado es directamente proporcional al ancho y a

laprofundidadLeinversamente

Es decir:

proporcional al avan@, 8, o al núrnero de caneras por minuto, es decir:

4 min.

t- a. N .

t=

'

y

,

puesto que n

=;F

y

e.f,ff = 3o segundos

Puesto que es más práctico expresar la longitud L, en milímetros, se divide por

se tiene

1000 la anterior relación:

L.2H a.Vm

Para resolver esta fórmula es necesario

Las unidades empleadas en la fórmula en metros. en milímetros. en metros por minuto. en metros.

conocer la velocidad media. Por lo tanto, es preciso cronometrar por separado la duración de la carrera de trabajo y la de retorno y calcular después la velocidad media.

Ejemplo I Cálculo del tiempo principal para cepillasen la limadora la cr,ra superior de la pieza representada en la figura, suponiendo:

Ejemplo 2

L A Vm H'

= 260 mm = 100 mm A. = 1 mm/carrera V1 = 10 m/min. V1 = 20 m/min.

blanda.

La operación se efectúa en una

H

sola pasada con

L

una herramienta de acero rápido.

De la tabla de las velocidades de corte para los diversos materiales, se tiene: V = 25 m/min, a la que, para una carrera de 60 mm, corresponden 150 carreras/min. La profundidad L es: 63,2 - 60 = 3,2 mm A esta profundldad se añade 1 mm para tener en cuenta la curvatura de la pared del agujero. en total L= 4,2 mm El avance prescrito es de 0,05 mm Luego:

Disponiendo una carrera inicial, fuera de la pieza, de 30 mm. por ejemplo, y otra final de 10 mm, se tendrá:

H'= 260 + 30 + 10 = 300 mm La velocidad media es

:

* ?9 vm=219 10 +.20

= 13,3 m/min.

de la fórmula se tiene:

L t=* =-- 0,054r2x 150 ' a.n L-

t=

L.2H' a . 1000 Vm

=:offx

600 1000 x 13.3

esto

4.5 min 114

".,

5?#@

nEAryrin,,raa 0,56minutos

= 34 segundos

SENÑI ^

c EPILLADORA DE CODO

MOVTMTENTO UNTFORMEwTENTE VAR|ApO (MUV)

Si a los elementos ya conocidos del movimiento uniforme (espacio, tiempo, velocidad), se agrega otro elemento, acelefacié¡, el movimiento adquiere una nueva caracterí stica, y su velocidad aumenta o disminuye constantemente en cada unidad de tiempo. A este tipo de movimiento deno m i nam os _unifgrmeme nte variado.

S¡ la velocidad aumenta, se denomina u¡úoünennente acelerado. y si la velocidad disminuye, se denomina un

iformemente reta-rdado.

AGELERAGION (a).- Es el aumento o disminución constante que experimenta la velocidad en cada unidad de tiempo.

"=f

-----* -----+

{:"

incremento de velocidad tiempo aceleración

Unidades de aceleración.Las unidades más usuales son:

m/s2, m/min, km/h,

pies/s2,

pieslmin

SS Si decimos, por ejemplo, que una aceleración es de 3 m/s2, esto significa que la velocidad va aumentando de 3 m/s en cada segundo. Una aceleración de 5 m/min S

significa que la velocidad aumenta 5 m/min, en cada segundo. LEYES DEL ttlOVlMlENTO UN|FORITilEMENTE VARIADO a) La aceleración es constante. b) La velocidad es directamente proporcional al tiempo. c) Las distancias recorridas son directamente proporcionales al cuadrado del tiempo.

115

sENtrl

cEPTLLADoRA DE coDo

eónuuusDEt-[rcvluLE-Nr-orJNtEoRMEt[EN]ElfARrA_D_o, Si el MUV se inicia desde el reposo, decimos que el móvil no tiene velocidad inicial. Las ecuaciones que se plantean en este caso son las siguientes:

v=at

o-Et \'

v=\tr;

.2

2.

Si el móvil tiene un movimiento uniforme, y se aplica una aceleració n para convertirlo en un MUV decimos que el móvil tiene una velocidad inicial (Vo). Las ecuaciones que se plantean en este caso son las siguientes:

v=vo +at Nota

v=

Si el movimiento es retardado la aceleración es negativa (-a).

Problemas 1

)

¿Qué velocidad tiene un vehículo a los 15 seg. de su partida, imprime una aceleración de 2,4 mls2 ?

si el motor le

V=X

Datos

C

F=ntl

t = 15s { a = 2,4 mls

v = 2,4 m/s2 15

s

= 36 m/s

2) Un vehículo tiene una velocidad de 25 m/s, frena y se detiene en 10 seg. . Calcular su aceleración y la distancia recorrida al frenar. V =X Datos

e =y 2

Vo

=

t -

t

10

v= V-VO

v=vo+at e=vo

25 m/s

+at 2

0 -. ?5 10 s

m/s =

e=25m/sx10s +.-2,5

116

- 2,S m/s

,2(10s12 = 125m

m/s2

sEñrtrl

CEPILI.ADORA DE CODO

^

EJ ER

c_t

cleg

DE

REp

REs EN rA

eɡ _oerossorp o_s

Representaciones en perspectiva se denominan también proyecciones paralelas porque las aristas de enfrente se dibujan en forma paralela. Las perspectivas muestran tres vistas de una pieza.

l.

Perspectiva caballera

La perspectiva caballera es una perspectiva dimétrica no normalizada. Es manera más simple de representar una pieza tres dimensiones. La vista de fente se dibuja en escala, las aristas que dan la profundidad se reducen a la mitad y se dibujan 45o. De las cuatro perspectivas posibles debe preferirse la primera. Esta muestra la pieza en vista de frente, superior lateral izquierda.

la

en

a

y

2. Perspectiva dimétrica según DIN 5 En la perspectiva dimétrica las aristas horizontales de la vista de frente se dibujan con una inclinación de 70. Las aristas que dan profundidad se reducen a la mitad y se dibujan a 42o. Los círculos aparecen cgmo elipses en la vista superior y lateral. El dibujo exacto de una perspectiva dimétrica según DIN 5 sólo es posible sirviéndose de un ángulo de perspectiva.

La ilustración adyacente

muestra el

dibujo

improvisado de los dos ángulos de 42o y 7" en el papel cuadriculado. 3. Perspectiva isométrica según DIN 5 En la perspectiva isométrica se dibujan todas las longitudes en escala. Las aristas de la vista de frente se dibujan a 30o. Las aristas que dan la profundidad se dibujan (sin reducir) tambíén en un ángulo de 30o. Para ello se usa la escuadra con ángulo de 30o. Los círculos se representan como elipses en las tres vistas.

La ilustración adyacente muestra el dibujo improvisado del ángulo de-30o. 2

117

Stfttrl

cEPTLLADoRA DE coDo

EJERCICIOS DE REPRESENTACIÓTI DE LOS SÓI-IOOS

t.".-a

I I

I I

118

EFntmt REPRESENTAcIóI.¡ DE

cepru-noonn or coqo Los sólloos

119

,t SEIllffl

ceprLláDoRA DE coDo

REPRESENTAcIón DE Los sót_¡oos

120

,t ffNtrI

CEPILI-ADORA DE CODO

PERSPECTIVA DE LOS SOLIDOS

\

t.-a.-._,,

I

121

CEPILLADORA DE CAUSAS DE ACCIDENTES

Rara vez un accidente obedece

a

una sola causa. Deben investigarse todos los

accidentes de que se tenga noticia, y anotar las causas.

El accidente no implica necesariamente una lesión; pero toda la lesión es producto de un accidente.

Lesión Es todo daño de orden fí sico que el accidente causa a las personas.

" Ningún accidente es causal; los accidentes son causados"

Todo accidente tiene dos causas principales: la condición peligrosa y los actos inseguros.

A.

CONDICIÓN PELIGROSA.. Una de las causas de los accidentes es la condición o circunstancia física. Ejemplo:

Maquinaria con guardas inadecuadas y aveces sin ellas; herramientas o equipos defectuosos, superficies de trabajo desiguales, ventilación o alumbrado inadecuados.

B.

ACTOS INSEGUROS.. Otra causa de los accidentes es la acción, producida por una persóna que puede ocasionar accidente o ser causa del mismo.

Ejemplo: cargar, colocar

o

mezclar en postura o posición contraria a lo establecido por la seguridad; trabajar con equipos en movimiento; descuido usar rgpas inseguras dispositivos de protección persona; hacer funcionar equipos a velocidades contrarias seguridad; distracción, azuzamiento, etc.

o

al

a la

122

,Al

sENtr

CEPILI.ADORA DE CODO SISTEMAS DE GESTIÓN MEDIOAMBIENTAL EN LA EiltPRESA (SGMA)

INTRODUCCóN Actualmente las empresas con visión de futwo consideran la gestión medio ambiental como una oportunidad de reducir sus consumos de materias primas, agua, energía y residuos, al mismo tiempo que disminuyen sus costos, aumenta su competitividad y mejoran su imagen frente a la administración y la sociedad en general.

Por este motivo nacen los Sistemas de Gestión Medioambiental (SGMA) como instrumentos de prevención y reducción de la contaminación. Con su aplicación las empresas incluyen de manera natural en su sistema de gestión general todos aquellos aspectos de sus actividades que pueden generar un impacto sobre el medio.

Un Sistema de Gestión Medioambiental, es el marco o el método de trabajo que sigue una empresa con el objeto de implantar un adecuado comportamiento de acuerdo con las metas fijadas y como respuesta unas normas, unos riesgos ambientales y unas presiones tanto sociales como financieras, económicas y competitivas. En definitiva, la empresa desarrollará un sistema de gestión medioambiental basado en sus propios principios y filosofías, el cual tiene como meta alcanzar unos objetivos medioambientales preestablecidos al fijar la política ambiental empresaria. Los SGMA llevan implícitos los principios que se inspiran en la política actual protección integral del medio ambiente. Estos principios se podrían resumir en los siguientes:

. Quien contamina paga. . Necesidad de un desarrollo sostenible. . Utilización de tecnologías limpias. . Derecho de ac@so de usuarios/consumidores a la información medioambiental. .

¿AUÉ ES UN SGMA?

Podemos decir con todo convencimiento que todas las empresas en función de su actividad, tienen una repercusión ambiental. Por ello, cada día se hace más necesario que estas empresas asuman la responsabilidad que les corresponde en la protección del medio ambiente, sin que ello afecte a su competitividad o a su rendimiento productivo. El Sistema de Gestión Medioambiental, es aquélla parte dei sistema general de gestión

que comprende la estructura organizativa, las responsabilidades, las. prácticas, los procedimientos, los procesos, y los recursos para elaborar, aplicar, realizar y mantener la política ambiental de la empresa (según definición tomada del reglamento 1836/93 del 29 de junio, por el cual'se permite a las empresas que se adhieran con carácter voluntario a un sistema comunitario de gestión auditoria medioambiental).

123

Por lo tanto, vemos que la implantación de un sistema de gestión medioambiental implica la realización de las siguientes acciones etapas: ¿PARA OUÉ S¡RVEN

y

PORQUÉ Se |MPLANTAN LOS SGMA?

Los sistemas de gestión Medioambiental permiten a la empresa de forma inmediata: Establecer una Política Ambiental adaptada a sus necesidades y problemas específicos. Esta política marca los objetivos generales y principios de acción de la empresa respecto al medio ambiente, incluido el cumplimiento de todos los requisitos normativos legales correspondientes al medio ambiente.

.

ldentifrcar los aspectos ambientales que resultan de sus actividades, productos o servicios existentes, pasados o planificados para el futuro con la finalidad de determinar los impactos ambientales significativos.

Los impactos ambientales son todas aquellas modificaciones del medio ambiente, negativas o positivas, totales o parciales, que resultan de las actividades, productos o servicios de una empresa que interactúan con el medio ambiente.

.

ldqntificar las exigencias de orden legal y reglamentario aplicable a la empresa. De esta forma se reduce la probabilidad de recibir sanciones por incumplimiento de lo ambiental, y por lo tanto, los costos que de ellos se derivan.

.

ldentificar las prioridades y fijar los objetivos.ambientales concretos, expresados en términos de eficacia ambiental, que una empresa se plantea conseguir como resultado de la política ambiental.

'. .

Facilitar las actividades de planificación, control, vigilancia, corrección, auditoria y revisión para asegurar al mismo tiempo la política ambiental se aplica y que el sistema de gestión sigue siendo adecuado.

Set e,apaz de adaptarse al cambio de las circunstancias.

Pero más allá de ello inmediatas de los SGMA, las empresas buscan otros resultados, o actúan motivadas por otras razones de fondo. Estas razones pueden ser muy diversas:

124

sENtr ^

CEPILI.ADORA DE CODO

.

La seguridad entendida como reducción del riesgo de accidentes, de interrupciones indeseadas, de sanciones expedientes legales, de conflictos con las administraciones públicas, los vecinos o los consumidores. La política ambiental se configura como una parte mas de la política integral de seguridad de la empresa.

.

La calidad global de los productos, servicios y proceso tiende a incorporar la gestión ambiental como un componente más. Como las empresas necesitan un alto nivel de calidad global para competir, les interesa incorporar la calidad ambiental.

.

El ahorro en el consumo energético o de materias primas durante el proceso

o

productivo.

.

El mercado, con la finalidad de captar nuevos clientes, mantener las actuales o completar la oferta de productos en el mercado, en la medida que la variable ambiental sea importante en la decisión de la compra.

.

La imágen, mejorando la buena imágen de la empresa de cara al exterior y a las adm inistraciones públicas.

La implantación de un SGMA tiene un efecto muy positivo en la imagen corporativa de la empresa, por lo que podemos utilizarla como una herramienta más de marketing. ¿QUIÉN PUEDE IMPLANTAR UN SGMA?

En la teoría podemos decir que cualquier empresa, independientemente de la actividad productiva que desempeñe, puede implantar un SGMA. En la práctica existen matizaciones, por ejemplo, el SGMA de la Unión Europea se dirige tan solo aquellas empresas con actividades industriales relacionadas con la producción de energía eléctrica, gas, vapor, agua caliente y actividades de reciclaje y/o tratamiento, destrucción y eliminación de residuos sólidos o líquidos. En cualquier caso, antes de proceder a la implantación de una SGMA, la empresa tiene que analizar los beneficios que obtendrá de esa implantación y los costos que puede suponer.

La producción, mejorando los procesos productivos, asegurando la óptima utilización de materias primas y haciendo más eficiente el consumo más energético.

La ilnplantación del SGMA supohdrá una revisión de todos los procesos productivos en la empresa realizando, si son necesarios, los correspondientes

cambios que comporten disminuciones en el consumo de agua, energía y materias primas o minimicen la producción de residuos y/o emisores, lo cual comportará una optimización de los costos de producción en general.

125

sEmtrl

CEPILI-ADORA DE CODO

^

.

La financiación conseguido mediante un buen historial medioambiental ventajas en la negociación de créditos bancarios, aumentar la cotización en bolsa u obtener ayudas públicas.

.

El futuro y la permanencia de la empresa anticipándose a las exigencias de la administración y de los clientes como arma para subsistir y competir.

I

La implantación de un SGMA permite establecer un compromiso de mejora continua de la actuación medioambiental al ritmo más adecuado para cada empresa.

A medida que los procesos de producción sean más eficientes, los costos se reducirán y el medio ambiente se beneficiará. No obstante, para que un sistema de gestión medioambiental sea eficaz, es necesaria la implantación de todo el personal de la empresa, desde el jefe hasta el último operario, si no es así, la implantación no dará los resultados esperados.

A modo de resumen diremos que la implantación de un SGMA representa la situación de soluciones costosas de última hora para la protección del medio ambiente por unos procedimientos integrados que conducen a una protección preventiva del medio ambiente, al mismo tiempo que compartan un mayor rendimiento de la actividad y un aumento de competitividad.

Por lo tanto la implantación de un SGMA ayuda

a realizar mejoras en los siguientes

apartados:

a) b) c) d) e)

Los procesos de fabricación. Los tipos y cantidades de materias primas empleadas. El conocimiento de los efectos que tienen las actividades sobre el medio. La comunicación tanto interna como externa. Otros.

126

,t 5ENATI

CEPILLADORA DE CODO HOJA DE TRABAJO

1

. ¿Cuál será el tiempo de avance en el cepillado, conociendo

que la velocidad de corte

(Vc) es de 20 m/mn?

tl ,ü -

A) tn = 0,02 mn B) tn = 0,05 mn C) tn = 0,2 mn

LJ q.\\.r.\rii

l.'-

*1r15

--l

35

D)to=8 E)tn =20

r

mn mn

2. La mesa de una cepilladora ha sido ajustada a una longitud de carrera

L- 400 mm. Si su Vm = 32 m/mn, ¿Cuál será el número de dobles

carreras/mn?

A) no = 40 dobles carreras/mn B) no = 25 dobles carreras/mn C) no = 12,5 dobles carreras/mn D) no = I dobles carreras/mn E) no = 4 dobles carreras/mn 3. En qna longitud de carrera sencilla L = 2000 ffiffi, se emplearon carreras 4 minutos. Calcular la velocidad de corte media. A) Vr B) V* C) V' D) V' E) V* 4. 'Calcular

en 16

dobles

= 0,0625 m/mn

= 16 m/mn = 32 m/mn = 64 m/mn = 60 m/mn

principal para el cepillado de la pieza, si la mesa de la cepilladora ha sido ajustada a longitud de carrera L = 270 mm, A = 0,6 mm/dc y Vm = 16 m/mn.

el tiempo

A) tp = 4,21 m/mn B) tp = 5,62 m/mn C) tp = 8,43 m/mn

D)tp=9m/mn E) tp = 250 m/mn

127

L r )

SENtrl

cEptLtADoRA DE coDo HOJA DE TRABAJO

Guerpo básico : Cubo con aristas de 40 mm Posición : Ángulo hacia la derecha. Recortes : Arriba un corte de 10 x 10 a la izquierda y a la derecha en toda la profundidad del cubo; abajo: adelante a la dereiha un corte de 20 x 20 20 Problema:

Dibuja el cuerpo una vez en perspectiva caballera, una en perspectiva dimétrica y una en perspectiva isométrica.

Problema: Dibuja el cuerpo en perspectiva dimétrica. Elige 4 posiciones diferentes. Usa las medidas de la imagen oblicua. Datos: Tarea

:

Material

Escala 1.1

Datos. lmagen oblicua

Texto Representación tridimensional

Pieza intermedia

Tarea

A

1:1

1.1

Material

B

forma posiciones representación diferentes. Usa las medidas de la imagen oblicua.

4

Datos: lmagen oblicua Tarea :' 4 posiciones diferentes

lsometría (4 posiciones)

Bloque de guía

Pieza de perfil

de

Datos: lmagen oblicua Escala

Material

Problema: Dibuja en cualquier

las medidas de la imagen oblicua.

:

Dimetría (4 posiciones)

Escala

Problema: Dibuja representaciones isométricas del' cuerpo 4 diferentes posiciones. Usa

Tárea

:

Escala

c

1.1 128

Pieza de apoyo

Material

D

N7/ t 0,1 zV

48

-l_ c\¡

Corte A-A

:lii 6 i/o TJ r

t

(o

Al

30

I

)'

fr X)

rx;f,

=t ñ

l--

01

02 03 o4 05 06

o2

HERRAMIENTAS' INSTRUMENTOS

ORDEN DE EJECUCION

No

Sujete la pieza Fije la herramienta Prepare la máquina Prepare el material Ce pille Verifique la superficie

01

PzA- CANT.

QUIJADA

- Ut¡l acabado de desbastar - Util acodado a la derecha de acabado - Llave Francesa - Nivel Francesa - Nivel de burbuja - Gramil y Gonometro - Calibrador Vernier

tr¡ÓV¡t-

DENOMII{ACION

50x70x25 NORMA

QUIJADA FIJA Y MECÁ

].fi

'

DIilIENSIONES

N¡ÓV¡I.

Cg DE TIA N TENITII ENTO

St 37

MATERIAL

HT

04

I

OBSERVACIONES REF. HO.Os

TIEMPO:04 IHOJA:112 2OA2 ESCAI-A:1:1 I

N7/

3Vto,r

o

@

L

I {D {-

L-

o (J

.No 01

02 03 04 05 06

ORDEN DE EJECUCION

HERRAMIENTAS' INSTRUMENTOS

ujete la p teza F ije la herra m ienta Prepare la máquina Prepare el material Cepille Verifique la superficie

- Ut¡l acabado de desbastar - Ut¡l de planear en ángulo - Util acodada a la derecha - Llave Francesa - Nivel de burbuja

S

03

01

P?A.

CANT.

QUIJADA FIJA

DENoMrNnqóru

- Gramil y Goniometro - Calibrador Vernier

50x115x25 NoRMA / DtMENstoNEs

eurJADA FIJA Y nnóvu

ilECÁNIóO DE MANTENIMIENTo

st

37

MATERTAL

I

oeseRvActoNEs

04 REF. HO-05 TIEMPO:04 IHOJA:212 ESCALA:1:1 I ZOaZ HT

CEPILI.AR SUPERFICIE PI-^ANA EN ANGULO

Es la operación que consiste en cepillar sobre una superficie plana, el ángulo deseado inclinando el carro vertical en dirección de la superficie a trabajar. La operación puede ser de desbaste, según el útil a utilizar, con esta operación se mecanizan piezas como: prismas en V cola de milano, etc.

(Fis. 1)

PROCESO DE EJECUCIÓN 10

Paso:

Sujete la pieza (fig. 1) a. Ubique la prensa y fije con los pernos de anclaje. b. Ubique la pieza y apriétela con las.

s3g;ixxH*

Prensa

lnterponer paralelas en el fondo de la

prensa.

2o.Paso:

Fije la herramienta (fig. 2) OBSERVACION

(F¡g. 2)

Elegir la herramienta según la o acabado v :fl:a?¿?'.i:"ffi:baste Sujete la cuchilla lo más corto posible. 30

Paso:

Prepare la máquina.

a. Regule

el nú mero de carreras

minuto.

Por

.

b. Regule la amplitud de carrera.

' c. lncline le carro vertical o portaherramientas y fijarlo al ángulo deseado (Fis. 3) d.

lncline el portaheramientas

en

dirección a la superficie a trabaiar.

(Fis. 3)

OBSERVACóN lnmovilizar el portahenamientas con una

chaveta.

MECANICO DE MANTENIMIENTO

:

¿

131

REF.

Ho.osfil]ú 1t2

SEnUtrl 40

Paso:

cenneoomoecom

Prepare el material (fig. 4) OBSERVACION Trace con goniometro universal la parte oblicua y granetear líneas de referencia.

50

Paso:

(Fis 4) Cepille

a. Aproxime la herramienta hasta rayar levemente.

b. Efectúe

pasadas de desbaste.

c. Efectúe pasadas de acabado con el util acodada a la derecha (f¡g 5)

60

Paso:

Verifique la superficie.

a. Compruebe con goniometro la inclinación. b.

Compruebe planitud.

c. Mida según

el plano.

(Fis s)

ueCÁruIco DE MANTENIMIENTo

132

REF. HO.Os/MM 212

ffl\lffl

cEpll-uoonnoecooo

,.

.

MECANISMOS DE MOVIMIENTO DEL CABEZAL Y LA MESA Para trabajar planos de cualquier inclinación, debe hacerse girar el carro vertical (Fig. 1) de tal forma que éste quede paralelo a la superficie que hay que trabajar. Esto se obtiene haciendo uso de la escala graduada colocada en el carro vertical, la cual gira conjuntamente con é1, indicando sobre el índice de la parte fija el ángulo de desplazamiento. De igual forma hay que orientar la placa portaherramientas para disponer la herramienta en la mejor posición de trabajo. En este tipo de cepillado, el espesor y el avance de corte se obtiene de la misma forma que para el cepillado vertical.

Se puede cepillar también esta forma de superficies, haciendo que la mesa de la limadora y la superficie a cepillar queden paralelas al plano horizontal y entonces se procede como en el cepillado de superficies planas paralelas horizontales. (Fig.2)

Fig. I

Como se nota, eñ cualquier posición de la superficie siempre se inclina la charnela en posición opuesta al avance de la pieza o del corte.

133

SENÑI

cEPILT.IDORADECADO

--

Sujeción de la cuchilla en el cepilladooblícuo.

.

Bascular

el

del

cabezal

porta-

herramienta y fijarlo al ángulo.

.

lnclinar

la

porta-herramienta en

dirección de la superficie a trabajar.

.

Sujetar

la

cuchilla

lo

más corto

posible.

el ángulo de inclinaciÓn de la cuchilla en función del tipo de cuchilla a utilizar. En el cepillado hay que inmovilizar la porta-herramienta con una chaveta con objeto que la cuchilla no deteriore la superficie trabajada durante el movimiento de retroceso.

134

SENfrI

cEPTLLADoRA DE coDo

Herramientas curuadas o acodadas Las herramientas curvadas sirven para mecanizar superficies horizontales e inclinadas.

En la figura se

muestra

una

herramienta curvada, que puede ser a la derecha o a la izquierda, para el mecanizado de las guías en cola de milano. El avance se le aplica a la herramienta por medio del carro portaherramientas, y su dirección es paralela a la cara que se mecaniza (A) La misma herramienta puede cepillar el plano horizontal de la guía. El avance se aplica en este caso a la pieza, por medio mesa portapiezas (B).

de la

En la figura se muestra una herramienta adecuada para la garganta, con su correspondiente portaherramientas para fijar dicha herramienta al carro de la limadora. Puesto que las herramientas de este tipo son delicadas, para reducir el peligro de rotura se disminuye el número de carreras por minuto del carro. El avance, que se obtiene a mano, deberá mantenerse entre 0,05 y 0,1 mm/carrera.

Acabado de la boca Se utilizan dos herramientas acodadas, una a la derecha y otra a la izquierda, dispuestas con el eje de su filo perpendicular a la superficie que se mecaniza. El avance, de 0,2a 0,3 mm. Se da en dirección paralela a la superficie que se mecaniza. Velocidad de corte 20 m/min.

Se efectúa una primera pasada, dejándose un exceso de material de 0, a 0,8 mm. Después de esta pasada se comprueba la cota Q con pie de rey. Según el exceso de material de la cota b se desplaza lateralménte la mesa y se lee el valor de dicho desplazamiento en el tambor graduado de mando del avance, a fin de reducir a 0,2 el exceso de material con una nueva pasada; finalmente mediante una tercera pasada con avance de 0,1 mm, se acaba la superficie. Después, el prisma en V deberá templarse y rectificarse.

135

,

ffi,*

=,cgplnnoon

T

Mecanizado de una guía en cola de milano. Partiendo de una pieza en bruto, procedente de una fundición, que presenta un exceso de material de 3 a 4 mm. En las superficies que se deben mecanizar. En la figura se ha indicado el grado de acabado exigido en cada una de las' su perficies mecan izadas. Las superficies marcadas con el símbolo Sr (superficies rasqueteadas), deben mecanizarse en la limadora dejando sobre ellas un exceso de material de una décima de

a fin de

poder proceder al rasqueteado. La indicación inclinación 5:1000 significa que los dos planos inclinados a 50o no deben ser

milímetro,

paralelos entre sí, sino que el plano de la derecha debe presentar una convergencia, respecto al de la izquierda, de 5 mm por cada 1000 mm de longitud de la pieza. El plano

debe presentar la convergencia

hacia adelante, es decir, debe acercarse al eje de la pieza conforme se va acercando a su cara anterior (que en la vista en planta corresponde a la parte de abajo del dibujo).

El orden que siguen las operaciones es el siguiente: 1.- Trazado. 2.- Planeado de la cara inferior.

*

*

'

3.- Cepillado de la cara superior. Se fr.¡a la pieza, apoyada sobre dos reglas, Se efectúa después el planeado de la a un tornillo muy rígido y fuerte. Se emplea cara superior de la guía, marcada con una herramienta de cuello de cisne. la letra A en el dibujo. Se efectúan pasadas de desbaste de 1.5 Se utiliza la misma herramienta de hasta mm y de acabado de 0,3 cuello de cisne utilizada en planeado alenzar la línea de trazado. de la cara inferior. pone la herramienta en contacto Se Planeado de precisión de una superficie con la c*,ra A, rozándola solamente en en la fresadora. haber esta carrera, después Se procede a un planeado de precisión de determinado la cota R. A partir de esta una cara vertical paralela al eje, señalada posición de roce, van efectuando con la letra b en el dibujo, que deberá pasadas una desbaste referencia para todos los servir profundidad de 1,5 mm y de acabado operaciones alineamientos con una profundidad de 0,3 mm, sin siguentes. dejar exceso de material.

*

*

mm

n

*

de

de

de

'en las

136

con

SENÑI

CEPILLADORA DE CODO

^

Control del alineamiento de la pieza Antes de cepillar la guía, se alinea el tornillo de mordazas haciendo deslizar sobre la cara de referencia el palpador de un comparador frjado magnéticamente al portaherramientas Gepillado de la base izquierda Se utiliza una herramienta acodada a la derecha, adecuada para las guías de cola de milano. Se la pone en contacto con la superficie a mecanizar, de manera que solamente la roce, después de haber medido la cola Q con un pie de rey.

A

partir de esta posición. Mediante

sucesivos,

desplazamientos

se van efectuando pasadas de desbaste

(de 1 mm de profundidad). Hasta dejar un exceso de material de 0,1 mm, necesario para el rasqueteado.

Planeado de la cara izquierda. Se efectúa el planeado de la cara izquierda de inclinada a 50o

la

guía,

La misma herramienta empleada en la operación anterior se pone en contacto con dicha cara, pero de manera gue sólo la roce.

Se procede entonces a una primera pasada de 1mm de profundidad. Manualmente, se imprime a la herramienta un avance de 0,2 a 0,3 mm en dirección paralela a la-cara que se mecaniza.

Durante las pasadas sucesivas se controla la cota S mediante un pie de rey que mida medias décimas, auxiliado de 5:1000, se por dos cilindros: el cilindro U apoyado contra la e'ara exigida esproporción: la escribe inclinada de la guía y el cilindro V introducido en el agujero central. Al controlar la cota S debe tenerse en cuenta el 5:1000=X. 210, de donde: exceso de material que se ha dejado sobre el plano C Y aqué|, necesario para el rasqueteado, que se debe dejar en

x=210X5

la cara inclinada de la guía.

1

Giro de tornillo de mordazas. Se procede a girar el tornillo de mordazas para poder cepillar las superficies situadas en la parte derecha de la pieza. Puesto que la cara inclinada de la guía debe presentar una convergencia, respecto al eje de la pieza, del 5 por 1000, es necesario orientar el tornillo convenientemente.

El

comparador

se

apoya, magnéticamente,

en

el

portaherramientas y se hace deslizar su palpador sobre la cara de referencia b. Supóngase que la longitud H de la guía en la cola de mil'ano sea de 210 mm. Puesto que la convergencia

137

000

= 1,050 mm;

SENtr

CEPILLADORA DE CODO

^

Gepillado de la base derecha. Se sustituye la herramienta a la derecha, por otra herramienta igual pero a la izquierda, y se procede

igual que se ha hecho para la base izquierda. También ahora se dejará un exceso de material de 0,1 mm para el rasgueteado.

Cepillado de la cara inclinada derecha. Se procede de la misma forma que se ha hecho para la cara izquierda: la inclinación es siempre de 50o.

Gontrol de cotas Se controla la distancia T entre las dos caras inclinadas de la guía mediante dos cilindros de control U. El control se realiza colocando los cilindros en la parte mas estrecha de la guía. Debe comprobarse la existencia de un exceso de material de 0,2 mm para el rasqueteado de las dos caras inclinadas de la guía.

Labrado de las gargantas de desahogo.

Las gargantas entre base y cara inclinada de la guía se labran mediante una herramienta de ancho igual al de la propia garganta.

A

causa

de sus reducidas

dimensiones, la

herramienta se fija a un portaherramientas robusto.

Puesto que la garganta es simétrica respecto a los

planos que forman las guías,

el eje de la

herramienta debe situarse formando la bisectriz del ángulo definido por los planos citados. Es nuestro caso, el eje del cabezal portaherramientas debe formar un ángulo dé 25o con el plano horizontal.

Dado lo delicado de la herramienta y de la operación, el avance debe mantenerse bajo (máximo 0.02 0.03mm)

138

PILI.ADORA DE CODO RELOJ COMPARADOR Es un instrumento de verificación gue sirve para comparar unas medidas con otras. No da directamente la medida de una magnitud sino sÓlo por comparación con otra conocida. Todos ellos emplean un sistema de amplificación de engranajes o de palancas. (Fig.1) El mecanismo (Fig. 2) va encerrado en una enúoltura o cr,ja de acero o aluminio de forma circular. Un eje atraviesa la eaja, deslizándose sobre unos cojinetes o guías cuidadosamente trabajados.

Comparador de reloj

Mecanismos de un comparador de reloj. Eje con cremallera. Tren amplificador de engranajes. Tren amplificador de engranajes. Tren amplificador de engranajes. Tren amplificador de engranajes. Eje de la aguja grande.

1 2 3 4 5 6

3.--

El efremo de esta termina en una bola de acero muy dura que es la que se pone en contacto con la pieza a verificar; y sus movimientos se transmiten por medio de un mecanismo interio¡ basándose en engranajes, a una aguja que gira sobre una esfiera semejante a la de un reloj, dividida en cien partes iguales. La esfera es generalmente giratoria, para que pueda llevarse el acero a la posición más conveniente.

La mayoría de los comparadores llevan otra aguja pequeña que indica weltas completas de la grande. Fn el comparador centesimal coniente, cada división de la esÉra mayor conesponde a un desplazamiento del vástago de 0,01 mm y cada división de la esfrera menor a 1mm. El desplazamiento suele ser de 1Omm, usos especiales, algunos tienen hasta 30mm.

Calidades y precisión de los comparadores Los comparadores y minímetros, como todo otro aparato, tienen unas tolerancias de aplicación y también posibles defectos. Naturalmente, estos son menores cuanto mayor sea su precisión Cuando las tolerancias en las medidas sean muy estrechas, deberán utilizarse los de mayor precisión y con soportes adecuados. Los de apreciaciones superiores a la micra no suelen emplearse nunca en el taller, .sino en los laboratorios de medida, ya que el calor, las vibraciones, etc. , podrían talsear las mediciones. Los alcances de medida son también proporcionales a las precisiones. A título de orientación, damos la tabla siguiente: Precisión apreciada en el aparato

0,01 mm

Longitud de canera

10 mm

0,001 mm

0,5a1mm

0,0005 mm

0,025 mm

139

Aconsejable para tolerancias de

0,015 0,005 0.002

a 0,075 a 0,015 a 0.005

ffi

cEPtLl-ADoRADEcoDo

Los comparadores se fijan en soporte de muy variadas formas según la verificación que

se trate de hacer (Fig. 3), pero deben colocarse siempre de tal manera que

el

vástago del comparador sea perpendicular a la superficie que se quiera comprobar- Si no se hace así, las indicaciones de la aguja resultarán falsas (Fig.4)

Fig. 3 1 Base principal. 2 Base magnética. 3 Base de diabasa.

4 Con superficie de

apoyo

amplia. 5

Base magnética

de

pequeñas dimensiones. 6 Articulado flexible. 7 Estuche

INCORRECTA

rtg.+ t-os,son Fig.4 Posición conecn conecta e inconecta tnconecta

Fig.5 Comprobación de pralelismo

Se emplean los comparadores para la verificación del paralelismo de dos caras (Fig. S), para comprobar la redondez y concentricidad de ejes y agujeros, para la colocación de las piezas en las máquinas herramientas (Fig.6) para me{ir y ciasificar las piezas (Fig.7), y para multitud de usos, hasta el punto de poder afirmarse que es uno de los aparatos más universales de comprobación.

140

,At

sE!ñItr

CEPILLADORA DE CODO

Fig.6 Colocación y centrado máquinas

Fig.7 Clasificación y medición de piezas

de piezas en

Fig. 7 A'

Alexómetro o ver¡ficador de interiores. 1 Alexómetro. 2 Detalle de la cabeza. 3 Forma de medición. 4 Detalle de la forma del movimiento al

5 6

medir.

Ajuste de medida, Aplicación.

2

Amplifícadores

Cuando la precisión en la verificación de piezas medida y paralelismo deba ser mayor de 0,01 mm, se emplearán los comparadores de palanca o amplificadores, llamados también minímetros (Fig. 8).

a'P=r'b

Fig.

I

Comparador minimetro

141

En estos instrumentos, la aguja no describe más que un pequeño arco de círculo. La apreciación suele ser de 1/1000 mm y su capacidad sólo de 0, 1 a 0,2 ffiffi, aunque los hay de mayor precisión, por eiemplo, el microkator que aprecia 0,1 micras (Fig. 9)

Fig.

9

Microkator de una micra de apreciación

Antes de emplear estos comparadores, debe verificarse la pieza con un comparador normal de reloj.

Utilización de los comparadores como instrumenfos de medida Los comparadores se pueden emplear como instrumentos

de

medida directa

en casos muy

determinados y concretos, como pueden ser desplazamientos cortos y precisos en máquinas (f¡g. 10) Fig. 10 Medición en máquinas

Modelos de comparadores De entre una gran variedad de modelos, destacamos como especiales por su gran aplicación en ajuste y en máquinas, los palpadores angulares. En la figura 11 , podemos ver su mecanismo interior y sus aplicaciones.

Fig.

11

. Palpador

1 2

3y

5

4

angular y sus aplicaciones. Esfera graduada. amplificación por Sistema de engranajes. Placa doble para cambio automático de sentido en la medición. Cojinete regulador del movimiento. 142

SEIllffl

ceplu-aoonn oe cooo

Otro modelo también interesante es el Cary (F¡g. 12), que aparece en esquema en la figura 13. Estos dos, son de tipo de amplificación por palanca y engranaje. En la figura 14 aparece otro con su soporte y, en la figura 15 su mecanismo es interior.

Normas para su empleo y conseruacion Todos estos comparadores son aparatos delicados, por lo que hay que tratarlos con sumo cuidado si se desea que tenga larga vida en perfectas condiciones. A pesar de ello van protegidos contra choques en el eje principal, pero no así en el resto. Otras de las preocupaciones que hay que observar es la fijación al soporte cuando se haga por la caña. Debe apretarse con una brida y nunca con tornillo directamente (Fig.16 y 17).

Fig. 12 Gomparador GARY

& t: ,^b,

lncorrebto

Correcto

ffi

Fig. 13 Esquema del comparador CARY

Fig. 18 Tapas diversas para coger los comparadores Fig. 16 y 17 Manera de sujetar el comparador

En muchos de estos aparatos está prevista la posibilidad de utilizar tapas distintas (Fig. 18), para poderlas sujetar de diversas maneras, según las necesidades. También se puede disponer de puntas palpadoras de varias formas tamaños, a fin de dotarlos de mayores posibilidades de utilización (F¡g. 19-A, B y C).

'

y

I

\/

&

w

¿

d::r ,l tr

fi

*

-q' rv -desde 6mm o más -,media de 3 j3 11 ¡ I I 10 7 a 6mm - y fina de menos de 14 a 3mm -; carril. Es un producto de 2A propósito sección especial, tt para que rueden sobre é1, según 21 79 17 18 t6 1s formas, ferrocarriles, Fig. 13 Tabla de perfiles laminados transvías, puertas correreras, etc.

i) j)

:

Tffi*Lffi tu @ W

LK

%

tr

*L ./n

en el

l)

la

a

sus

Tiene una parte inferior patín destinada al apoyo v otra parte superior. -cabeza- destinada a la rodadura, unidas por un alma. Oueden verse números 17 y 18. : 151

en

los

SEñlffl

cEPTLLADoRA DE

coDo

Otros productos de acero Además de estos productos, hay

otros que se obtienen por procedimientos distintos, como laminaciones especiales- tubosrefilados- alambres- y productos

estampados, embutidos y extruídos.

Fig. 13-B Otros üpos de perfiles obtenidos por esürado y extrusión.

Perfiles y chapas normalizados

Los perfiles y chapas que hemos citado antes, no se fabrican de cualquier dimensión arbitraria, sino en una serie de medidas normales convenientemente graduadas. Por tanto, cuando se trate de efectuar un trabajo, será conveniente conocer cuáles sean las medidas de los productos que podamos encontrar en el comercio.

Pal? ello es preciso consultar los catálogos de los fabricantes y las hojas de las normas UNE.

Resumen de la obtención de hierro y acero. Un resumen de la fabricación de hierro y acero aparece en la figura 14, que resumido, da el giáfico siguiente.

Fund. Líquida

Anabio Fund. 1" F

Chatarra Horno M. Siemens

Piezas de fundición

Acero Bessemer Thomas

Ferroaleaciones. Son aleaciones del hierro que se destinan a servir de materias primas en diversos procesos metalúrgicos, por ejemplo en la fabricación de aceros especiales. a'

152

DE CODO

-@ '#de-

/'- .- 8-'+1?1tt

fu{--= H--

# ?

fr,, (

j

I

Fig. 14 Esquema general de la fabricación del hierro y del acero. Fabricación de la fundición. 1)minas, 2)mineral de hierro, 2a) carbón, 2b) fundente, 3) horno, 3a) separador de polvo, 3c) comprensor de aire, 3b) y 3d) estufas Coper. (la

3b está calentá ndose y la

3d

calentado el aire. Cada cierto tiempo se cambian' entre sí) 4) lingotes de

primera fusión, 4a) escoria,

cubilote,

6) molde para función,

5) 7)

horno de fundición maleable.

153

Fabricación del acero.

4b) arrabio líquido, 8) mezclador, 9) chatarra, 10.) horno Martín Siemens, 1 1 ) convertidor, 12) molde para acero fundido, 13) ligoteras, 14) homo P¡tt (para mantener calientes los tochos), 15) laminador.

Fabricación de aceros finos. 16) metafes de aleación, 17) horno de crisoles, 18) horno eléctrico.

CEPILI..ADORA DE CODO Tiempo de procesamiento en el cepiilado y ranurado

t ,-

i

I - longitud de pieza a trabajar i= número de cortes arranque, lü movimiento perdido = s avance (mm) = l" L = longitud de carrera (comprendiendo l+la+tu) s'== velocidad de avance=s.n (mm/min) b = ancho de la pieza de trabajo y = velocidad de corte (m/min) n = número de carreras dobles (1/min) th - tiempo-máquina lmin¡

Nota lndice A para carrera de trabajo lndice R para marcha atrás Carrera en vacío 1. tñ en el cepillado ceoillado ¿ln

-* -->

va,tn vn, fn

Teniendo en consideración UA y VR se obtienen los siguienfes fiempos parciales. tiempo para 1 carrera de

trabajo to =ü

vacio tiempo para 1 carrera doble VVAVB

t*



,n

=# * $

tiempo para el número de carreras

,n

=(! vA*+) V"' 4 s

tiempo para 1 carrera en

2.

ü en el ranurado

i

Ya que para carreras cortas se tiene Vn=Vn, se puede efectuar el cálculo con Vm = Z.L.n

.T1

!.)

Por

tanto

th

2.L b VmS

=

;

Sustituyendo la velocidad media de corte V^=2.L.n se

obtienet

th

=

b.i

s.n

Demostración tiempo de trabajo = trayecto avanzado velocidad de avance

b'i th= + s" = s.n 3. Resumen Para un número i de cortes se obtiene:

4. Ejemplo

Una placa de

acero de 430 mm de ancho' ha de

ser

buscado dado solución

L \b.i th=(h J-' \¡R/ s

th

b=

43A

nim

th=#-

i=2

mecanizada

en dos cortes con un avance de 2 mm y un número de carreras de 25 1lmin. Calcule el

. 2 mm. min - 430 2.25

mm.1

th = 17.2 min.

tiempo-máquina. 154

th= s=2mm

b.¡ s.n n = 25 1/min

sENtrl

cEPrLl-.ADoRA DE

coDo

HIERRO Y SUS ELEMENTOS

Del Hierro Bruto al Acero y la Fundición El hierro bruto contiene todavía hasta un 60 de carbono (C) V con acompañantes hasta un 3% de silicio (Si) y un 6% de manganeso (Mn), así como pequeñas cantidades de azufre y fósforo. Un contenido alto de carbono, azufre y fósforo hacen al hierro muy frágil, no forjable e insoldable.

o 5

o

o

Aceros de construcción y de henamientas no aleados y de

.g

:E

baja aleación

pc

a ¿

ll-

!to o

Florno eléctrico para aoEro Ac'eros finos

ÉL

]Aceros rápidos, aceros de alta resistencia al calor, aceros de alta aleación resistentes

Ailitivos

alóxidoyalosácidos

E¡rÍt¡siondo

Con un contenido alto de Si, al enfriarse se deposita el carbono en forma de grafito. La superficie de rotura es gris (hierro bruto gris). Si predomina el efecto del manganeso, el carbono se combina al enfriarse con el hierro, formando carburo de hierro (FesC). Se obtiene una superficie de rotura blanca radiante (hierro bruto blanco) El acero debe ser forjable, soldable y, a ser posible, templable. Lo que se pretende en la obtenciÓn del acero es reducir el contenido de carbono y de los acompañantes del hierro. La transformación del hierro bruto en acero qe llama afino.

Son procedimientos de afino el de inyección de oxígeno, el Siemens-Martín'y el eléctrico.

De acuerdo con su.s aplicaciones, las clases de acero se subdividen en aceros de construcción (construcción de vehí culos, construcciones de acero, piezas para aparatos) y en aceros para herramientas (herramientas de corte, henamientas de sujeción y piezas para máquinas). Dentro de estos grupos el acero puede ser aleado y no aleado. Un acero está aleado si para mejorar sus propiedades se le añade metales cómo el cromo, níquel, manganeso y vanadio. 155

I I

t

*nmt

cenu¡oonnoecooo

Materiales En los aceros no aleados la resistencia y la dureza aumentan al aumentar el contenido de carbono,disminuyendo en cambio la soldabilidad y la forjabilidad. El hierro fundido es un material de hierro colado con un contenido de carbono de 2,5 a A,So/a. Estos materiales se caracterizan frente al acero, por un punto de fusión más bajo y una colabilidad más fácil. Para piezas de forma complicada, la fundición es la moCáiOáO de fabricaciÓn más económica. Los materiales de hierro y acero colados son la fundición, la fundición maleable y la fundición dura. El acero moldeado es el acero colado en moldes. HIERRO FUNDIDO El hierro fundido con grafito laminar practicamente no tiene alargamiento. La superficie de rotura es gris por el hecho de que el carbono se separa preferentemente en forma de grafito. En la superficie de rotura se presentan vetas de forma laminar con radios de curvatura pequeños, los

cuales están como entallas y reducen por tanto la resistencia. l-a viruta desprendida en la mecanización es

quebradiza. La resistencia a la comprensión es elevada. Hierro fundido con grafito esferiodal. por ra adición de pequeñas cantidades de magnesio y cerio, esta fundición posee en su textura depósitos de grafito esferoidal. Después de un tratamiento térmico se consigue una resistencia similar a la del acero (hasta 700 N/mm2). Posee suficiente alargamiento y puede mecanizarse por

arranque

de viruta mejor que la fundición gris.

Chirn¡nc¡

Camisa

*-

Las

propiedades mejoradas de la resistencia se explican por la forma eiferoidal del grafito que reduce los efectos de entalladura.

Conducción de rírc

Depósito Hicrro bruto, tro¿o8 dc lundición. coguo, ca!

Hierro fundido con grafito larnin¡'

Hierro lundido conl-rafito egferoii,

Ensayo: si se someten a la acción de un fueza dos üras de papel del mismo tamaño, una de ellas (A) con muescas y la otra(B) con resortes circulares, primero se rompe la A, que representa hierro fundido con grafito laminar. La fundición dura se obüene por adición de mangnesio y enfriamiento rápido del caldo. De esta forma se consigue que el carbono se separe en toda la sección en forma de carburo de hieno (Fe3c). La superficie de roh¡ra üene aspecto

Fusión del hierro fundido

banco. Se consigue una mayor resistencia mecánica, dureza y resistencia al desgaste.

FUNDICION MALEABLE La.fundición maleable es un materiar colado compuesto de hierro similares a las del compuesto acero. Grafito larninar

Grafito esieroidd

y carbono, con propiedades

La fundición maleable bruta se obtiene en hornos de

cuba y contiene del 2,4 a|3,4 de carbono, que aparece en

forma de carburo de hierro (Fe3C) después de la

solidificación. La fundición maleable bruta es dura y frágil. Las piezas fundidas deben por tanto r€cocers€. Fundición maleable recocida descarur:ada("blanca") Las piezas fundidas se recuecen en atmósfera de oxígeno (hematites roja o mezcla de gases oxidantes), a 1 00Oo C. Fuezas Et carburo dé hierro se desómpone en hier'ó y carbono, oxidándose en los bordes el carbono en formá oe co y Ensayo con modelos (acción de la entalla en la fundición gris con grafito laminar y fundición gris coz. El material se descarbura por tanto en ras capai con grafito esferoidal) exteriores y la superficie de rotura tiene aspecto blanco. Fundición maleable recocida no descarburada("negra") Las piezas fundidas se envuelven con productos néutrós (arena o gas protector). En estado recocido el carburo de hierro se descompone en hierro y en grafito en-forma de escamas. Ahora la textura es uniforme en toda la sección de la pieza. La superficie de rotura tiene aspecto negro.

Aplicaciones: palancas, bujes de ruedas, eslabones de cadenas, tambores de freno y piezas de máquinas. 156

CEPILLADORA DE PROYECCION ORTOGONAL Generalldad_es El primer problema que se le presentará al dibujante es el aprender a representar un solo objeto sólido, es decir un cuerpo en tres dimensiones, sobre una hoja de papel, que por ser planta tiene solamente dos dimensiones. Los métodos de representación deben reunir las siguientes condiciones:

a)

Representar el objeto con toda claridad, ef, cuanto sea posible se debe anotar todos los datos indispensables para la construcción del objeto; estos datos se han de

poder deducir

de dicha representación con

facilidad

dudas.

b)

y sin dar lugar a

Deberá ser de tácil ejecución e interpretación. El método más irnportante extendido de representación es el llamado de tres proyecciones.

y más

METODO DE LAS TRES PROYECCIONES

Un objeto "a" de forma geométrica sencilla, lo lm_agina.mag con una de sus superficies paralela a un plano (ver dibujo) cubierto con una hoja de dibujo; con un largo y finísimo seguimos el contorno del objeto y lo marcamos sobre el papel.

lápiz

Si a la línea que representa

el

perfil simple del objeto, añadimos el segmento P Q se representa el resto de la pieza o sea la arista P

o. En esta forma se puede decir que el dibujo a representa lo que se ve del objeto mirándolo de lejos y perpendicularmente a la super.ficie paralela al plano. ll

o-tl

157

Egntft

cepquoon+oeco

Todo esto se expresa brevemente diciendo que la figura trazada en proyección ortogonal del objeto "a" sobre el plano ,, a,,.

el papel, es

la

REPRESENTACION DE UN OBJETO MEDIANTE SUS PROYECCIONES ORTOGONALES La proyecciÓn ortogonal anteriormente dibujada no es superficie para representar todo el objeto. lmaginemos ahora un objeto cualquiera colocado en el interior de una caja en forma de paralelepípedo. Si en cada una de las tres caras interiores de la caja hacemos una proyecciÓn ortogonal, tendremos en total 6 proyecciones ortogonales.

romt,

*== ,,EFPrLHogq

Si cortamos la caja por las aristas AB, BC, CD, EF, FG, GH, BF. Y la desarrollamos sobre un plano podemos observar las seis proyecciones.

6l fl

Itt

,)

/

Estas proyecciones representan.seis vistas distintas de la pieza. No

1)

ProyecciÓn de la parte delantera del objeto, se le denomina vista de frente ( V F ).

No

2)

Esta representa el lado izquierdo del objeto, proyectado de izquierda a derecha. Se le denomina vista lateral izquierda o perfil izquierdo.

No

3)

Es la cara posterior hacia delante;

No

4) Es la

No

5) Es la proyección del objeto de arriba hacia abajo, y se denomina yrsla_gupeflo¡

,*

dunomina úgtalagteflal

representación del lado dercqhq del objeto, proyectado de derecha a izquierda se denomina vista lateral derecha o perfil derecho.

PlaotaNo

6) Es la proyección

del objeto de abajo hacia arriba, y se denomina yiglalnfeflal an

159

o

CEPILI-ADORA DE CODO stsTEMA DE PROYECGION "DtN" (EUROPEO)

En el sistema DIN el observador se sitúa dentro del cubo de proyección cuyas paredes son opacas.

V.F V.S v. I V.D V. lz

VP

vista vista vista vista vista vista

de ffente. superior. inferior. desde la derecha. desde la izquierda. posterior.

160

SEIUffl

cEptLLADoRA DE coDo

El Sistema DIN coloca el objeto entre el observador y el plano de proyección ep,acg. Símbolo del sistema DIN (Europeo)

I

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF