02 RN31552EN10GLA0 the Physical Layer

Share Embed Donate


Short Description

Download 02 RN31552EN10GLA0 the Physical Layer...

Description

The Physical Layer  3GRPLS (RN3155) – Module 2 Part I: Channel Mapping Part II: Transport Channel Formats Part III: Cell Synchronisation Part IV: Common Control Physical Channels Part V: Physical Random Access Part VI: Dedicated Physical Channel Downlink Part VII: Dedicated Physical Channel Uplink Part VIIII: HSDPA Physical Channel (HS-PDSCH) Part IX: HSUPA Physical Channels (E-DCH)

Part I Channel Mapping

Radio Interface Channel Organisation (R99 model)

Logical Channels content is organised in separate channels, e.g. System information, paging, user data, link management

Transport Channels logical channel information is organised on transport channel resources before being physically transmitted

Physical Channels (UARFCN, spreading code)

Frames Iub interface

Channel Mapping DL (Network Point of View) Logical Channels

Transport Channels

Physical Channels P-SCH S-SCH

BCCH PCCH

BCH PCH

CCCH FACH CTCH DCCH

HSDSCH

DTCH

DCH

CPICH P-CCPCH S-CCPCH PICH AICH F-DPCH HS-PDSCH HS-SCCH DPDCH E-AGCH E-RGCH E-HICH

Channel Mapping UL (Network Point of View) Logical Channels

Transport Channels

Physical Channels

RACH PRACH

CCCH

DCCH

DPDCH DCH

DPCCH

E-DCH

E-DPDCH

DTCH E-DPCCH

Example – Channel configuration during call Data

RRC signalling

Logical Channels

DCCH0-4

Transport Channels

Physical Channels

DCH1 DPDCH

Speech data

NRT data

DTCH1

DTCH2

DCH2-4

DCH5

AMR speech connection utilises multiple transport channels RRC connection utilises multiple logical channels

DPCCH

AMR speech + NRT data

Part II Transport Channel Formats

The Transfer of Transport Blocks

UE

Node B

RNC MAC Layer

MAC Layer Transport Channel TBS

TBS

TFI

TFI

FP/AAL2 PHY Layer

FP/AAL2

PHY Layer L1

TTI radio frames in use

L1

Transport Formats TFCS TB TB

TB TTI

DCH 2

TB TTI

TTI

TB TB

TB

TB

TB

TB

TB

TBS

DCH 1

TFS TTI

TTI

TTI

TFC

TB TBS

TF Transport Block Transport Block Set

TF TFS TFC TFCS

Transport Format Transport Format Set Transport Format Combination Transport Format Combination Set

Transport Formats RRC Layer

Transport Format Semi-Static Part • TTI • Channel Coding • CRC size • Rate matching Dynamic Part • Transport Block Size • Transport Block Set Size

MAC Layer   n   o    i    t   a   r   u   g    i    f   n   o   c

TrCHs

PHY Layer Example: semi-static part dynamic part: - TTI = 10 ms - turbo coding - transport block size: 64 - CRC size = 0 - transport block set size: 1 - ...

TrCH: Transport Channel

TFI1

64 2

64 4

128 2

TFI2

TFI3

TFI4

Transport Format Ranges

Dynamic Part

Semi-static Part

Transport Block Size

Transport Block Set Size

TTI

coding types and rates

CRC size

BCH

246 bits

246 bits

20 ms

convolutional 1/2

16

PCH

1...5000 bits granularity: 1 bit

1...200000 bits granularity: 1 bit

10 ms

convolutional 1/2

0, 8, 12, 16 & 24

FACH

0...5000 bits granularity: 1 bit

0...200000 bits granularity: 1 bit

10, 20, 40 & 80 ms

convolutional 1/2 & 1/3; turbo 1/3

0, 8, 12, 16 & 24

RACH

0...5000 bits granularity: 1 bit

0...200000 bits granularity: 1 bit

10 & 20 ms

convolutional 1/2

0, 8, 12, 16 & 24

DCH

0...5000 bits granularity: 1 bit

0...200000 bits granularity: 1 bit

10, 20, 40 & 80 ms

convolutional 1/2 & 1/3; turbo 1/3

0, 8, 12, 16 & 24

(based on TS 25.302 V5.9.0)

The Transfer of Transport Blocks – HS-DSCH

UE

Node B

RNC MAC-d

MAC-d

MAC-d PDU

MAC-hs

TBS

MAC-hs HSDSCH

MAC-c/sh TBS TFI

TFI

FP/HS-DSCH

FP/AAL2 PHY Layer

Flow Control

FP/HS-DSCH FP/AAL2

PHY Layer L1 HS-PDSCH

L1

     L      A      N      O      I      T      P      O

Transport Formats – HS-DSCH RRC Layer

Transport Format Static Part • TTI • Channel Coding • CRC size

MAC-d Layer

Dynamic Part • Transport block size (same as Transport block set size) • Redundancy version/Constellation • Modulation scheme

  n   o    i    t   a   r   u   g    i    f   n   o   c

MAC-hs Layer HS-DSCH

PHY Layer Example: static part - TTI = 2 ms - turbo coding - CRC size = 24

dynamic part: - transport block size: - modulation:

TFRI; Transport Format and Resource Indicator

357 QPSK

4420 1711 699 16-QAM 16-QAM QPSK

TFRI1

TFRI2

TFRI3

TFRI4

Transport Format for HS-DSCH

Dynamic Part

HS-DSCH

Static Part

Transport Block Size

Transport Block Set Size

Modulation

Redundancy version

TTI

coding types and rates

CRC size

1 to 200 000 bits granularity: 8 bit

= Transport Block Size

QPSK, 16-QAM

1 to 8

2 ms

turbo 1/3

24

The instantaneous data rate range supported is (determined on a per-2ms interval): • A TBS of 137 bits corresponding to 68.5 kbps (single code, QPSK, strong coding) • A TBS of 28457 bits corresponding to 14.228 Mbps (15 codes, 16QAM, very low coding)

The Transfer of Transport Blocks – E-DCH

UE

S-RNC

Node B

UE modifications:

S-RNC modifications:

MAC-es & MAC-e:

Node B modifications:

MAC-es handling:

• H-ARQ retransmission

MAC-e handling:

• in-sequence delivery (reordering)

• Scheduling & MAC-e multiplexing

• H-ARQ retransmission

• SHO data combining

• E-DCH TFC selection

• Scheduling & MAC-e multiplexing

RLC

RLC

MAC-d

MAC-d

MAC-es MAC-es / MAC-e

PHY

Iub

E-DCH FP

MAC-e

PHY

PHY

Uu

E-DCH FP PHY

Transport Format for E-DCH & UE capability classes

E- DCH Category

max. E-DCH Codes

min. SF

2 & 10 ms TTI E-DCH support

max. #. of E-DCH Bits* / 10 ms TTI

max. # of E-DCH Bits* / 2 ms TTI

Reference combination Class

1

1

4

10 ms only

7110

-

0.73 Mbps

2

2

4

10 & 2 ms

14484

2798

1.46 Mbps

3

2

4

10 ms only

14484

-

1.46 Mbps

4

2

2

10 & 2 ms

20000

5772

2.92 Mbps

5

2

2

10 ms only

20000

-

2.0 Mbps

6

4

2

10 & 2 ms

20000

11484

5.76 Mbps

* Maximum No. of bits / E-DCH transport block

• “Dual-branch BPSK” (resulting in QSPK output) is the only modulation used in HSUPA (Rel. 6) •There can only be 1 transport block in each TTI,

Transport block size = Transport Block Set Size



•Coding types and rates: Turbo coding 1/3 Note: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4

Transport Formats – E-DCH RRC Layer

Transport Format Static Part • TTI (2ms, 10ms) • Channel Coding • CRC size • Modulation (always BPSK)

MAC-d Layer

Dynamic Part • Transport block size (same as Transport block set size) • Redundancy version/Constellation

  n   o    i    t   a   r   u   g    i    f   n   o   c

MAC-es/MAC-e Layer E-DCH

PHY Layer Example: static part - TTI = 2 ms, 10 ms - turbo coding - CRC size = 24

dynamic part: - transport block size:

357 BPSK

2420 BPSK

1711 BPSK

699 BPSK

TFRI1

TFRI2

TFRI3

TFRI4

Example: Transport Formats in AMR call DCH 1: AMR class A bits

DCH 2: AMR class B bits

DCH 3: AMR class C bits

DCH 24: RRC Connection

TTI = 20 ms

TTI = 40 ms

TTI = 20 ms

TTI = 20 ms

Coding type: convolutional

Convolutional coding

Coding rate: third

Coding rate: third

Coding rate: half 

CRC size: 0 bits

CRC size: 0 bits

CRC size: 12 bits

  l e   p  a  m   x   E

Convolutional coding

Coding type: convolutional Coding rate: third CRC size: 16 bits

TBS size:1 TB size: 81 bits

TBS size: 1 TB size: 39 bits (SID)

TBS size = 0 (DTX)

TBS size: 1 TB size: 103 bits

TBS size = 0 (DTX)

12.2 kbit/s

TBS size: 1 TB size: 60 bits

TBS size = 0 (DTX)

TBS size = 1 TB size: 148 bits

TBS size = 0 (DTX)

3.7 kbit/s

Part III Cell Synchronisation

Cell Synchronisation

Phase 1 – P-SCH

Phase 2 – S-SCH

Phase 3 – P-CPICH

Detect cells Acquire slot synchronisation Acquire frame synchronisation Identify the code group of the cell found in the first step Determine the exact primary scrambling code used by the found cell Measure level & quality

Synchronisation Channel (SCH) 2560 Chips

256 Chips

Primary Synchronisation Channel (P-SCH)

CPP

CP

CP

CP

Cs15

Cs1

Secondary Synchronisation Channel (S-SCH) Cs1

Cs2

Slot 0

Slot 1

10 ms Frame Cp = Primary Synchronisation Code Cs = Secondary Synchronisation Code

Slot 14

Slot 0

SSC Allocation for S-SCH scrambling code group

slot number  0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

group 00

1

1

2

8

9

10

15

8

10

16

2

7

15

7

16

group 01

1

1

5

16

7

3

14

16

3

10

5

12

14

12

10

group 02

1

2

1

15

5

5

12

16

6

11

2

16

11

15

12

group 03

1

2

3

1

8

6

5

2

5

8

4

4

6

3

7

group 04

1

2

16

6

6

11

15

5

12

1

15

12

16

11

2

group 05

1

3

4

7

4

1

5

5

3

6

2

8

7

6

8

group 62

9

11

12

15

12

9

13

13

11

14

10

16

15

14

16

group 63

9

12

10

15

13

14

9

14

15

11

11

13

12

16

10

I monitor the S-SCH

11

15

5

Primary Common Pilot Channel (P-CPICH) 10 ms Frame 2560 Chips

256 Chips

Synchronisation Channel (SCH)

CP P-CPICH

Cell scrambling code? I get it with trial & error!

applied speading code = cell‘s primary scrambling code Cch,256,0

• Phase reference • Measurement reference

P-CPICH

P-CPICH as Measurement Reference CPICH RSCP

Received Signal Code Power  (in dBm)

CPICH Ec/No

received energy per chip divided by the power density in the band (in dB)

UTRA carrier  RSSI

received wide band power, including thermal noise and noise generated in the receiver

CPICH Ec/No =

CPICH Ec/No 0: < -24 1: -23.5 2: -23 3: -22.5 ... 47: -0.5 48: 0 49: >0 Ec/No values in dB

CPICH RSCP UTRA carrier RSSI

CPICH RSCP -5: < -120 -4: -119 : 0: -115 1: -114 : 89: -26 90: -25 91: ≥ -25 RSCP values in dBm

GSM carrier RSSI 0: -110 1: -109 2: -108 : 71: -39 72: -38 73: -37 RSSI values in dBm

Primary Common Control Physical Channel (P-CCPCH) 10 ms Frame 2560 Chips

256 Chips

Synchronisation Channel (SCH)

CP P-CCPCH

Finally, I get the cell system information

• channelisation code: Cch,256,1 • no TPC, no pilot sequence • 27 kbps (due to off period) • organised in MIBs and SIBs

P-CCPCH

NSN Parameters for Cell Search •

WCEL: PtxPrimaryCPICH •The parameter determines the transmission power of the primary CPICH channel. •It is used as a reference for all common channels. •[-10 dBm … 50 dBm], step 0.1 dB, default: 33dBm (WPA power = 43 dBm)



WCEL: PtxPrimarySCH •Transmission power of the primary synchronization channel, the value is relative to primary CPICH transmission power. •[-35 dB … 15 dB], step size 0.1 dB, default: -3 dB



WCEL: PtxSecSCH •Transmission power of the secondary synchronization channel, the value is relative to primary CPICH transmission power. •[-35 dB… 15 dB], step size 0.1 dB, default: -3 dB



WCEL: PtxPrimaryCCPCH •This is the transmission power of the primary CCPCH channel, the value is relative to primary CPICH transmission power. •[-35 dB … 15 dB], step size 0.1 dB, default: -5 dB



WCEL: PriScrCode •Identifies the downlink scrambling code of the Primary CPICH (Common Pilot Channel) of the Cell. •[0 ... 511]

Blank Page

Node Synchronisation

SRNC

Node B BFN

128

RFN

3112

BFN: Node B Frame Number counter  0..4095 frames

T1

129

T2

 t i o n  o n i z a  r  h  c  y n  o d e S  )  N  L  D  (  T 1

130

DL offset

3113

3114

(T4 – T1) – (T3 – T2) = Round Trip Delay (RTD) determination for DCH services

131 3115 T3

U L  N o d  ( T 1  e S   y nc    h  ,T 2 , r on    i  T 3  )  z a t i  on   

132

3116 UL offset

133 3117 134 3118 135

RFN: RNC Frame Number counter  0..4095 frames

    e     m      i      t

user plane defined on DCH, FACH & DSCH

    e     m      i      t

(T4) T1, T2, T3 range: 0 .. 40959.875 ms resolution: 0.125 ms

Cell Synchronization and Sectorised Cells T_cell 1

1 TS

cell1

S C H

S C H

S C H

T_cell2 S C H

cell2

S C H

S C H

S C H

cell3 T_cell 3

SFN = BFN + T_cell 3

S C H

SFN = BFN + T_cell 1

cell1

BFN SFN = BFN + T_cell 2

cell3 Node B with three sectorised cells

cell2 SFN: Cell System Frame Number  range: 0..4095 frames T_cell: n 256 chips, n = 0..9

NSN Parameters for Sectorised Cells •

WCEL: Tcell •Timing delay is used for defining the start of SCH, P-CPICH, Primary CCPCH and DL Scrambling Code(s) in a cell relative to BFN. •[0 ... 2304] chips, step 256 chips, no default value.

Part IV Common Control Physical Channels

Secondary Common Control Physical Channel (S-CCPCH) 10 ms Frame Slot 0

TFCI (optional)

Slot 1

Slot 2

Data

• carries PCH and FACH • Multiplexing of PCH and FACH on one S-CCPCH, even one frame possible • with and without TFCI (UTRAN set) • SF = 4..256 • (18 different slot formats • no inner loop power control

Slot 14

Pilot bits

S-CCPCH

Secondary CCPCH in NSN RAN The Secondary CCPCH (Common Control Physical Channel) carries FACH and PCH transport channels In RAN’04, number of SCCPCHs increase from two to three. The three SCCPCH channel configuration is needed only if SAB –  Service area Broadcast is used. Parameter NbrOfSCCPCHs (Number of SCCPCHs) tells how many SCCPCHs will be configured for the cell. (1, 2 or 3) • If only one SCCPCH is used in a cell, it will carry FACH-c (Containing DCCH/CCCH /BCCH), FACH-u (containing DTCH) and PCH. FACH and PCH multiplexed onto the same SCCPCH.

• If two SCCPCHs are used in a cell, the first SCCPCH will always carry PCH only and the second SCCPCH will carry FACH-u and FACH-c.

Secondary CCPCH in NSN RAN DL common Channel configuration in case of three SCCPCH For For SAB SAB Logical channel

DTCH

DCC H

Transport channel

FACHu

FACHc

Physical channel

SCCPCH connecte SFd64

CCC H

BCC H

CTCH

PCCH

FACHc

FACHs

PCH

SCCPCH idle

SCCPCH page

SF 128

SF 256

Secondary CCPCH in NSN RAN FACH-u FACH-u

TFS TFS

FACH-c FACH-c

(connected) (connected)

FACH-c FACH-c (idle) (idle)

FACH-s FACH-s

PCH PCH

0: 0x168 bits 0: 0x360 0x360 bits bits (0 kbit/s) kbit/s) 0: 0x168 bits 0: 0x168 bits 0: 0: 0x80 0x80 bits bits (0 (0 kbit/s) (0 (0 kbit/s) kbit/s) 1: 1x168 1x168 bits bits (0 kbit/s) kbit/s) kbit/s) (0 kbit/s) 1: 1x360 1x360 bits bits (16.8 (16.8 kbit/s) kbit/s) 1: 1x168 bits 1: 1x168 bits 1: 1: 1x80 1x80 bits bits (36 (36 kbit/s) 2: 2x168 bits (16.8 (16.8 kbit/s) (16.8 (16.8 kbit/s) (8 (8 kbit/s) kbit/s) (33.6 (33.6 kbit/s)

TTI TTI

10 10 ms ms

10 10 ms ms

10 10 ms ms

10 10 ms ms

10 10 ms ms

Channel Channel coding coding

TC TC 1/3

CC 1/2

CC 1/3

CC 1/3 1/3

CC CC 1/2 1/2

CRC CRC

16 16 bit

16 16 bit

16 16 bit bit

16 bit bit

16 bit bit

Secondary CCPCH in NSN RAN FACHu

FACHc

SCCPCH connecte d

FACHc

FACHs

SCCPCH idle

PCH

SCCPCH page

TFCS TFCS TFCS TFCS TFCS TFCS 00 0+0 00 00 kbit/s 00 0+0 00 0+0 = = 00 kbit/s kbit/s kbit/s 00 0+0 = = 00 kbit/s kbit/s 01 11 88 kbit/s 10 01 0+16.8 0+16.8 = = 16.8 16.8 kbit/s kbit/s kbit/s 10 16.8+0 16.8+0 = = 16.8 16.8 kbit/s kbit/s 02 01 02 0+33.6 0+33.6 = = 33.6 33.6 kbit/s kbit/s 01 0+16.8 0+16.8 = = 16.8 16.8 kbit/s kbit/s 10 36+0 10 36+0 = = 36 36 kbit/s kbit/s

Maximum transport channel throughput = 36 kbit/s

Maximum transport channel throughput = 16.8 kbit/s

Maximum transport channel throughput = 8 kbit/s

S-CCPCH and the Paging Process UTRAN

P-CCPCH/BCCH (SIB 5) common channel definition, including a lists of

UE

Node B

Index of S-CCPCHs

0

S-CCPCH carrying one PCH

1

S-CCPCH carrying one PCH

K-1

S-CCPCH carrying one PCH S-CCPCH without PCH

UE‘s paging channel: Index = IMSI mod K  e.g. if IMSI mod K = 1

„my paging channel“

S-CCPCH without PCH

RNC

Paging and Discontinuous Reception (FDD mode) Duration: Example with two CN domains

2k frames k = 3..9

CN domain specific DRX cycle lengths (option)

stores

UE

RRC connected mode

CS Domain

PS Domain

UTRAN

k 1

k 2

k 3

Update: a) derived by NAS negotiation b) otherwise: system info

Update: a) derived by NAS negotiation b) otherwise: system info

Update: locally with system info

if RRC idle: UE DRX cycle length is min (k 1, k 2)

if RRC connected: UE DRX cycle length is min (k 3, k domain with no Iu-signalling connection )

S-CCPCH and its associated PICH S-CCPCH frame, associated with PICH frame

S-CCPCH PICH

PICH frame

= 7680 chips

for paging indication b0

b1

no transmission b286 b287 b288

# of paging indicators per frame (Np) 18 36 72 144

b299

Paging Indicator and Paging Occasion (FDD mode) my paging indicator (PI)

number of paging indicators 18, 36, 72, 144

PI = ( IMSI div 8192) mod Np

UE

DRX index When will I get paged?

number of S-CCPCH with PCH

Paging Occasion = (IMSI div K) mod (DRX cycle length) + n * DRX cycle length

UE

FDD mode

Example – Paging instant and group calculation K (Number of S-CCPCH with PCH) k (DRX length) DRX cycle length IMSI Which S-CCPCH #? IMSI div K When (Paging occation, SFN)? Np DRX Index My PI?

Number of subsc. In LA/RA Number of subsc. Per S-CCPCH Number of subsc. Paging occation (PICH frame) Number of subsc. Per PI

1 6 64 frames 358506452377 0 358506452377 25 + n*DRX cycle length 72 PIs/frame 43762994 26

100000 100000 1562.5 21.7

NSN Parameters for S-CCPCH and Paging •

WCEL: NbrOfSCCPCHs •The parameter defines how many S-CCPCH are configured for the given cell. •Range: [1 … 3], step: 1; default = 1



WCEL: PtxSCCPCH1 (carries FACH & PCH) •This is the transmission power of the 1st S-CCPCH channel, the value is relative to primary CPICH transmission power. •Range: [-35 dB … 15 dB] , step size 0.1 dB, default: 0 dB



WCEL: PtxSCCPCH2 (carries PCH only) •This is the transmission power of the 2nd S-CCPCH channel, the value is relative to primary CPICH transmission power. •Range: [-35 dB … 15 dB] , step size 0.1 dB, default: - 5 dB



WCEL: PtxSCCPCH3 (carries FACH only) •This is the transmission power of the SCCPCH channel which carries only a FACH (containing CCCH) and a FACH (containing CTCH). •This parameter is only needed when Service Area Broadcast(SAB)is activated in a cell(three S-CCPCH channel configuration). •Range: [-35 dB … 15 dB] , step size 0.1 dB, default: - 2 dB

NSN Parameters for S-CCPCH and Paging •

WCEL: PtxPICH •This is the transmission power of the PICH channel. •It carries the paging indicators which tell the UE to read the paging message from the associated secondary CCPCH. •This parameter is part of SIB 5. •[-10 dB..5 dB]; step 1 dB; default: -8 dB (with Np =72) •NP •Repetition of PICH bits •[18, 36, 72, 144] with relative power [-10, -10, -8, -5] dB





RNC: CNDRXLength •The DRX cycle length used for CN domain to count paging occasions for discontinuous reception. •This parameter is given for CS domain and PS domain separately. •This parameter is part of SIB 1. •[640, 1280, 2560, 5120] ms; default = 640 ms. WCEL: UTRAN_DRX_length •The DRX cycle length used by UTRAN to count paging occasions for discontinuous reception. •[80, 160, 320, 640, 1280, 2560, 5120] ms; default = 320 ms

FACH and S-CCPCH Transmit Power Level

FACH Data Frame

Power offsets for TFCI and pilot bits are defined during channel setup

CFN TFI

TB

TB

Iub Uu RNC

Node B

max. transmit power for S-CCPCH

UE 0..25.5 dB, step size 0.1

Transmit Power Level

PO3

PO1 TFCI (optional)

Data

Pilot bits

NSN Parameters for S-CCPCH Power Setting •

WCEL: PowerOffsetSCCPCHTFCI •Defines the power offset for the TFCI symbols relative to the downlink transmission power of a Secondary CCPCH. •This parameter is part of SIB 5. •P01_15/30/60 •15 kbps: [0..6 dB]; step 0.25 dB; default: 2 dB •30 kbps: [0..6 dB]; step 0.25 dB; default: 3 dB •60 kbps: [0..6 dB]; step 0.25 dB; default: 4 dB

Part V Physical Random Access

Random Access – the Working Principle

UE No response by the Node B

No response by the Node B

Node B PRACH (pr eamble)

PRACH (pr eamble)

I just detected a PRACH preamble

PRACH (pr eamble)

OLA!

AICH

PRACH (message par t)

Random Access Timing SFN mod 2 = 0

SFN mod 2 = 1

SFN mod 2 = 0

P-CCPCH AICH access slots

0

1

2

3

4

5

6

7

8

9

10 11 12 13 14

0

1

2

3

4

5

6

7

5120 chips

(distances depend on AICH_Transmission_Timing  )

UE point of view

Acquisition Indication

AICH access slots

4096 chips PRACH access slots

Preamble 5120 chips preamble-to-preamble distance

preamble-to-AI distance p-a

AS # i

Message part

Preamble

AS # i preamble-to-message distance

PRACH Sub-channels and Access Service Classes (ASC) SFN mod 8 of the corresponding P-CCPCH frame

0

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6

7

1

12

13

14

Sub-channel number

2 3

9

10

4

6

7

5 6

3

4

11

0

1

2

12

13

14

8

9

10

5

6

7

7

11

8

3

4

8

9

10

11

8

9

10

11

5

6

7 8

0

1

2

12

13

14

9

10

11

3

4

5

0

1

2

12

13

14

(cited from TS 25.214 V5.11.0, chap. 6.1.1) BCCH (SIB 5, SIB 7)

UE

• ASCs and their PRACH access resources + signatures, • AC mapping into ASCs

Node B

PRACH Preamble BCCH

UE

• available signatures for  random access • available preamble scrambling codes • available spreading factor  • available sub-channels • etc.

UTRAN

Node B

RNC

 Pi Pi

Pi Pi

16 chip 256 repetitions

Preamble Signature (16 different versions)

PRACH Preamble Scrambling Code • 512 groups à 16 preamble scrambling codes • Cell‘s primary scrambling codes associated with preamble scrambling code group

PRACH Message Part 10 ms Frame Slot 0

L1 control data

Slot 1

Slot 2

Slot 14

8 Pilot bits (sequence depends on slot number)

RACH data

2 TFCI bits

data

• SF = 256 • channelisation code: CCH,256,16*k+15 , with k = signature number

• SF = 256, 128, 64, or 32 • channelisation code: • CCH,SF,SF*k/16, with k = signature number Scrambling code = PRACH preamble scrambling code

Preamble_Initial_Power = Primary CPICH TX power   – CPICH_RSCP + UL interference + Required received C/I*

PRACH Power Setting 1st preamble: power setting

estimated receive level

Constant Value attenuation in the DL

*NSN: PRACHRequiredReceivedCI

UL interference at Node B

-5..10 dB 1..8 dB

Pp-p

Pp-p Preamble

Preamble

# of preambles: 1..64

Preamble

Pp-m Control part

# of preamble cycles: 1..32

Acquisition Indication Channel (AICH) 20 ms Frame Access Slot 0

Access Slot 1

Access Slot 2

a0 a1 a2

Access Slot 14

a29 a30 a31

AICH signature pattern (fixed) 15

a j   AIs b s, j s 0

Acquisition Indicator • +1 if signature s is positively confirmed • -1 if signature signature s is negatively negatively confirmed • 0 if signature signature s is not included in the set of available signatures

NSN Parameters Related to the PRACH and AICH • In RAN1, Node B L1 shall be able to simultaneously scan 12 RACH sub-channels with 4 signatures per sub-channel from UEs situating up to 'Cell radius' distance from the Node B site. • 'Cell radius' is the maximum radius of the cell and it is given from the RNC to the Node B. In RAN1, the maximum value for the 'Cell radius' is 20 km. • WCEL: PRACHRequiredReceivedCI • This UL required received C/I value is used by the UE to calculate the initial output power on PRACH according to the Open loop power control procedure. • This parameter is part of SIB 5. • [-35 dB..-10 dB]; step 1 dB; default -25 dB • WCEL: PowerRampStepPRACHPreamble • UE increases the preamble transmission power when no acquisition indicator is received by UE in AICH channel. • This parameter is part of SIB 5. • [1dB..8dB]; step 1 dB; default: 2 dB • WCEL: PowerOffsetLastPreamblePrachMessage • The power offset between the last transmitted preamble and the control part of the PRACH message. • [-5 dB..10 dB]; step 1 dB; default 2dB • WCEL: PRACH_preamble_retrans • The maximum number of preambles allowed in one preamble ramping cycle, which is part of SIB5/6. • [1 ... 64]; step 1; default 8.

NSN Parameters Related to the PRACH and AICH • WCEL: RACH_tx_Max • Maximum number of RACH preamble cycles defines how many times the PRACH pre-amble ramping procedure can be repeated before UE MAC reports a failure on RACH transmission to higher layers. • This message is part of SIB5/6. • [1 ... 32]; default 8. • WCEL: PRACHScramblingCode • The scrambling code for the preamble part and the message part of a PRACH Channel, which is part of SIB5/6. • [0 ... 15]; default 0. • WCEL: AllowedPreambleSignatures • The preamble part in a PRACH channel carries one of 16 different orthogonal complex signatures. NSN Node B restrictions: A maximum of four signatures can be allowed (16 bit field). • [0 ... 61440]; default 15. • WCEL: AllowedRACHSubChannels • A RACH sub-channel defines a sub-set of the total set of access slots (12 bit field). • [0 ... 4095]; default 4095.

NSN Parameters Related to the PRACH and AICH • WCEL: PtxAICH • This is the transmission power of one Acquisition Indicator (AI) compared to CPICH power. • This parameter is part of SIB 5. • [-22 ... 5] dB, step 1 dB; default: -8 dB. • WCEL: AICHTraTime • AICH transmission timing defines the delay between the reception of a PRACH access slot including a correctly detected preamble and the transmission of the Acquisition Indicator in the AICH. • 0 ( Delay is 0 AS), 1 ( Delay is 1 AS) ;default 0. • WCEL: RACH_Tx_NB01min • In case that a negative acknowledgement has been received by UE on AICH a backoff timer TBO1 is started to determine when the next RACH transmission attempt will be started. • The backoff timer TBO1 is set to an integer number NBO1 of 10 ms time intervals, randomly drawn within an Interval 0  NB01min  NBO1  NB01max (with uniform distribution). • [0 ... 50]; default: 0. • WCEL: RACH_Tx_NB01max • [0 ... 50]; default: 50.

Summary of RACH procedure

(Adopted from TS 25.214)

1- Decode from BCCH • Available RACH spreading factors • RACH scrambling code number • UE Access Service Class (ASC) info • Signatures and sub-channels for each ASC • Power step, RACH C/I requirement = “Constant”, BS interference level 2 – Calculate initial preamble power 3 – Calculate available access slots in the next full access slot set and select randomly one of those 4 – Select randomly one of the available signatures 5 – Transmit preamble in the selected access slot with selected signature 6 – Monitor AICH • IF no AICH  –  Increase the preamble power  –  Select next available access slot & Go to 3 • IF negative AICH or max. number of preambles exceeded  –  Exit RACH procedure • IF positive AICH  –  Transmit RACH message with same scrambling code and channelisatio n code related to signature

Part VI Dedicated Physical Channel Downlink

Downlink Dedicated Physical Channel (DPCH) Superframe = 720 ms Radio Frame 0

Radio Frame 1

Radio Frame 2

Radio Frame 71

10 ms Frame Slot 0

Slot 1

Data 1 bits

DPDCH • 17 different slot formats • Compressed mode slot format for changed SF & changed puncturing

Slot 2

TPC bits

Slot 14

TFCI bits

Data 2 bits

Pilot bits

DPDCH

DPCCH

(optional)

DPCCH

Downlink Dedicated Physical Channel (DPCH) maximum bit rate

TS

discontinuous transmission with lower bit rate

TS

TS

TS DPCCH

TS

Multicode usage:

DPCH 1 TS

TS

TS

DPCH 2 TS

TS

TS DPCH 3

Power Offsets for the DPCH

• • • •

Power offsets TFCS DL DPCH slot format FDD DL TPC step size • ...

NBAP: RADIO LINK SETUP REQUEST

DCH Data Frame

Node B

Iub

Uu

RNC

P0x: 0..6 dB step size: 0.25 dB

PO2 Data 1 bits

UE

TPC bits

TFCI bits (optional)

PO3

PO1

Pilot bits Data 2 bits

Downlink Inner Loop Power Control

TPC

two modes

cell

DPC_MODE = 0

DPC_MODE = 1

unique TPC command per TS

same TPC over 3 TS, then new command

TPCest per  1 TS / 3 TS

Downlink Inner Loop Power Control UTRAN behaviour 



P TPC  P (k )

=

new DL power 

P (k - 1) current DL power 

+

P TPC (k )

+

power  adjustment

IF Limited Power Increase Used = 'Not used'

P TPC (k ) =

TPC

+

TPC,

if TPCest (k) = 1

-

TPC,

if TPCest (k) = 0

step size: 0.5, 1, 1.5 or 2 dB

mandatory

P bal 

P bal (k ), Correction term for RL balancing toward CPICH

time

Downlink Inner Loop Power Control UTRAN behaviour 



P TPC  P (k ) new DL power 

=

P (k - 1) current DL power 

+

P TPC (k ) power  adjustment

+

P bal 

P bal (k ), Correction term for RL balancing toward CPICH

time

IF Limited Power Increase Used = 'used' TPCest (k) = 1 => P TPC (k ) = 0

P TPC  Power_ Raise_ Limit 

K-1 DL_Power_Averaging_Window_Size 



otherwise as see preceding slide

time

Timing Relationship between Physical Channels SFN mod 2 = 0

SFN mod 2 = 1

P-CCPCH

SCH

AICH access slots

0

1

2

3

4

5

6

0..38144 (step size 256) nth S-CCPCH

kth S-DPCH

S-CCPCH,n

DPCH,k

0..38144 (step size 256)

7

8

9

10

11

12

13

14

0

Radio Interface Synchronisation Tm = timing difference range: 0..38399 Res.: 1 chip

Relative timing between DL DPCH and P-CCPCH range: 0..38144 res.: 256 chips

 P C H 2 5 5 5 )  C   C  P -  N  = 2  h  S F  2 u l t  ip a t .   g .  (  e  t m   ie s  e a r l

Offset between DL DPCH and P-CCPCH range: 0..38399 res.: 1 chip

( e .g  D L n  . C F  o m  N =  1 2   )  T0 = 1024 chips

 P C H  1 2 )  D  U L  F N = . C   g .  e  (  cell1

(Frame Offset, Chip Offset)

UE

cell2 = target cell for HO

(Frame Offset)

SRNC

Part VII Dedicated Physical Channel Uplink

Uplink Dedicated Physical Channels Superframe = 720 ms Radio Frame 0

Radio Frame 1

Radio Frame 2

Radio Frame 71

10 ms Frame Slot 0

Slot 1

Slot 2

DPDCH DPCCH • 6 different slot formats • Compressed mode slot format for changed SF & changed puncturing • 7 different slot formats

Slot 14

Data 1 bits

Pilot bits

TFCI bits (optional)

FBI bits

Feedback Indicator for • Closed loop mode transmit diversity, & • Site selection diversity transmission (SSDT)

TPC bits

Discontinuous Transmission and Power Offsets

DPDCH DPDCH DPCCH

TTL

DPDCH DPCCH

DPCCH

TTL

TTL

UL DPDCH/DPCH Power Difference: two methods to determine the gain factors: • signalled for each TFCs • calculation based on reference TFCs DPDCH Nominal Power Relation Aj =

d c

=

DPCCH

UL Inner Loop Power Control SIRest

SIRtarget

time T   C P   T   T   C  C  P   T   C P   P   =  = 0  =  = 1  0  1 

in FDD mode: 1500 times per second

TPC TPC_cmd

UL Inner Loop Power Control algorithms for processing power  control commands TPC_cmd

PCA1

PCA2

TPC_cmd for each TS TPC_cmd values: +1, -1 step size TPC: 1dB or 2dB

TPC_cmd for 5th TS TPC_cmd values: +1, 0, -1 step size TPC: 1dB

UL DPCCH power adjustment:

PCA2 0

DPCCH

=

TPC

PCA1 3

Note that up to NSN RU 10 only PCA 1 is supported.

Rayleigh fading can be compensated

TPC_cmd

PCA2 80

km/h

Power Control Algorithm 1 Example: reliable transmission Cell 3 TPC3 = 1 TPC_cmd = -1 (Down)

TPC1 = 1

Cell 1

Note that up to NSN RU 10 only PCA 1 is supported.

TPC3 = 0

Cell 2

Power Control Algorithm 2 (part 1)

TPC = 1

TPC_temp

TPC = 1

0

TPC = 1

0

TPC = 1

0

TPC = 1

0

TPC = 1

1

TPC = 0

0

TPC = 1

0

TPC = 0 TPC = 1

0 0

TPC = 0

0

TPC = 0

0

TPC = 0

0

TPC = 0

0

TPC = 0

0 -1

Note that up to NSN RU 10 PCA 2 is not supported.

• if all TPC-values = 1  TPC_temp = +1 • if all TPC-values = 0  TPC_temp = -1 • otherwise  TPC_temp = 0

Power Control Algorithm 2 (part 2) Example:

TPC_temp1 TPC_temp 2 TPC_temp3

N=3

1

 N 

TPC_temp   N 

i

i 1

Note that up to RU 10 PCA 2 is not supported. TPC_cmd =

-1

-0.5 -1

0 0

1

0.5 1

Initial Uplink DCH Transmission DPCCH only

DPCCH & DPDCH

reception at UE

transmission at UE

0 to 7 frames for  power control preamble DL Synch & Activation time

DPCCH only

0 to 7 frames of  SRB delay DPCCH & DPDCH

DPCCH_Initial_power = – CPICH_RSCP + DPCCH_Power_offset

Part VIII HSDPA Physical Channels

HSDPA – General principle

• Channel quality information • Error correction Ack/Nack

•Shared DL data channel

L1 Feedback 

•Fast link adaptation, scheduling and L-1 error correction done in BTS

Data

Terminal 1 (UE)

•1 – 15 codes (SF=16)

L1 Feedback  Data

•QPSK or 16QAM modulation •User may be time and/or code multiplexed.

Terminal 2

HSDPA features HSDPA

Fast Link Adaptation

Fast Link Adaptation: Modulation and Coding is adapted every 2 ms (1 TTI) during the session to the radio link quality. This ensures highest possible data rates to end-users.

Fast Packet scheduling

Fast H-ARQ

Fast H-ARQ: Data are retransmitted by BTS. UE acknowledges (L1) and performs soft combination of initial transmission & retransmissions. This provides reliable, fast and efficient data transmission.

Fast Packet Scheduling: The NodeB is responsible for resource allocation to HSDPA packet data users. Resource allocation is performed every TTI = 2 ms. For resource allocation, the users radio link quality may be taken into account. Fast Packet Scheduling improves the spectrum efficiency.

Interaction of MAC-hs and Physical Layer

HSDPA Peak Bit Rates Coding Codingrate rate

Coding Codingrate rate

55codes codes

10 10codes codes

15 15codes codes

1/4 1/4

600 600kbps kbps

1.2 1.2Mbps Mbps

1.8 1.8Mbps Mbps

2/4 2/4

1.2 1.2Mbps Mbps

2.4 2.4Mbps Mbps

3.6 3.6Mbps Mbps

3/4 3/4

1.8 1.8Mbps Mbps

3.6 3.6Mbps Mbps

5.4 5.4Mbps Mbps

2/4 2/4

2.4 2.4Mbps Mbps

4.8 4.8Mbps Mbps

7.2 7.2Mbps Mbps

3/4 3/4

3.6 3.6Mbps Mbps

7.2 7.2Mbps Mbps

10.7 10.7Mbps Mbps

4/4 4/4

4.8 4.8Mbps Mbps

9.6 9.6Mbps Mbps

14.4 14.4Mbps Mbps

QPSK QPSK

16QAM 16QAM

RAS06 allows allocation of up to 15 Codes; 14.4 Mbps total;

up to 3 simultaneous user; max. 10 Mbps/user RU10

allows max. 14.4 Mbps/user

Physical Channels for One HSDPA UE

BTS

     S    H    H    C   x   S    5   D    1   -   P    1

   H    C    C    S      S    H   x    4      1

   H    C    H    C    C    P    P    D   -    D      S    F    H

   H    C    P    D    d   e    t   a    i   c   o   s   s    A

UE

   H    C    P    D    d   e    t   a    i   c   o   s   s    A

Rel99 DCH

DL CHANNELS HS-PDSCH: High-Speed Physical Downlink Shared Channel HS-SCCH: High-Speed Shared Control Channel F-DPCH: Fractional Dedicated Physical Channel Associated DPCH, Dedicated Physical Channel. UL CHANNELS Associated DPCH, Dedicated Physical Channel HS-DPCCH: High-Speed Dedicated Physical Control Channel

HSDPA DL physical channels HS-PDSCH: High-Speed Physical Downlink Shared Channel • Transfers actual HSDPA data of HS-DSCH transport channel. • 1-15 code channels. • QPSK or 16QAM modulation. • Divided into 2ms TTIs

• Fixed SF16 • Doesn’t have power control HS-SCCH: High-Speed Shared Control Channel • Includes information to tell the UE how to decode the next HS-PDSCH frame • Fixed SF128

• Shares downlink power with the HS-PDSCH • More than one HS-SCCH required when code multiplexing is used • Power can be controlled by node B (proprietary algorithms)

Field

Number of uncoded bits

Channelisation code set information

7 bits

Modulation scheme information

1 bit

Transport block size information

6 bits

Hybrid ARQ process information

3 bits

Redundancy and constellation version

3 bits

New data indicator

1 bit

UE identity

16 bits

 

HSDPA DL physical channels F-DPCH: Fractional Dedicated Physical Channel

• • • •

The F-DPCH carries control information generated at layer 1 (TPC commands). It is a special case of DL DPCCH

fixed SF = 256 Frame structure of the F-DPCH: each 10 ms frame is split into 15 slots (each of 2/3 ms), corresponding to 1 power-control period • Up to 10 users can share the same F-DPCH to receive power control information (per user: 2 F-DPCH bits/slot = 1.5 ksymb/s).

• Introduced in Rel. 6 for situations where only packet services are active in the DL others than the Signalling Radio Bearer SRB • Should be used in case of low data rate packet services handled by HSDPA & HSUPA, where the associated DPCH causes to much (power) overhead and code consumption Associated DPCH, Dedicated Physical Channel • Transfers L3 signalling (Signalling Radio Bearer (SRB)) information e.g. RRC measurement control messages • Power control commands for associated UL DCH • DPCH needed for each HSDPA UE.

HSDPA UL physical channels HS-DPCCH: High-Speed Dedicated Physical Control Channel • MAC-hs Ack/Nack information (send when data received). • Channel Quality Information, CQI reports (send in every 4ms) • SF 256 • Power control relative to DPCH • No SHO

Associated DPCH, Dedicated Physical Channel • DPCH needed for each HSDPA UE. • Transfers signalling • Also transfers uplink data 64, 128, 384kbps, e.g. TCP acks and UL data transmission

Physical channel structure – Time multiplexing 3GPP enables time and code multiplexing.

1 radio frame (15 slots, total 10 ms) 2 ms 1

2

3

Subframe #1

2 slots

U E1

U E1

4

5

6

Subframe #2

U E1

U E1

U E1

U E2

U E2

U E2

U E1

U E1

U E1

U E2

U E2

U E2

U E1

U E1

U E1

U E1

U E2

U E2

U E2

U E3

U E3

7

8

9

Subframe #3 U E3

U E3

U E3

U E1

U E3

10

11

12

Subframe #4

13

14

15

Subframe #5

U E1

HS-PDSCH #1

U E1

HS-PDSCH #2

U E1

HS-PDSCH #3

User data on HS-DSCH

HS-SCCH

Picture presents time multiplexing • One HS-SCCH required per cell • Codes can be allocated only to one user at a time

3 slots UE #3

L1 feedback L1 feedback

UE #2

UE #1

L1 feedback

HS-DPCCH

HS-DPCCH

HS-DPCCH

Code Multiplexing With Code Multiplexing, multiple UEs can be scheduled during one TTI. Multiple HS-SCCH channels • One for each simultaneously receiving UE. • HS-SCCH power overhead.

HS-PDSCH codes divided for different transport blocks. • Multiple simultaneous transport

HS-SCCH HS-SCCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH

blocks to one UE not possible.

Codes can be allocated to multiple users at same time • Important when cell supports more codes than UEs do. For example 10 codes per cell, UE category 6.

cat 8

cat 6

cat 6

cat 6

cat 6

Timing of HSDPA Physical Channels P-CCPCH HS-SCCH HS-PDSCH 2 slots

3 slots

TTX_diff

Unit = chips 2560 chips = slot 3 slots = (HSDPA) subframe 15 slots = frame

Tprop + 7.5 slots

Downlink DPCH Node B UE Tprop + 0.4 slots (1024 chips)

Uplink DPCH m x 0.1 slots = TTX_diff + 10.1 slots HS-DPCCH

Downlink Code Allocation example

SF = 1 SF = 2 SF = 4 SF = 8 SF = 16 SF = 32

Codes for 5

SF = 64

HS-PDSCH's

SF = 128 SF = 256

Code for one HS-SCCH Codes for the cell common ch annels

•166 codes @ SF=256 available for the associated DCHs and non-HSDPA uses

Fast Link Adaptation in HSDPA ]

B d [

o N s E

s u o e n a t n a t s nI

16 C/I received by UE 14 12 10 8 6 4 2 0 -2 0

16QAM3/4 16QAM2/4 QPSK3/4 QPSK2/4 QPSK1/4

20

C/I varies with fading

40

60

80

100

120

140

Time [number of TTIs] Link  adaptation mode

BTS adjusts link adaptation mode with a few ms delay based on channel quality reports from the UE

160

Link adaptation: Modulation Q

10

Q 1011

1001

0001

0011

1010

1000

0000

0010

00

I 11

I 1110

1100

0100

0110

1111

1101

0101

0111

01

QPSK

16QAM

2 bits / symbol = 480 kbit/s/HS-PDSCH = max. 7.2 Mbit/s

4 bits / symbol = 960 kbit/s/HS-PDSCH = max. 14.4 Mbit/s

3GPP Rel. 7 introduces DL 64QAM support for HS-PDSCH

UE HS-DSCH physical layer categories HS-DSCH category

QPSK or  16QAM

QPSK only

TS 25.306

Maximum number of HS-DSCH codes received

Minimu m interTTI interval

Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI

ARQ Type at maximum data rate

Total number of soft channel bits

Category 1

5

3

7298

Soft

19200

Category 2

5

3

7298

IR

28800

Category 3

5

2

7298

Soft

28800

Category 4

5

2

7298

IR

38400

Category 5

5

1

7298

Soft

57600

Category 6

5

1

7298

IR

67200

Category 7

10

1

14411

Soft

115200

Category 8

10

1

14411

IR

134400

Category 15 1 20251 Soft 9 • 3GPP Rel. 7 introduces Categories 13 – 18 for 64QAM or MIMO support

172800

• 3GPP Rel. 8 introduces Categories Category 15 1 19 & 20 for 64QAM 27952& MIMO support

172800

IR

Channel quality indication (CQI) from HSDPA UE UE reports the channel conditions to the base station via the uplink channel CQI field on the HSDPCCH

BTS

     S    H    H    C   x   S    5   D    1   -   P    1

   H    C    C    S      S    H   x    4      1

   H    C    C    P    D      S    H

Rel99 DCH

   d    d   e   e    t    t    H   a   H   a    i    i   c   C   c   C    P   o   o   P   s   D   s   D   s   s    A    A

UE

UE estimates which AMC format  CQI (0…30) will provide transport block error probability < 10 % on HS-DSCH WBTS uses CQI as one input when defining the AMC format used on the HS-PDSCH • Transport Block Size • Number of HS-PDSCH (codes) • Modulation • Incremental redundancy

MAC-hs UE:

RNC:

HS-DPCCH

HS-DSCH HS-SCCH

Retransmissions in HSDPA MAC-hs Layer-1 Server

RNC

Node-B

retransmissions

UE

TCP retransmissions RLC retransmissions

HSDPA L1 Retransmissions : Chase Combining Turbo Encoder

Systematic Parity 1 Parity 2

Rate Matching (Puncturing) Original transmission Systematic Parity 1 Parity 2

Chase Combining (at Receiver)

Systematic Parity 1 Parity 2

Retransmission

HSDPA L1 Retransmissions : Incremental Redundancy Turbo Encoder

Systematic Parity 1 Parity 2

Rate Matching (Puncturing) Original transmission Systematic Parity 1 Parity 2

Incremental Redundancy Combining

Systematic Parity 1 Parity 2

Retransmission

Power control on HSDPA channels Associated UL and DL DPCH utilise normal closed loop power control DL HS-PDSCH • Fixed power or variable power e.g. according to load conditions DL HS-SCCH • 3GPP specifications do not explicitly specify any closed loop PC modes for the HS-SCCH

• The Node-B must rely on feedback information from the UE related to the reception quality of other channel types, such as:  –  Power control commands for the associated DPCH  –  CQI reports for HS-DSCH  –  ACK/NACK feedback or DTX in uplink HS-DPCCH UL HS-DPCCH • Based on associated DPCH power control with power offsets

• The power offsetHS-DP parameters [ACK; NACK; CQI ] are controlled by the RNC and CQI report CCH Ack/Nack reported to the UE using higher layer signalling ACK ; NACK 

DPCCH

CQI 

CQI 

Part IX HSUPA Physical Channels

HSUPA – General principle

• Channel quality Information • Error correction Ack/Nack 1-Scheduling request to Node B 2-allocation of allowed PWR (resources) 3-Data tx 4-L1 Feedback 5-More or less PWR is granted if needed

• E-DCH • Node B controlled scheduling • HARQ • SF=256-2 • Multi-Code operation • QPSK modulation only Dual-branch BPSK on I- & Q-branch

• Fast Link Adaptation (Adaptive Coding), no enhanced/ adaptive modulation in Rel. 6

• SHO supported

UE

HSUPA features HSUPA Fast Link Adaptation

Fast Link Adaptation: HSUPA (Rel. 6): The coding is adapted dynamically every TTI (2 ms / 10 ms) by the UE to radio link quality. Modulation is fixed to QPSK in Rel. 6. Rel. 7 offers adaptation of the modulation (QPSK/16QAM), too. Fast Link Adaptation improves the spectrum efficiency significant.

Fast H-ARQ Fast H-ARQ: UE and Node B are responsible for acknowledged PS data transmission. Data retransmission is handled by UE. NodeB performs soft combining of original and Re-transmissions to enhance efficiency. This provides fast & efficient error correction.

Fast Packet Scheduling

Fast Packet Scheduling: NodeB schedules UL resource allocation (every TTI = 2/10ms) .

Physical Layer in Interaction with MAC-e

HSUPA Peak Bit Rates

Coding Codingrate rate

2codes 2codesxxSF2 SF2 1code x SF4 2codes x SF4 2codes x SF2 + 1code x SF4 2codes x SF4 2codes x SF2 + 2codes 2codesxxSF4 SF4

1/4 1/4

480 480kbps kbps

960 960kbps kbps

1.92 1.92Mbps Mbps

2.88 2.88Mbps Mbps

3/4 3/4

720 720kbps kbps

1.46 1.46Mbps Mbps

2.88 2.88Mbps Mbps

4.32 4.32Mbps Mbps

4/4 4/4

960 960kbps kbps

1.92 1.92Mbps Mbps

3.84 3.84Mbps Mbps

5.76 5.76Mbps Mbps

NSN RU10 (WBTS5.0) gives support to UE categories 1-7 up to 1.92 (about 2) Mbps (2 x SF2) per UE (only 10 ms TTI, ¼ coding)

Physical Channels for One HSUPA UE

BTS    H    C    D    P    D      E   x    4      1

   H    C    C    P    D      E

   H    H    H    C    C    C    G   G   I    R    H    A   -   -      E    E    E

UE

   H    C    P    D    d   e    t   a    i   c   o   s   s    A

DL CHANNELS E-AGCH: E-DCH Absolute Grant Channel E-RGCH: E-DCH Relative Grant Channel E-HICH: E-DCH Hybrid ARQ Indicator    H Rel99    C Channel    P DCH    D Associated DPCH, Dedicated Physical    d   e    t Channel.   a    i   c UL CHANNELS   o   s   s E-DPDCH: Enhanced Dedicated    A Physical Data Channel E-DPCCH: Enhanced Dedicated Physical Control Channel Associated DPCH, Dedicated Physical Channel

HSUPA UL physical channels E-DPDCH: Enhanced Dedicated Physical Data Channel • carries UL packet data (E-DCH) • up to 4 E-DPDCHs for 1 Radio Link • SF = 256 – 2 (BPSK) • pure user data & CRC • CRC size: 24 bit (1 CRC/TTI) • TTI = 2 / 10 ms • UE receives resource allocation via Grant Channels • managed by MAC-e/-es • Error Protection: Turbo Coding 1/3 • Soft/Softer Handover support E-DPCCH: Enhanced Dedicated Physical Control Channel • transmits control information associated with the E-DCH • 0 or 1 E-DPCCH for 1 Radio Link • SF = 256 Associated DPCH, Dedicated Physical Data Channel • DPCH needed for each HSUPA UE. • Transfers signalling • Also transfers uplink data 64, 128, 384kbps, e.g. TCP acks and UL data transmission

E-DCH: E-DPDCH & E-DPCCH cd,1

d

New in Rel. 6 for HSUPA: E-DPDCH & E-DPCCH

Rel. `99

DPDCH1 cd,3

d

DPDCH3

 cd,5

I

E-DPDCH: used to carry the E-DCH transport channel . There may be 0, 1, 2 or 4 E-DPDCH on each radio link.

d

DPDCH5

E-DPCCH:

I+jQ cd,2

d

cd,4

d

used to transmit control information associated with the E-DCH.

Sdpch

DPDCH2

Maximum number of simultaneous UL DCHs Configurati DPDCH on #

DPDCH4 cd,6

d

cc

c

DPDCH6

DPCCH



Q

 j

EEHSDPCCH DPDCH DPCCH

1

6

1

-

-

2

1

1

2

1

3

-

1

4

1

E-DPDCH : SF-Variation & Multi-Code Operation SF = 1

SF = 4

SF = 2

SF = 8

SF = 64 CC64,0 CC64,1

CC4,0 = (1,1,1,1)

CC64,2

CC2,0 = (1,1)

CC1,0 = (1)

CC4,1 = (1,1,-1,-1)

••• CC4,2 = (1,-1,1,-1)

• • NDPDC • H

E-

CCSF,k

DPDCHk

CCSF,SF/4 if SF CC2,1 = (1,-1) CC4,3 = (1,-1,-1,1)

E-DPDCH: SF = 256 - 2 SF = 2

E-DPDCH1

CC64,62 CC64,63

4 CC2,1 if SF = 2

0

1920 kbit/s

E-DPDCH2

CC4,1 if SF = 4 CC2,1 if SF = 2

E-DPDCH3

Multi-Code operation:

CC4,1

E-DPDCH4

up to 2 x SF2 + 2 x SF4

E-DPDCH1

up to 5.76 Mbps 1

CCSF,SF/2 CC

if SF = 4

E-DPDCH & E-DPCCH frame structure and content E-DPDCH: Data only (+ 1 CRC/TTI); SF = 256 – 2; Rchannel = 15 – 1920 kbps Ndata = 10 x 2k+2 bit (K = 0..5) E-DPCCH: L1 control data;

SF = 256;

10 bit

1 Slot = 2560 chip = 2/3 ms

Slot #0

Slot #1

Slot #2

Slot #14

Slot #i

1 subframe = 2 ms 1 radio frame, T frame = 10 ms

E-DPCCH content: • E-TFCI information (7 bit) indicates E-DCH Transport Block Size; i.e. at given TTI (TS 25.321; Annex B) • Retransmission Sequence Number RSN (2 bit) Value = 0 / 1 / 2 / 3 for: Initial Transmission, 1st / 2nd / further Retransmission • „Happy" bit (1 bit) indicating if UE could use more resources or not Happy 1 Not happy 0

Bit/  Fram e

Bit/  Subfram e

Bit/Slo t Ndata

k

SF

Channel Bit Rate [kbps]

0

64

60

600

120

40

1

32

120

1200

240

80

2

16

240

2400

480

160

3

8

480

4800

960

320

4

4

960

9600

1920

640

5

2

1920

1920 0

3840

1280

HSUPA DL physical channels E-AGCH E-DCH Absolute Grant Channel carries DL absolute grants for UL E-DCH contains: UE-Identity (E-RNTI) & max. UE power ratio E-DCH absolute grant transmitted over 1 TTI (2/10 ms) SF = 256 (30 kbps; 20 bit/Slot)

E -A E  G CH -A     G  CH        E -R   C E  -R    G  G        H C  H  

NodeB

E  E     D --D   D PP     H  D  C  C H  E-RGCH

UE

E-DCH Relative Grant Channel carries DL relative grants for UL E-DCH; complementary to E-AGCH contains: relative Grants („UP“, „HOLD“, „DOWN“) & UE-Identity E-DCH relative grant transmitted 1 TTI (2/10 ms) SF = 128 (60 kbps; 40 bit/Slot)

E-DCH transmission: after E-AGCH after E-RGCH Non-scheduled transmission

E-DCH Radio Network Temporary Identifier: allocated by S-RNC for E-DCH user per Cell

HSUPA DL physical channels

E      PD E  -- DD    C     H  P   D C E    H   I CH E -H   H I C      (  NodeB

H ( AAC K  C K /    C    /  NNA  A   C KK   )   ) 

E  E  -- D D P P D D   C   ( R  C HH (  R ee - -t t    r a n  r a ns      i s  m   s m  io i s ssi  o     n )  n )    

E-HICH E-DCH Hybrid ARQ Indicator Channel carries H-ARQ acknowledgement indicator  for UL E-DCH contains ACK/NACK (+1; -1) & UE-Identity E-DCH relative grant transmitted 1 TTI (2/10 ms) SF = 128 (60 kbps; 40 bit/Slot)

UE

HSUPA DL physical channels E-AGCH: E-DCH Absolute Grant Channel • carries DL absolute grants for UL E-DCH • contains: UE-Identity (E-RNTI) & max. UE power ratio • E-DCH absolute grant transmitted over 1 TTI (2/10 ms) • SF = 256 (30 kbps; 20 bit/Slot) E-RGCH: E-DCH Relative Grant Channel • carries DL relative grants for UL E-DCH; • complementary to E-AGCH • contains: relative Grants („UP“, „HOLD“, „DOWN“) & UE-Identity • E-DCH relative grant transmitted 1 TTI (2/10 ms) • SF = 128 (60 kbps; 40 bit/Slot) E-HICH: E-DCH Hybrid ARQ Indicator Channel • carries H-ARQ acknowledgement indicator for UL E-DCH • contains ACK/NACK (+1; -1) & UE-Identity • E-DCH relative grant transmitted 1 TTI (2/10 ms) • SF = 128 (60 kbps; 40 bit/Slot) Associated DPCH, Dedicated Physical Channel • Transfers L3 signalling (Signalling Radio Bearer (SRB)) information e.g. RRC measurement control messages • Power control commands for associated UL DCH • DPCH needed for each HSUPA UE.

Adaptive Coding in HSUPA

• HSUPA adapts the Coding to the current Radio Link Quality • HSUPA varies the effective Coding between 1/4 – 1(4/4)

Node B

UE

4/4

3/4

2/4

1/4

UE

Note that support for 4/4 coding is optionally given by UE and not supported in NSN RU 10!

Modulation in HSUPA • Rel. 6 defines only QPSK (“Dual-branch BPSK“) as modulation method for HSUPA. • 16QAM Modulation (“ Dual-branch QPSK”) has been regarded as to complex for initial HSUPA • (16 QAM = Dual-branch QPSK is defined in Release 7) • no Adaptive Modulation takes place in Rel. 6; Adaptive Modulation with QPSK/16QAM in Rel. 7

“Dual-Branch BPSK 1-Bit Keying (Q)

QPSK: I -1

1

2-Bit Keying 16 QAM 64QAM

on both Code Trees in the UE

FDD E-DCH physical layer categories max. E- DCH Category E-DCH Codes

min. SF

2 & 10 ms TTI E-DCH support

max. #. of E-DCH Bits*  / 10 ms TTI

max. # of E-DCH Bits*  / 2 ms TTI

Reference combination Class

1

1

4

10 ms only

7110

-

0.73 Mbps

2

2

4

10 & 2 ms

14484

2798

1.46 Mbps

3

2

4

10 ms only

14484

-

1.46 Mbps

4

2

2

10 & 2 ms

20000

5772

2.92 Mbps

5

2

2

10 ms only

20000

-

2.0 Mbps

6

4

2

10 & 2 ms

20000

11484

5.76 Mbps

7*

4

2

10 & 2 ms

20000

22996

11.52 Mbps

Extracted from TS 25.306: UE Radio Access Capabilities 7* category 7 is defined in 3GPP Rel 7 and supports QPSK and 16 QAM in Uplink NSN RU10 (WBTS5.0) gives support to UE categories 1-7 up to 2 Mbps per UE (only 10 ms TTI)

MAC Architecture: UE Side MAC-es/MAC-e are handling E-DCH specific functions • Split between MAC-es & MAC-e in the UE is not detailed • comprises following entities: • H-ARQ: buffering MAC-e payloads & re-transmitting them • Multiplexing : concatenating multiple MAC-d PDUs  MAC-es PDUs & multiplex 1  / multiple MAC-es PDUs  1 MAC-e PDU • E-TFC selection: Enhanced Transport Format Combination selection according to scheduling information (Relative & Absolute Grants) received from UTRAN via L1 PCCH BCCH CCCH

MAC Control

CTCH

DCCH DTCH

DTCH

MAC-d MAC-es/ MAC-e

MAC-hs

E-DCH

HS-DSCH

associated DL Signalling

associated UL Signalling

associated DL Signalling

MAC-c/sh

PCH

associated UL Signalling

FACH FACH RACH

CPCH

DSCHDSCH

DCH

DCH

MAC Architecture: UTRAN side 1 MAC-e entity in Node B for each UE & 1 E-DCH scheduler function handle HSUPA specific functions in Node B • E-DCH Scheduling: manages E-DCH cell resources between UEs; implementation proprietary • E-DCH Control: receives scheduling requests & transmits scheduling assignments. • De-multiplexing: de-multiplexing MAC-e PDUs • H-ARQ: generating ACKs/NACKs

Node B

MAC Control

• Reordering: reorders received MAC-es PDUs according to the received TSN • Macro diversity selection: for SHO (Softer HO in Node-B). delivers received MAC-es PDUs from each Node B of E-DCH AS  reordering function • Disassembly: Remove MAC-es header, extract MAC-d PDU’s & deliver  MAC-d MAC Control

MAC Control

PCCH

RNC

• 1 MAC-es entity for each UE in S-RNC

BCCH CCCH CTCH

MAC Control MAC Control DCCH DTCH DTCH

MAC-es Configuration without MAC-c/sh

MAC-e

E-DCH associated DL Signalling

associated UL Signalling

MAC-hs

Configuration with MAC-c/sh

HSIub DSCH associated associated DL Signalling UL Signalling

PCH

Configuration with MAC-c/sh

MAC-d

MAC-c/sh

FACH

RACH

CPCH

DSCH

Iur or local

DCH DCH

HSUPA Fast Packet Scheduling HSUPA HSUPA(Rel. FastPacket PacketScheduling: Scheduling: (Rel.6) 6)Fast • • Node NodeBBcontrolled controlled • • resources resourcesallocated allocatedon onScheduling SchedulingRequest Request • • short TTI = 2 / 10 ms short TTI = 2 / 10 ms • • Scheduling SchedulingDecision Decisionon onbasis basisofofactual actualphysical physicallayer layerload load(available (availableinin Node NodeB) B)  up-to date / Fast scheduling decision  high UL resource efficiency  up-to date / Fast scheduling decision  high UL resource efficiency  higher Load Target (closer to Overload Threshold) possible   higher Load Target (closer to Overload Threshold) possible  high highUL ULresource resourceefficiency efficiency  L1 signalling overhead  L1 signalling overhead

Scheduling Request (buffer occupation,...)

S-RNC

Scheduling Grants

Iub

Node B

(max. amount of  UL resources to be used)

E-DCH E-DCH

data datatransmission transmission

UE

HSUPA Link Adaptation MAC-e (UE) decides E-DCH Link Adaptation (TFC; effective Coding)

on basis of: • Channel quality estimates (CPICH Ec/Io) Scheduling

• Every TTI (2/10 ms)

Request Scheduling Grants

Node B

Rel.99: 99: Rel. Fixed Fixed TurboCoding Coding1/3 1/3 Turbo

E - 

    H   DC  ( T    I  = E -D ( TT TI  = 2  /  C H  2  / 1 1  00 m   m  s   )  s   )  Rel. Rel.66HSUPA HSUPA: : dynamic dynamicLink LinkAdaptation Adaptation  effectiveCoding Coding1/4 1/4 - -4/4 4/4 effective    higher UL  higher ULdata datarates rates higher resource efficiency   higher resource efficiency

UE

HSUPA Fast H-ARQ HSUPA: HSUPA:Fast FastH-ARQ H-ARQwith withUL ULE-DCH E-DCH • • Node NodeBB(MAC-e) (MAC-e)controlled controlled H-ARQ protocol • • SAW* SAW* H-ARQ protocol • • based DL(L1) ACK/NACK basedon onsynchronous synchronousDL (L1)ACK/NACK • • Retransmission strategies: Retransmission strategies: Incremental IncrementalRedundancy Redundancy&&Chase ChaseCombining Combining st 40 / 16 ms • • 11stRetransmission (TTI Retransmission 40 / 16 ms (TTI==10 10/ /22ms) ms) • • limited number of Retransmissions* limited number of Retransmissions* • • lower lowerprobability probabilityfor forRLC RLCRetransmission Retransmission Soft & Softer Handover  • • Support of Support of Soft & Softer Handover 

 Short delay times  Short delay times

(support (supportofofQoS QoSservices) services)  less Iub/ Iur traffic  less Iub/ Iur traffic

E-DCH E-DCHPackets Packets RNC correctly correctlyreceived received packets packets

UE

L1ACK/NACK ACK/NACK L1

Node B

Retransmission Retransmission

Iub MAC-e MAC-econtrols controlsL1 L1H-ARQ: H-ARQ: • •storing & retransmitting storing & retransmittingpayload payload • •packet combining (IR & CC) packet combining (IR & CC)

IR: Incremental Redundancy CC: Chase Combining HARQ: Hybrid Automatic Repeat Request SAW: Stop-and-Wait * HARQ profile - max. number of transmissions attribute

HSUPA Soft Handover  SHO Gains:

Soft SoftHandover: Handover:

full Coverage

UE UEconnected connectedtotoUTRAN UTRAN via different Node via different NodeBs Bs

for HSUPA Node B

UE Iub

Node B

Softer SofterHandover: Handover:

• •UE UEconnected connectedtotocells cellsofofsame same Node B (same MAC-e entity) Node B (same MAC-e entity) • •combining combiningNode NodeBBinternal internal • •no extra Iub capacity no extra Iub capacityneeded needed

Sector  cells

Node B

Node B

Iub

S-RNC: S-RNC:

select selectE-DCH E-DCH data data(MAC-es) (MAC-es) &&deliver delivertotoCN CN

R N C

EDCH AS

Iu

CN

Iub

E-DCH E-DCHActive ActiveSet: Set: • • set setofofcells cellscarrying carryingthe the E-DCH for 1 UE. E-DCH for 1 UE. • • can canbe beidentical identical/ /aa subset subsetofofDCH DCHAS AS • • isisdecided by the decided by theS-RNC S-RNC

Iub

R N C

EDCH AS

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF