02 RN31552EN10GLA0 the Physical Layer
Short Description
Download 02 RN31552EN10GLA0 the Physical Layer...
Description
The Physical Layer 3GRPLS (RN3155) – Module 2 Part I: Channel Mapping Part II: Transport Channel Formats Part III: Cell Synchronisation Part IV: Common Control Physical Channels Part V: Physical Random Access Part VI: Dedicated Physical Channel Downlink Part VII: Dedicated Physical Channel Uplink Part VIIII: HSDPA Physical Channel (HS-PDSCH) Part IX: HSUPA Physical Channels (E-DCH)
Part I Channel Mapping
Radio Interface Channel Organisation (R99 model)
Logical Channels content is organised in separate channels, e.g. System information, paging, user data, link management
Transport Channels logical channel information is organised on transport channel resources before being physically transmitted
Physical Channels (UARFCN, spreading code)
Frames Iub interface
Channel Mapping DL (Network Point of View) Logical Channels
Transport Channels
Physical Channels P-SCH S-SCH
BCCH PCCH
BCH PCH
CCCH FACH CTCH DCCH
HSDSCH
DTCH
DCH
CPICH P-CCPCH S-CCPCH PICH AICH F-DPCH HS-PDSCH HS-SCCH DPDCH E-AGCH E-RGCH E-HICH
Channel Mapping UL (Network Point of View) Logical Channels
Transport Channels
Physical Channels
RACH PRACH
CCCH
DCCH
DPDCH DCH
DPCCH
E-DCH
E-DPDCH
DTCH E-DPCCH
Example – Channel configuration during call Data
RRC signalling
Logical Channels
DCCH0-4
Transport Channels
Physical Channels
DCH1 DPDCH
Speech data
NRT data
DTCH1
DTCH2
DCH2-4
DCH5
AMR speech connection utilises multiple transport channels RRC connection utilises multiple logical channels
DPCCH
AMR speech + NRT data
Part II Transport Channel Formats
The Transfer of Transport Blocks
UE
Node B
RNC MAC Layer
MAC Layer Transport Channel TBS
TBS
TFI
TFI
FP/AAL2 PHY Layer
FP/AAL2
PHY Layer L1
TTI radio frames in use
L1
Transport Formats TFCS TB TB
TB TTI
DCH 2
TB TTI
TTI
TB TB
TB
TB
TB
TB
TB
TBS
DCH 1
TFS TTI
TTI
TTI
TFC
TB TBS
TF Transport Block Transport Block Set
TF TFS TFC TFCS
Transport Format Transport Format Set Transport Format Combination Transport Format Combination Set
Transport Formats RRC Layer
Transport Format Semi-Static Part • TTI • Channel Coding • CRC size • Rate matching Dynamic Part • Transport Block Size • Transport Block Set Size
MAC Layer n o i t a r u g i f n o c
TrCHs
PHY Layer Example: semi-static part dynamic part: - TTI = 10 ms - turbo coding - transport block size: 64 - CRC size = 0 - transport block set size: 1 - ...
TrCH: Transport Channel
TFI1
64 2
64 4
128 2
TFI2
TFI3
TFI4
Transport Format Ranges
Dynamic Part
Semi-static Part
Transport Block Size
Transport Block Set Size
TTI
coding types and rates
CRC size
BCH
246 bits
246 bits
20 ms
convolutional 1/2
16
PCH
1...5000 bits granularity: 1 bit
1...200000 bits granularity: 1 bit
10 ms
convolutional 1/2
0, 8, 12, 16 & 24
FACH
0...5000 bits granularity: 1 bit
0...200000 bits granularity: 1 bit
10, 20, 40 & 80 ms
convolutional 1/2 & 1/3; turbo 1/3
0, 8, 12, 16 & 24
RACH
0...5000 bits granularity: 1 bit
0...200000 bits granularity: 1 bit
10 & 20 ms
convolutional 1/2
0, 8, 12, 16 & 24
DCH
0...5000 bits granularity: 1 bit
0...200000 bits granularity: 1 bit
10, 20, 40 & 80 ms
convolutional 1/2 & 1/3; turbo 1/3
0, 8, 12, 16 & 24
(based on TS 25.302 V5.9.0)
The Transfer of Transport Blocks – HS-DSCH
UE
Node B
RNC MAC-d
MAC-d
MAC-d PDU
MAC-hs
TBS
MAC-hs HSDSCH
MAC-c/sh TBS TFI
TFI
FP/HS-DSCH
FP/AAL2 PHY Layer
Flow Control
FP/HS-DSCH FP/AAL2
PHY Layer L1 HS-PDSCH
L1
L A N O I T P O
Transport Formats – HS-DSCH RRC Layer
Transport Format Static Part • TTI • Channel Coding • CRC size
MAC-d Layer
Dynamic Part • Transport block size (same as Transport block set size) • Redundancy version/Constellation • Modulation scheme
n o i t a r u g i f n o c
MAC-hs Layer HS-DSCH
PHY Layer Example: static part - TTI = 2 ms - turbo coding - CRC size = 24
dynamic part: - transport block size: - modulation:
TFRI; Transport Format and Resource Indicator
357 QPSK
4420 1711 699 16-QAM 16-QAM QPSK
TFRI1
TFRI2
TFRI3
TFRI4
Transport Format for HS-DSCH
Dynamic Part
HS-DSCH
Static Part
Transport Block Size
Transport Block Set Size
Modulation
Redundancy version
TTI
coding types and rates
CRC size
1 to 200 000 bits granularity: 8 bit
= Transport Block Size
QPSK, 16-QAM
1 to 8
2 ms
turbo 1/3
24
The instantaneous data rate range supported is (determined on a per-2ms interval): • A TBS of 137 bits corresponding to 68.5 kbps (single code, QPSK, strong coding) • A TBS of 28457 bits corresponding to 14.228 Mbps (15 codes, 16QAM, very low coding)
The Transfer of Transport Blocks – E-DCH
UE
S-RNC
Node B
UE modifications:
S-RNC modifications:
MAC-es & MAC-e:
Node B modifications:
MAC-es handling:
• H-ARQ retransmission
MAC-e handling:
• in-sequence delivery (reordering)
• Scheduling & MAC-e multiplexing
• H-ARQ retransmission
• SHO data combining
• E-DCH TFC selection
• Scheduling & MAC-e multiplexing
RLC
RLC
MAC-d
MAC-d
MAC-es MAC-es / MAC-e
PHY
Iub
E-DCH FP
MAC-e
PHY
PHY
Uu
E-DCH FP PHY
Transport Format for E-DCH & UE capability classes
E- DCH Category
max. E-DCH Codes
min. SF
2 & 10 ms TTI E-DCH support
max. #. of E-DCH Bits* / 10 ms TTI
max. # of E-DCH Bits* / 2 ms TTI
Reference combination Class
1
1
4
10 ms only
7110
-
0.73 Mbps
2
2
4
10 & 2 ms
14484
2798
1.46 Mbps
3
2
4
10 ms only
14484
-
1.46 Mbps
4
2
2
10 & 2 ms
20000
5772
2.92 Mbps
5
2
2
10 ms only
20000
-
2.0 Mbps
6
4
2
10 & 2 ms
20000
11484
5.76 Mbps
* Maximum No. of bits / E-DCH transport block
• “Dual-branch BPSK” (resulting in QSPK output) is the only modulation used in HSUPA (Rel. 6) •There can only be 1 transport block in each TTI,
Transport block size = Transport Block Set Size
→
•Coding types and rates: Turbo coding 1/3 Note: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4
Transport Formats – E-DCH RRC Layer
Transport Format Static Part • TTI (2ms, 10ms) • Channel Coding • CRC size • Modulation (always BPSK)
MAC-d Layer
Dynamic Part • Transport block size (same as Transport block set size) • Redundancy version/Constellation
n o i t a r u g i f n o c
MAC-es/MAC-e Layer E-DCH
PHY Layer Example: static part - TTI = 2 ms, 10 ms - turbo coding - CRC size = 24
dynamic part: - transport block size:
357 BPSK
2420 BPSK
1711 BPSK
699 BPSK
TFRI1
TFRI2
TFRI3
TFRI4
Example: Transport Formats in AMR call DCH 1: AMR class A bits
DCH 2: AMR class B bits
DCH 3: AMR class C bits
DCH 24: RRC Connection
TTI = 20 ms
TTI = 40 ms
TTI = 20 ms
TTI = 20 ms
Coding type: convolutional
Convolutional coding
Coding rate: third
Coding rate: third
Coding rate: half
CRC size: 0 bits
CRC size: 0 bits
CRC size: 12 bits
l e p a m x E
Convolutional coding
Coding type: convolutional Coding rate: third CRC size: 16 bits
TBS size:1 TB size: 81 bits
TBS size: 1 TB size: 39 bits (SID)
TBS size = 0 (DTX)
TBS size: 1 TB size: 103 bits
TBS size = 0 (DTX)
12.2 kbit/s
TBS size: 1 TB size: 60 bits
TBS size = 0 (DTX)
TBS size = 1 TB size: 148 bits
TBS size = 0 (DTX)
3.7 kbit/s
Part III Cell Synchronisation
Cell Synchronisation
Phase 1 – P-SCH
Phase 2 – S-SCH
Phase 3 – P-CPICH
Detect cells Acquire slot synchronisation Acquire frame synchronisation Identify the code group of the cell found in the first step Determine the exact primary scrambling code used by the found cell Measure level & quality
Synchronisation Channel (SCH) 2560 Chips
256 Chips
Primary Synchronisation Channel (P-SCH)
CPP
CP
CP
CP
Cs15
Cs1
Secondary Synchronisation Channel (S-SCH) Cs1
Cs2
Slot 0
Slot 1
10 ms Frame Cp = Primary Synchronisation Code Cs = Secondary Synchronisation Code
Slot 14
Slot 0
SSC Allocation for S-SCH scrambling code group
slot number 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
group 00
1
1
2
8
9
10
15
8
10
16
2
7
15
7
16
group 01
1
1
5
16
7
3
14
16
3
10
5
12
14
12
10
group 02
1
2
1
15
5
5
12
16
6
11
2
16
11
15
12
group 03
1
2
3
1
8
6
5
2
5
8
4
4
6
3
7
group 04
1
2
16
6
6
11
15
5
12
1
15
12
16
11
2
group 05
1
3
4
7
4
1
5
5
3
6
2
8
7
6
8
group 62
9
11
12
15
12
9
13
13
11
14
10
16
15
14
16
group 63
9
12
10
15
13
14
9
14
15
11
11
13
12
16
10
I monitor the S-SCH
11
15
5
Primary Common Pilot Channel (P-CPICH) 10 ms Frame 2560 Chips
256 Chips
Synchronisation Channel (SCH)
CP P-CPICH
Cell scrambling code? I get it with trial & error!
applied speading code = cell‘s primary scrambling code Cch,256,0
• Phase reference • Measurement reference
P-CPICH
P-CPICH as Measurement Reference CPICH RSCP
Received Signal Code Power (in dBm)
CPICH Ec/No
received energy per chip divided by the power density in the band (in dB)
UTRA carrier RSSI
received wide band power, including thermal noise and noise generated in the receiver
CPICH Ec/No =
CPICH Ec/No 0: < -24 1: -23.5 2: -23 3: -22.5 ... 47: -0.5 48: 0 49: >0 Ec/No values in dB
CPICH RSCP UTRA carrier RSSI
CPICH RSCP -5: < -120 -4: -119 : 0: -115 1: -114 : 89: -26 90: -25 91: ≥ -25 RSCP values in dBm
GSM carrier RSSI 0: -110 1: -109 2: -108 : 71: -39 72: -38 73: -37 RSSI values in dBm
Primary Common Control Physical Channel (P-CCPCH) 10 ms Frame 2560 Chips
256 Chips
Synchronisation Channel (SCH)
CP P-CCPCH
Finally, I get the cell system information
• channelisation code: Cch,256,1 • no TPC, no pilot sequence • 27 kbps (due to off period) • organised in MIBs and SIBs
P-CCPCH
NSN Parameters for Cell Search •
WCEL: PtxPrimaryCPICH •The parameter determines the transmission power of the primary CPICH channel. •It is used as a reference for all common channels. •[-10 dBm … 50 dBm], step 0.1 dB, default: 33dBm (WPA power = 43 dBm)
•
WCEL: PtxPrimarySCH •Transmission power of the primary synchronization channel, the value is relative to primary CPICH transmission power. •[-35 dB … 15 dB], step size 0.1 dB, default: -3 dB
•
WCEL: PtxSecSCH •Transmission power of the secondary synchronization channel, the value is relative to primary CPICH transmission power. •[-35 dB… 15 dB], step size 0.1 dB, default: -3 dB
•
WCEL: PtxPrimaryCCPCH •This is the transmission power of the primary CCPCH channel, the value is relative to primary CPICH transmission power. •[-35 dB … 15 dB], step size 0.1 dB, default: -5 dB
•
WCEL: PriScrCode •Identifies the downlink scrambling code of the Primary CPICH (Common Pilot Channel) of the Cell. •[0 ... 511]
Blank Page
Node Synchronisation
SRNC
Node B BFN
128
RFN
3112
BFN: Node B Frame Number counter 0..4095 frames
T1
129
T2
t i o n o n i z a r h c y n o d e S ) N L D ( T 1
130
DL offset
3113
3114
(T4 – T1) – (T3 – T2) = Round Trip Delay (RTD) determination for DCH services
131 3115 T3
U L N o d ( T 1 e S y nc h ,T 2 , r on i T 3 ) z a t i on
132
3116 UL offset
133 3117 134 3118 135
RFN: RNC Frame Number counter 0..4095 frames
e m i t
user plane defined on DCH, FACH & DSCH
e m i t
(T4) T1, T2, T3 range: 0 .. 40959.875 ms resolution: 0.125 ms
Cell Synchronization and Sectorised Cells T_cell 1
1 TS
cell1
S C H
S C H
S C H
T_cell2 S C H
cell2
S C H
S C H
S C H
cell3 T_cell 3
SFN = BFN + T_cell 3
S C H
SFN = BFN + T_cell 1
cell1
BFN SFN = BFN + T_cell 2
cell3 Node B with three sectorised cells
cell2 SFN: Cell System Frame Number range: 0..4095 frames T_cell: n 256 chips, n = 0..9
NSN Parameters for Sectorised Cells •
WCEL: Tcell •Timing delay is used for defining the start of SCH, P-CPICH, Primary CCPCH and DL Scrambling Code(s) in a cell relative to BFN. •[0 ... 2304] chips, step 256 chips, no default value.
Part IV Common Control Physical Channels
Secondary Common Control Physical Channel (S-CCPCH) 10 ms Frame Slot 0
TFCI (optional)
Slot 1
Slot 2
Data
• carries PCH and FACH • Multiplexing of PCH and FACH on one S-CCPCH, even one frame possible • with and without TFCI (UTRAN set) • SF = 4..256 • (18 different slot formats • no inner loop power control
Slot 14
Pilot bits
S-CCPCH
Secondary CCPCH in NSN RAN The Secondary CCPCH (Common Control Physical Channel) carries FACH and PCH transport channels In RAN’04, number of SCCPCHs increase from two to three. The three SCCPCH channel configuration is needed only if SAB – Service area Broadcast is used. Parameter NbrOfSCCPCHs (Number of SCCPCHs) tells how many SCCPCHs will be configured for the cell. (1, 2 or 3) • If only one SCCPCH is used in a cell, it will carry FACH-c (Containing DCCH/CCCH /BCCH), FACH-u (containing DTCH) and PCH. FACH and PCH multiplexed onto the same SCCPCH.
• If two SCCPCHs are used in a cell, the first SCCPCH will always carry PCH only and the second SCCPCH will carry FACH-u and FACH-c.
Secondary CCPCH in NSN RAN DL common Channel configuration in case of three SCCPCH For For SAB SAB Logical channel
DTCH
DCC H
Transport channel
FACHu
FACHc
Physical channel
SCCPCH connecte SFd64
CCC H
BCC H
CTCH
PCCH
FACHc
FACHs
PCH
SCCPCH idle
SCCPCH page
SF 128
SF 256
Secondary CCPCH in NSN RAN FACH-u FACH-u
TFS TFS
FACH-c FACH-c
(connected) (connected)
FACH-c FACH-c (idle) (idle)
FACH-s FACH-s
PCH PCH
0: 0x168 bits 0: 0x360 0x360 bits bits (0 kbit/s) kbit/s) 0: 0x168 bits 0: 0x168 bits 0: 0: 0x80 0x80 bits bits (0 (0 kbit/s) (0 (0 kbit/s) kbit/s) 1: 1x168 1x168 bits bits (0 kbit/s) kbit/s) kbit/s) (0 kbit/s) 1: 1x360 1x360 bits bits (16.8 (16.8 kbit/s) kbit/s) 1: 1x168 bits 1: 1x168 bits 1: 1: 1x80 1x80 bits bits (36 (36 kbit/s) 2: 2x168 bits (16.8 (16.8 kbit/s) (16.8 (16.8 kbit/s) (8 (8 kbit/s) kbit/s) (33.6 (33.6 kbit/s)
TTI TTI
10 10 ms ms
10 10 ms ms
10 10 ms ms
10 10 ms ms
10 10 ms ms
Channel Channel coding coding
TC TC 1/3
CC 1/2
CC 1/3
CC 1/3 1/3
CC CC 1/2 1/2
CRC CRC
16 16 bit
16 16 bit
16 16 bit bit
16 bit bit
16 bit bit
Secondary CCPCH in NSN RAN FACHu
FACHc
SCCPCH connecte d
FACHc
FACHs
SCCPCH idle
PCH
SCCPCH page
TFCS TFCS TFCS TFCS TFCS TFCS 00 0+0 00 00 kbit/s 00 0+0 00 0+0 = = 00 kbit/s kbit/s kbit/s 00 0+0 = = 00 kbit/s kbit/s 01 11 88 kbit/s 10 01 0+16.8 0+16.8 = = 16.8 16.8 kbit/s kbit/s kbit/s 10 16.8+0 16.8+0 = = 16.8 16.8 kbit/s kbit/s 02 01 02 0+33.6 0+33.6 = = 33.6 33.6 kbit/s kbit/s 01 0+16.8 0+16.8 = = 16.8 16.8 kbit/s kbit/s 10 36+0 10 36+0 = = 36 36 kbit/s kbit/s
Maximum transport channel throughput = 36 kbit/s
Maximum transport channel throughput = 16.8 kbit/s
Maximum transport channel throughput = 8 kbit/s
S-CCPCH and the Paging Process UTRAN
P-CCPCH/BCCH (SIB 5) common channel definition, including a lists of
UE
Node B
Index of S-CCPCHs
0
S-CCPCH carrying one PCH
1
S-CCPCH carrying one PCH
K-1
S-CCPCH carrying one PCH S-CCPCH without PCH
UE‘s paging channel: Index = IMSI mod K e.g. if IMSI mod K = 1
„my paging channel“
S-CCPCH without PCH
RNC
Paging and Discontinuous Reception (FDD mode) Duration: Example with two CN domains
2k frames k = 3..9
CN domain specific DRX cycle lengths (option)
stores
UE
RRC connected mode
CS Domain
PS Domain
UTRAN
k 1
k 2
k 3
Update: a) derived by NAS negotiation b) otherwise: system info
Update: a) derived by NAS negotiation b) otherwise: system info
Update: locally with system info
if RRC idle: UE DRX cycle length is min (k 1, k 2)
if RRC connected: UE DRX cycle length is min (k 3, k domain with no Iu-signalling connection )
S-CCPCH and its associated PICH S-CCPCH frame, associated with PICH frame
S-CCPCH PICH
PICH frame
= 7680 chips
for paging indication b0
b1
no transmission b286 b287 b288
# of paging indicators per frame (Np) 18 36 72 144
b299
Paging Indicator and Paging Occasion (FDD mode) my paging indicator (PI)
number of paging indicators 18, 36, 72, 144
PI = ( IMSI div 8192) mod Np
UE
DRX index When will I get paged?
number of S-CCPCH with PCH
Paging Occasion = (IMSI div K) mod (DRX cycle length) + n * DRX cycle length
UE
FDD mode
Example – Paging instant and group calculation K (Number of S-CCPCH with PCH) k (DRX length) DRX cycle length IMSI Which S-CCPCH #? IMSI div K When (Paging occation, SFN)? Np DRX Index My PI?
Number of subsc. In LA/RA Number of subsc. Per S-CCPCH Number of subsc. Paging occation (PICH frame) Number of subsc. Per PI
1 6 64 frames 358506452377 0 358506452377 25 + n*DRX cycle length 72 PIs/frame 43762994 26
100000 100000 1562.5 21.7
NSN Parameters for S-CCPCH and Paging •
WCEL: NbrOfSCCPCHs •The parameter defines how many S-CCPCH are configured for the given cell. •Range: [1 … 3], step: 1; default = 1
•
WCEL: PtxSCCPCH1 (carries FACH & PCH) •This is the transmission power of the 1st S-CCPCH channel, the value is relative to primary CPICH transmission power. •Range: [-35 dB … 15 dB] , step size 0.1 dB, default: 0 dB
•
WCEL: PtxSCCPCH2 (carries PCH only) •This is the transmission power of the 2nd S-CCPCH channel, the value is relative to primary CPICH transmission power. •Range: [-35 dB … 15 dB] , step size 0.1 dB, default: - 5 dB
•
WCEL: PtxSCCPCH3 (carries FACH only) •This is the transmission power of the SCCPCH channel which carries only a FACH (containing CCCH) and a FACH (containing CTCH). •This parameter is only needed when Service Area Broadcast(SAB)is activated in a cell(three S-CCPCH channel configuration). •Range: [-35 dB … 15 dB] , step size 0.1 dB, default: - 2 dB
NSN Parameters for S-CCPCH and Paging •
WCEL: PtxPICH •This is the transmission power of the PICH channel. •It carries the paging indicators which tell the UE to read the paging message from the associated secondary CCPCH. •This parameter is part of SIB 5. •[-10 dB..5 dB]; step 1 dB; default: -8 dB (with Np =72) •NP •Repetition of PICH bits •[18, 36, 72, 144] with relative power [-10, -10, -8, -5] dB
•
•
RNC: CNDRXLength •The DRX cycle length used for CN domain to count paging occasions for discontinuous reception. •This parameter is given for CS domain and PS domain separately. •This parameter is part of SIB 1. •[640, 1280, 2560, 5120] ms; default = 640 ms. WCEL: UTRAN_DRX_length •The DRX cycle length used by UTRAN to count paging occasions for discontinuous reception. •[80, 160, 320, 640, 1280, 2560, 5120] ms; default = 320 ms
FACH and S-CCPCH Transmit Power Level
FACH Data Frame
Power offsets for TFCI and pilot bits are defined during channel setup
CFN TFI
TB
TB
Iub Uu RNC
Node B
max. transmit power for S-CCPCH
UE 0..25.5 dB, step size 0.1
Transmit Power Level
PO3
PO1 TFCI (optional)
Data
Pilot bits
NSN Parameters for S-CCPCH Power Setting •
WCEL: PowerOffsetSCCPCHTFCI •Defines the power offset for the TFCI symbols relative to the downlink transmission power of a Secondary CCPCH. •This parameter is part of SIB 5. •P01_15/30/60 •15 kbps: [0..6 dB]; step 0.25 dB; default: 2 dB •30 kbps: [0..6 dB]; step 0.25 dB; default: 3 dB •60 kbps: [0..6 dB]; step 0.25 dB; default: 4 dB
Part V Physical Random Access
Random Access – the Working Principle
UE No response by the Node B
No response by the Node B
Node B PRACH (pr eamble)
PRACH (pr eamble)
I just detected a PRACH preamble
PRACH (pr eamble)
OLA!
AICH
PRACH (message par t)
Random Access Timing SFN mod 2 = 0
SFN mod 2 = 1
SFN mod 2 = 0
P-CCPCH AICH access slots
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14
0
1
2
3
4
5
6
7
5120 chips
(distances depend on AICH_Transmission_Timing )
UE point of view
Acquisition Indication
AICH access slots
4096 chips PRACH access slots
Preamble 5120 chips preamble-to-preamble distance
preamble-to-AI distance p-a
AS # i
Message part
Preamble
AS # i preamble-to-message distance
PRACH Sub-channels and Access Service Classes (ASC) SFN mod 8 of the corresponding P-CCPCH frame
0
1
2
3
4
5
6
7
0
0
1
2
3
4
5
6
7
1
12
13
14
Sub-channel number
2 3
9
10
4
6
7
5 6
3
4
11
0
1
2
12
13
14
8
9
10
5
6
7
7
11
8
3
4
8
9
10
11
8
9
10
11
5
6
7 8
0
1
2
12
13
14
9
10
11
3
4
5
0
1
2
12
13
14
(cited from TS 25.214 V5.11.0, chap. 6.1.1) BCCH (SIB 5, SIB 7)
UE
• ASCs and their PRACH access resources + signatures, • AC mapping into ASCs
Node B
PRACH Preamble BCCH
UE
• available signatures for random access • available preamble scrambling codes • available spreading factor • available sub-channels • etc.
UTRAN
Node B
RNC
Pi Pi
Pi Pi
16 chip 256 repetitions
Preamble Signature (16 different versions)
PRACH Preamble Scrambling Code • 512 groups à 16 preamble scrambling codes • Cell‘s primary scrambling codes associated with preamble scrambling code group
PRACH Message Part 10 ms Frame Slot 0
L1 control data
Slot 1
Slot 2
Slot 14
8 Pilot bits (sequence depends on slot number)
RACH data
2 TFCI bits
data
• SF = 256 • channelisation code: CCH,256,16*k+15 , with k = signature number
• SF = 256, 128, 64, or 32 • channelisation code: • CCH,SF,SF*k/16, with k = signature number Scrambling code = PRACH preamble scrambling code
Preamble_Initial_Power = Primary CPICH TX power – CPICH_RSCP + UL interference + Required received C/I*
PRACH Power Setting 1st preamble: power setting
estimated receive level
Constant Value attenuation in the DL
*NSN: PRACHRequiredReceivedCI
UL interference at Node B
-5..10 dB 1..8 dB
Pp-p
Pp-p Preamble
Preamble
# of preambles: 1..64
Preamble
Pp-m Control part
# of preamble cycles: 1..32
Acquisition Indication Channel (AICH) 20 ms Frame Access Slot 0
Access Slot 1
Access Slot 2
a0 a1 a2
Access Slot 14
a29 a30 a31
AICH signature pattern (fixed) 15
a j AIs b s, j s 0
Acquisition Indicator • +1 if signature s is positively confirmed • -1 if signature signature s is negatively negatively confirmed • 0 if signature signature s is not included in the set of available signatures
NSN Parameters Related to the PRACH and AICH • In RAN1, Node B L1 shall be able to simultaneously scan 12 RACH sub-channels with 4 signatures per sub-channel from UEs situating up to 'Cell radius' distance from the Node B site. • 'Cell radius' is the maximum radius of the cell and it is given from the RNC to the Node B. In RAN1, the maximum value for the 'Cell radius' is 20 km. • WCEL: PRACHRequiredReceivedCI • This UL required received C/I value is used by the UE to calculate the initial output power on PRACH according to the Open loop power control procedure. • This parameter is part of SIB 5. • [-35 dB..-10 dB]; step 1 dB; default -25 dB • WCEL: PowerRampStepPRACHPreamble • UE increases the preamble transmission power when no acquisition indicator is received by UE in AICH channel. • This parameter is part of SIB 5. • [1dB..8dB]; step 1 dB; default: 2 dB • WCEL: PowerOffsetLastPreamblePrachMessage • The power offset between the last transmitted preamble and the control part of the PRACH message. • [-5 dB..10 dB]; step 1 dB; default 2dB • WCEL: PRACH_preamble_retrans • The maximum number of preambles allowed in one preamble ramping cycle, which is part of SIB5/6. • [1 ... 64]; step 1; default 8.
NSN Parameters Related to the PRACH and AICH • WCEL: RACH_tx_Max • Maximum number of RACH preamble cycles defines how many times the PRACH pre-amble ramping procedure can be repeated before UE MAC reports a failure on RACH transmission to higher layers. • This message is part of SIB5/6. • [1 ... 32]; default 8. • WCEL: PRACHScramblingCode • The scrambling code for the preamble part and the message part of a PRACH Channel, which is part of SIB5/6. • [0 ... 15]; default 0. • WCEL: AllowedPreambleSignatures • The preamble part in a PRACH channel carries one of 16 different orthogonal complex signatures. NSN Node B restrictions: A maximum of four signatures can be allowed (16 bit field). • [0 ... 61440]; default 15. • WCEL: AllowedRACHSubChannels • A RACH sub-channel defines a sub-set of the total set of access slots (12 bit field). • [0 ... 4095]; default 4095.
NSN Parameters Related to the PRACH and AICH • WCEL: PtxAICH • This is the transmission power of one Acquisition Indicator (AI) compared to CPICH power. • This parameter is part of SIB 5. • [-22 ... 5] dB, step 1 dB; default: -8 dB. • WCEL: AICHTraTime • AICH transmission timing defines the delay between the reception of a PRACH access slot including a correctly detected preamble and the transmission of the Acquisition Indicator in the AICH. • 0 ( Delay is 0 AS), 1 ( Delay is 1 AS) ;default 0. • WCEL: RACH_Tx_NB01min • In case that a negative acknowledgement has been received by UE on AICH a backoff timer TBO1 is started to determine when the next RACH transmission attempt will be started. • The backoff timer TBO1 is set to an integer number NBO1 of 10 ms time intervals, randomly drawn within an Interval 0 NB01min NBO1 NB01max (with uniform distribution). • [0 ... 50]; default: 0. • WCEL: RACH_Tx_NB01max • [0 ... 50]; default: 50.
Summary of RACH procedure
(Adopted from TS 25.214)
1- Decode from BCCH • Available RACH spreading factors • RACH scrambling code number • UE Access Service Class (ASC) info • Signatures and sub-channels for each ASC • Power step, RACH C/I requirement = “Constant”, BS interference level 2 – Calculate initial preamble power 3 – Calculate available access slots in the next full access slot set and select randomly one of those 4 – Select randomly one of the available signatures 5 – Transmit preamble in the selected access slot with selected signature 6 – Monitor AICH • IF no AICH – Increase the preamble power – Select next available access slot & Go to 3 • IF negative AICH or max. number of preambles exceeded – Exit RACH procedure • IF positive AICH – Transmit RACH message with same scrambling code and channelisatio n code related to signature
Part VI Dedicated Physical Channel Downlink
Downlink Dedicated Physical Channel (DPCH) Superframe = 720 ms Radio Frame 0
Radio Frame 1
Radio Frame 2
Radio Frame 71
10 ms Frame Slot 0
Slot 1
Data 1 bits
DPDCH • 17 different slot formats • Compressed mode slot format for changed SF & changed puncturing
Slot 2
TPC bits
Slot 14
TFCI bits
Data 2 bits
Pilot bits
DPDCH
DPCCH
(optional)
DPCCH
Downlink Dedicated Physical Channel (DPCH) maximum bit rate
TS
discontinuous transmission with lower bit rate
TS
TS
TS DPCCH
TS
Multicode usage:
DPCH 1 TS
TS
TS
DPCH 2 TS
TS
TS DPCH 3
Power Offsets for the DPCH
• • • •
Power offsets TFCS DL DPCH slot format FDD DL TPC step size • ...
NBAP: RADIO LINK SETUP REQUEST
DCH Data Frame
Node B
Iub
Uu
RNC
P0x: 0..6 dB step size: 0.25 dB
PO2 Data 1 bits
UE
TPC bits
TFCI bits (optional)
PO3
PO1
Pilot bits Data 2 bits
Downlink Inner Loop Power Control
TPC
two modes
cell
DPC_MODE = 0
DPC_MODE = 1
unique TPC command per TS
same TPC over 3 TS, then new command
TPCest per 1 TS / 3 TS
Downlink Inner Loop Power Control UTRAN behaviour
P
P TPC P (k )
=
new DL power
P (k - 1) current DL power
+
P TPC (k )
+
power adjustment
IF Limited Power Increase Used = 'Not used'
P TPC (k ) =
TPC
+
TPC,
if TPCest (k) = 1
-
TPC,
if TPCest (k) = 0
step size: 0.5, 1, 1.5 or 2 dB
mandatory
P bal
P bal (k ), Correction term for RL balancing toward CPICH
time
Downlink Inner Loop Power Control UTRAN behaviour
P
P TPC P (k ) new DL power
=
P (k - 1) current DL power
+
P TPC (k ) power adjustment
+
P bal
P bal (k ), Correction term for RL balancing toward CPICH
time
IF Limited Power Increase Used = 'used' TPCest (k) = 1 => P TPC (k ) = 0
P TPC Power_ Raise_ Limit
K-1 DL_Power_Averaging_Window_Size
K
otherwise as see preceding slide
time
Timing Relationship between Physical Channels SFN mod 2 = 0
SFN mod 2 = 1
P-CCPCH
SCH
AICH access slots
0
1
2
3
4
5
6
0..38144 (step size 256) nth S-CCPCH
kth S-DPCH
S-CCPCH,n
DPCH,k
0..38144 (step size 256)
7
8
9
10
11
12
13
14
0
Radio Interface Synchronisation Tm = timing difference range: 0..38399 Res.: 1 chip
Relative timing between DL DPCH and P-CCPCH range: 0..38144 res.: 256 chips
P C H 2 5 5 5 ) C C P - N = 2 h S F 2 u l t ip a t . g . ( e t m ie s e a r l
Offset between DL DPCH and P-CCPCH range: 0..38399 res.: 1 chip
( e .g D L n . C F o m N = 1 2 ) T0 = 1024 chips
P C H 1 2 ) D U L F N = . C g . e ( cell1
(Frame Offset, Chip Offset)
UE
cell2 = target cell for HO
(Frame Offset)
SRNC
Part VII Dedicated Physical Channel Uplink
Uplink Dedicated Physical Channels Superframe = 720 ms Radio Frame 0
Radio Frame 1
Radio Frame 2
Radio Frame 71
10 ms Frame Slot 0
Slot 1
Slot 2
DPDCH DPCCH • 6 different slot formats • Compressed mode slot format for changed SF & changed puncturing • 7 different slot formats
Slot 14
Data 1 bits
Pilot bits
TFCI bits (optional)
FBI bits
Feedback Indicator for • Closed loop mode transmit diversity, & • Site selection diversity transmission (SSDT)
TPC bits
Discontinuous Transmission and Power Offsets
DPDCH DPDCH DPCCH
TTL
DPDCH DPCCH
DPCCH
TTL
TTL
UL DPDCH/DPCH Power Difference: two methods to determine the gain factors: • signalled for each TFCs • calculation based on reference TFCs DPDCH Nominal Power Relation Aj =
d c
=
DPCCH
UL Inner Loop Power Control SIRest
SIRtarget
time T C P T T C C P T C P P = = 0 = = 1 0 1
in FDD mode: 1500 times per second
TPC TPC_cmd
UL Inner Loop Power Control algorithms for processing power control commands TPC_cmd
PCA1
PCA2
TPC_cmd for each TS TPC_cmd values: +1, -1 step size TPC: 1dB or 2dB
TPC_cmd for 5th TS TPC_cmd values: +1, 0, -1 step size TPC: 1dB
UL DPCCH power adjustment:
PCA2 0
DPCCH
=
TPC
PCA1 3
Note that up to NSN RU 10 only PCA 1 is supported.
Rayleigh fading can be compensated
TPC_cmd
PCA2 80
km/h
Power Control Algorithm 1 Example: reliable transmission Cell 3 TPC3 = 1 TPC_cmd = -1 (Down)
TPC1 = 1
Cell 1
Note that up to NSN RU 10 only PCA 1 is supported.
TPC3 = 0
Cell 2
Power Control Algorithm 2 (part 1)
TPC = 1
TPC_temp
TPC = 1
0
TPC = 1
0
TPC = 1
0
TPC = 1
0
TPC = 1
1
TPC = 0
0
TPC = 1
0
TPC = 0 TPC = 1
0 0
TPC = 0
0
TPC = 0
0
TPC = 0
0
TPC = 0
0
TPC = 0
0 -1
Note that up to NSN RU 10 PCA 2 is not supported.
• if all TPC-values = 1 TPC_temp = +1 • if all TPC-values = 0 TPC_temp = -1 • otherwise TPC_temp = 0
Power Control Algorithm 2 (part 2) Example:
TPC_temp1 TPC_temp 2 TPC_temp3
N=3
1
N
TPC_temp N
i
i 1
Note that up to RU 10 PCA 2 is not supported. TPC_cmd =
-1
-0.5 -1
0 0
1
0.5 1
Initial Uplink DCH Transmission DPCCH only
DPCCH & DPDCH
reception at UE
transmission at UE
0 to 7 frames for power control preamble DL Synch & Activation time
DPCCH only
0 to 7 frames of SRB delay DPCCH & DPDCH
DPCCH_Initial_power = – CPICH_RSCP + DPCCH_Power_offset
Part VIII HSDPA Physical Channels
HSDPA – General principle
• Channel quality information • Error correction Ack/Nack
•Shared DL data channel
L1 Feedback
•Fast link adaptation, scheduling and L-1 error correction done in BTS
Data
Terminal 1 (UE)
•1 – 15 codes (SF=16)
L1 Feedback Data
•QPSK or 16QAM modulation •User may be time and/or code multiplexed.
Terminal 2
HSDPA features HSDPA
Fast Link Adaptation
Fast Link Adaptation: Modulation and Coding is adapted every 2 ms (1 TTI) during the session to the radio link quality. This ensures highest possible data rates to end-users.
Fast Packet scheduling
Fast H-ARQ
Fast H-ARQ: Data are retransmitted by BTS. UE acknowledges (L1) and performs soft combination of initial transmission & retransmissions. This provides reliable, fast and efficient data transmission.
Fast Packet Scheduling: The NodeB is responsible for resource allocation to HSDPA packet data users. Resource allocation is performed every TTI = 2 ms. For resource allocation, the users radio link quality may be taken into account. Fast Packet Scheduling improves the spectrum efficiency.
Interaction of MAC-hs and Physical Layer
HSDPA Peak Bit Rates Coding Codingrate rate
Coding Codingrate rate
55codes codes
10 10codes codes
15 15codes codes
1/4 1/4
600 600kbps kbps
1.2 1.2Mbps Mbps
1.8 1.8Mbps Mbps
2/4 2/4
1.2 1.2Mbps Mbps
2.4 2.4Mbps Mbps
3.6 3.6Mbps Mbps
3/4 3/4
1.8 1.8Mbps Mbps
3.6 3.6Mbps Mbps
5.4 5.4Mbps Mbps
2/4 2/4
2.4 2.4Mbps Mbps
4.8 4.8Mbps Mbps
7.2 7.2Mbps Mbps
3/4 3/4
3.6 3.6Mbps Mbps
7.2 7.2Mbps Mbps
10.7 10.7Mbps Mbps
4/4 4/4
4.8 4.8Mbps Mbps
9.6 9.6Mbps Mbps
14.4 14.4Mbps Mbps
QPSK QPSK
16QAM 16QAM
RAS06 allows allocation of up to 15 Codes; 14.4 Mbps total;
up to 3 simultaneous user; max. 10 Mbps/user RU10
allows max. 14.4 Mbps/user
Physical Channels for One HSDPA UE
BTS
S H H C x S 5 D 1 - P 1
H C C S S H x 4 1
H C H C C P P D - D S F H
H C P D d e t a i c o s s A
UE
H C P D d e t a i c o s s A
Rel99 DCH
DL CHANNELS HS-PDSCH: High-Speed Physical Downlink Shared Channel HS-SCCH: High-Speed Shared Control Channel F-DPCH: Fractional Dedicated Physical Channel Associated DPCH, Dedicated Physical Channel. UL CHANNELS Associated DPCH, Dedicated Physical Channel HS-DPCCH: High-Speed Dedicated Physical Control Channel
HSDPA DL physical channels HS-PDSCH: High-Speed Physical Downlink Shared Channel • Transfers actual HSDPA data of HS-DSCH transport channel. • 1-15 code channels. • QPSK or 16QAM modulation. • Divided into 2ms TTIs
• Fixed SF16 • Doesn’t have power control HS-SCCH: High-Speed Shared Control Channel • Includes information to tell the UE how to decode the next HS-PDSCH frame • Fixed SF128
• Shares downlink power with the HS-PDSCH • More than one HS-SCCH required when code multiplexing is used • Power can be controlled by node B (proprietary algorithms)
Field
Number of uncoded bits
Channelisation code set information
7 bits
Modulation scheme information
1 bit
Transport block size information
6 bits
Hybrid ARQ process information
3 bits
Redundancy and constellation version
3 bits
New data indicator
1 bit
UE identity
16 bits
HSDPA DL physical channels F-DPCH: Fractional Dedicated Physical Channel
• • • •
The F-DPCH carries control information generated at layer 1 (TPC commands). It is a special case of DL DPCCH
fixed SF = 256 Frame structure of the F-DPCH: each 10 ms frame is split into 15 slots (each of 2/3 ms), corresponding to 1 power-control period • Up to 10 users can share the same F-DPCH to receive power control information (per user: 2 F-DPCH bits/slot = 1.5 ksymb/s).
• Introduced in Rel. 6 for situations where only packet services are active in the DL others than the Signalling Radio Bearer SRB • Should be used in case of low data rate packet services handled by HSDPA & HSUPA, where the associated DPCH causes to much (power) overhead and code consumption Associated DPCH, Dedicated Physical Channel • Transfers L3 signalling (Signalling Radio Bearer (SRB)) information e.g. RRC measurement control messages • Power control commands for associated UL DCH • DPCH needed for each HSDPA UE.
HSDPA UL physical channels HS-DPCCH: High-Speed Dedicated Physical Control Channel • MAC-hs Ack/Nack information (send when data received). • Channel Quality Information, CQI reports (send in every 4ms) • SF 256 • Power control relative to DPCH • No SHO
Associated DPCH, Dedicated Physical Channel • DPCH needed for each HSDPA UE. • Transfers signalling • Also transfers uplink data 64, 128, 384kbps, e.g. TCP acks and UL data transmission
Physical channel structure – Time multiplexing 3GPP enables time and code multiplexing.
1 radio frame (15 slots, total 10 ms) 2 ms 1
2
3
Subframe #1
2 slots
U E1
U E1
4
5
6
Subframe #2
U E1
U E1
U E1
U E2
U E2
U E2
U E1
U E1
U E1
U E2
U E2
U E2
U E1
U E1
U E1
U E1
U E2
U E2
U E2
U E3
U E3
7
8
9
Subframe #3 U E3
U E3
U E3
U E1
U E3
10
11
12
Subframe #4
13
14
15
Subframe #5
U E1
HS-PDSCH #1
U E1
HS-PDSCH #2
U E1
HS-PDSCH #3
User data on HS-DSCH
HS-SCCH
Picture presents time multiplexing • One HS-SCCH required per cell • Codes can be allocated only to one user at a time
3 slots UE #3
L1 feedback L1 feedback
UE #2
UE #1
L1 feedback
HS-DPCCH
HS-DPCCH
HS-DPCCH
Code Multiplexing With Code Multiplexing, multiple UEs can be scheduled during one TTI. Multiple HS-SCCH channels • One for each simultaneously receiving UE. • HS-SCCH power overhead.
HS-PDSCH codes divided for different transport blocks. • Multiple simultaneous transport
HS-SCCH HS-SCCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH HS-PDSCH
blocks to one UE not possible.
Codes can be allocated to multiple users at same time • Important when cell supports more codes than UEs do. For example 10 codes per cell, UE category 6.
cat 8
cat 6
cat 6
cat 6
cat 6
Timing of HSDPA Physical Channels P-CCPCH HS-SCCH HS-PDSCH 2 slots
3 slots
TTX_diff
Unit = chips 2560 chips = slot 3 slots = (HSDPA) subframe 15 slots = frame
Tprop + 7.5 slots
Downlink DPCH Node B UE Tprop + 0.4 slots (1024 chips)
Uplink DPCH m x 0.1 slots = TTX_diff + 10.1 slots HS-DPCCH
Downlink Code Allocation example
SF = 1 SF = 2 SF = 4 SF = 8 SF = 16 SF = 32
Codes for 5
SF = 64
HS-PDSCH's
SF = 128 SF = 256
Code for one HS-SCCH Codes for the cell common ch annels
•166 codes @ SF=256 available for the associated DCHs and non-HSDPA uses
Fast Link Adaptation in HSDPA ]
B d [
o N s E
s u o e n a t n a t s nI
16 C/I received by UE 14 12 10 8 6 4 2 0 -2 0
16QAM3/4 16QAM2/4 QPSK3/4 QPSK2/4 QPSK1/4
20
C/I varies with fading
40
60
80
100
120
140
Time [number of TTIs] Link adaptation mode
BTS adjusts link adaptation mode with a few ms delay based on channel quality reports from the UE
160
Link adaptation: Modulation Q
10
Q 1011
1001
0001
0011
1010
1000
0000
0010
00
I 11
I 1110
1100
0100
0110
1111
1101
0101
0111
01
QPSK
16QAM
2 bits / symbol = 480 kbit/s/HS-PDSCH = max. 7.2 Mbit/s
4 bits / symbol = 960 kbit/s/HS-PDSCH = max. 14.4 Mbit/s
3GPP Rel. 7 introduces DL 64QAM support for HS-PDSCH
UE HS-DSCH physical layer categories HS-DSCH category
QPSK or 16QAM
QPSK only
TS 25.306
Maximum number of HS-DSCH codes received
Minimu m interTTI interval
Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI
ARQ Type at maximum data rate
Total number of soft channel bits
Category 1
5
3
7298
Soft
19200
Category 2
5
3
7298
IR
28800
Category 3
5
2
7298
Soft
28800
Category 4
5
2
7298
IR
38400
Category 5
5
1
7298
Soft
57600
Category 6
5
1
7298
IR
67200
Category 7
10
1
14411
Soft
115200
Category 8
10
1
14411
IR
134400
Category 15 1 20251 Soft 9 • 3GPP Rel. 7 introduces Categories 13 – 18 for 64QAM or MIMO support
172800
• 3GPP Rel. 8 introduces Categories Category 15 1 19 & 20 for 64QAM 27952& MIMO support
172800
IR
Channel quality indication (CQI) from HSDPA UE UE reports the channel conditions to the base station via the uplink channel CQI field on the HSDPCCH
BTS
S H H C x S 5 D 1 - P 1
H C C S S H x 4 1
H C C P D S H
Rel99 DCH
d d e e t t H a H a i i c C c C P o o P s D s D s s A A
UE
UE estimates which AMC format CQI (0…30) will provide transport block error probability < 10 % on HS-DSCH WBTS uses CQI as one input when defining the AMC format used on the HS-PDSCH • Transport Block Size • Number of HS-PDSCH (codes) • Modulation • Incremental redundancy
MAC-hs UE:
RNC:
HS-DPCCH
HS-DSCH HS-SCCH
Retransmissions in HSDPA MAC-hs Layer-1 Server
RNC
Node-B
retransmissions
UE
TCP retransmissions RLC retransmissions
HSDPA L1 Retransmissions : Chase Combining Turbo Encoder
Systematic Parity 1 Parity 2
Rate Matching (Puncturing) Original transmission Systematic Parity 1 Parity 2
Chase Combining (at Receiver)
Systematic Parity 1 Parity 2
Retransmission
HSDPA L1 Retransmissions : Incremental Redundancy Turbo Encoder
Systematic Parity 1 Parity 2
Rate Matching (Puncturing) Original transmission Systematic Parity 1 Parity 2
Incremental Redundancy Combining
Systematic Parity 1 Parity 2
Retransmission
Power control on HSDPA channels Associated UL and DL DPCH utilise normal closed loop power control DL HS-PDSCH • Fixed power or variable power e.g. according to load conditions DL HS-SCCH • 3GPP specifications do not explicitly specify any closed loop PC modes for the HS-SCCH
• The Node-B must rely on feedback information from the UE related to the reception quality of other channel types, such as: – Power control commands for the associated DPCH – CQI reports for HS-DSCH – ACK/NACK feedback or DTX in uplink HS-DPCCH UL HS-DPCCH • Based on associated DPCH power control with power offsets
• The power offsetHS-DP parameters [ACK; NACK; CQI ] are controlled by the RNC and CQI report CCH Ack/Nack reported to the UE using higher layer signalling ACK ; NACK
DPCCH
CQI
CQI
Part IX HSUPA Physical Channels
HSUPA – General principle
• Channel quality Information • Error correction Ack/Nack 1-Scheduling request to Node B 2-allocation of allowed PWR (resources) 3-Data tx 4-L1 Feedback 5-More or less PWR is granted if needed
• E-DCH • Node B controlled scheduling • HARQ • SF=256-2 • Multi-Code operation • QPSK modulation only Dual-branch BPSK on I- & Q-branch
• Fast Link Adaptation (Adaptive Coding), no enhanced/ adaptive modulation in Rel. 6
• SHO supported
UE
HSUPA features HSUPA Fast Link Adaptation
Fast Link Adaptation: HSUPA (Rel. 6): The coding is adapted dynamically every TTI (2 ms / 10 ms) by the UE to radio link quality. Modulation is fixed to QPSK in Rel. 6. Rel. 7 offers adaptation of the modulation (QPSK/16QAM), too. Fast Link Adaptation improves the spectrum efficiency significant.
Fast H-ARQ Fast H-ARQ: UE and Node B are responsible for acknowledged PS data transmission. Data retransmission is handled by UE. NodeB performs soft combining of original and Re-transmissions to enhance efficiency. This provides fast & efficient error correction.
Fast Packet Scheduling
Fast Packet Scheduling: NodeB schedules UL resource allocation (every TTI = 2/10ms) .
Physical Layer in Interaction with MAC-e
HSUPA Peak Bit Rates
Coding Codingrate rate
2codes 2codesxxSF2 SF2 1code x SF4 2codes x SF4 2codes x SF2 + 1code x SF4 2codes x SF4 2codes x SF2 + 2codes 2codesxxSF4 SF4
1/4 1/4
480 480kbps kbps
960 960kbps kbps
1.92 1.92Mbps Mbps
2.88 2.88Mbps Mbps
3/4 3/4
720 720kbps kbps
1.46 1.46Mbps Mbps
2.88 2.88Mbps Mbps
4.32 4.32Mbps Mbps
4/4 4/4
960 960kbps kbps
1.92 1.92Mbps Mbps
3.84 3.84Mbps Mbps
5.76 5.76Mbps Mbps
NSN RU10 (WBTS5.0) gives support to UE categories 1-7 up to 1.92 (about 2) Mbps (2 x SF2) per UE (only 10 ms TTI, ¼ coding)
Physical Channels for One HSUPA UE
BTS H C D P D E x 4 1
H C C P D E
H H H C C C G G I R H A - - E E E
UE
H C P D d e t a i c o s s A
DL CHANNELS E-AGCH: E-DCH Absolute Grant Channel E-RGCH: E-DCH Relative Grant Channel E-HICH: E-DCH Hybrid ARQ Indicator H Rel99 C Channel P DCH D Associated DPCH, Dedicated Physical d e t Channel. a i c UL CHANNELS o s s E-DPDCH: Enhanced Dedicated A Physical Data Channel E-DPCCH: Enhanced Dedicated Physical Control Channel Associated DPCH, Dedicated Physical Channel
HSUPA UL physical channels E-DPDCH: Enhanced Dedicated Physical Data Channel • carries UL packet data (E-DCH) • up to 4 E-DPDCHs for 1 Radio Link • SF = 256 – 2 (BPSK) • pure user data & CRC • CRC size: 24 bit (1 CRC/TTI) • TTI = 2 / 10 ms • UE receives resource allocation via Grant Channels • managed by MAC-e/-es • Error Protection: Turbo Coding 1/3 • Soft/Softer Handover support E-DPCCH: Enhanced Dedicated Physical Control Channel • transmits control information associated with the E-DCH • 0 or 1 E-DPCCH for 1 Radio Link • SF = 256 Associated DPCH, Dedicated Physical Data Channel • DPCH needed for each HSUPA UE. • Transfers signalling • Also transfers uplink data 64, 128, 384kbps, e.g. TCP acks and UL data transmission
E-DCH: E-DPDCH & E-DPCCH cd,1
d
New in Rel. 6 for HSUPA: E-DPDCH & E-DPCCH
Rel. `99
DPDCH1 cd,3
d
DPDCH3
cd,5
I
E-DPDCH: used to carry the E-DCH transport channel . There may be 0, 1, 2 or 4 E-DPDCH on each radio link.
d
DPDCH5
E-DPCCH:
I+jQ cd,2
d
cd,4
d
used to transmit control information associated with the E-DCH.
Sdpch
DPDCH2
Maximum number of simultaneous UL DCHs Configurati DPDCH on #
DPDCH4 cd,6
d
cc
c
DPDCH6
DPCCH
Q
j
EEHSDPCCH DPDCH DPCCH
1
6
1
-
-
2
1
1
2
1
3
-
1
4
1
E-DPDCH : SF-Variation & Multi-Code Operation SF = 1
SF = 4
SF = 2
SF = 8
SF = 64 CC64,0 CC64,1
CC4,0 = (1,1,1,1)
CC64,2
CC2,0 = (1,1)
CC1,0 = (1)
CC4,1 = (1,1,-1,-1)
••• CC4,2 = (1,-1,1,-1)
• • NDPDC • H
E-
CCSF,k
DPDCHk
CCSF,SF/4 if SF CC2,1 = (1,-1) CC4,3 = (1,-1,-1,1)
E-DPDCH: SF = 256 - 2 SF = 2
E-DPDCH1
CC64,62 CC64,63
4 CC2,1 if SF = 2
0
1920 kbit/s
E-DPDCH2
CC4,1 if SF = 4 CC2,1 if SF = 2
E-DPDCH3
Multi-Code operation:
CC4,1
E-DPDCH4
up to 2 x SF2 + 2 x SF4
E-DPDCH1
up to 5.76 Mbps 1
CCSF,SF/2 CC
if SF = 4
E-DPDCH & E-DPCCH frame structure and content E-DPDCH: Data only (+ 1 CRC/TTI); SF = 256 – 2; Rchannel = 15 – 1920 kbps Ndata = 10 x 2k+2 bit (K = 0..5) E-DPCCH: L1 control data;
SF = 256;
10 bit
1 Slot = 2560 chip = 2/3 ms
Slot #0
Slot #1
Slot #2
Slot #14
Slot #i
1 subframe = 2 ms 1 radio frame, T frame = 10 ms
E-DPCCH content: • E-TFCI information (7 bit) indicates E-DCH Transport Block Size; i.e. at given TTI (TS 25.321; Annex B) • Retransmission Sequence Number RSN (2 bit) Value = 0 / 1 / 2 / 3 for: Initial Transmission, 1st / 2nd / further Retransmission • „Happy" bit (1 bit) indicating if UE could use more resources or not Happy 1 Not happy 0
Bit/ Fram e
Bit/ Subfram e
Bit/Slo t Ndata
k
SF
Channel Bit Rate [kbps]
0
64
60
600
120
40
1
32
120
1200
240
80
2
16
240
2400
480
160
3
8
480
4800
960
320
4
4
960
9600
1920
640
5
2
1920
1920 0
3840
1280
HSUPA DL physical channels E-AGCH E-DCH Absolute Grant Channel carries DL absolute grants for UL E-DCH contains: UE-Identity (E-RNTI) & max. UE power ratio E-DCH absolute grant transmitted over 1 TTI (2/10 ms) SF = 256 (30 kbps; 20 bit/Slot)
E -A E G CH -A G CH E -R C E -R G G H C H
NodeB
E E D --D D PP H D C C H E-RGCH
UE
E-DCH Relative Grant Channel carries DL relative grants for UL E-DCH; complementary to E-AGCH contains: relative Grants („UP“, „HOLD“, „DOWN“) & UE-Identity E-DCH relative grant transmitted 1 TTI (2/10 ms) SF = 128 (60 kbps; 40 bit/Slot)
E-DCH transmission: after E-AGCH after E-RGCH Non-scheduled transmission
E-DCH Radio Network Temporary Identifier: allocated by S-RNC for E-DCH user per Cell
HSUPA DL physical channels
E PD E -- DD C H P D C E H I CH E -H H I C ( NodeB
H ( AAC K C K / C / NNA A C KK ) )
E E -- D D P P D D C ( R C HH ( R ee - -t t r a n r a ns i s m s m io i s ssi o n ) n )
E-HICH E-DCH Hybrid ARQ Indicator Channel carries H-ARQ acknowledgement indicator for UL E-DCH contains ACK/NACK (+1; -1) & UE-Identity E-DCH relative grant transmitted 1 TTI (2/10 ms) SF = 128 (60 kbps; 40 bit/Slot)
UE
HSUPA DL physical channels E-AGCH: E-DCH Absolute Grant Channel • carries DL absolute grants for UL E-DCH • contains: UE-Identity (E-RNTI) & max. UE power ratio • E-DCH absolute grant transmitted over 1 TTI (2/10 ms) • SF = 256 (30 kbps; 20 bit/Slot) E-RGCH: E-DCH Relative Grant Channel • carries DL relative grants for UL E-DCH; • complementary to E-AGCH • contains: relative Grants („UP“, „HOLD“, „DOWN“) & UE-Identity • E-DCH relative grant transmitted 1 TTI (2/10 ms) • SF = 128 (60 kbps; 40 bit/Slot) E-HICH: E-DCH Hybrid ARQ Indicator Channel • carries H-ARQ acknowledgement indicator for UL E-DCH • contains ACK/NACK (+1; -1) & UE-Identity • E-DCH relative grant transmitted 1 TTI (2/10 ms) • SF = 128 (60 kbps; 40 bit/Slot) Associated DPCH, Dedicated Physical Channel • Transfers L3 signalling (Signalling Radio Bearer (SRB)) information e.g. RRC measurement control messages • Power control commands for associated UL DCH • DPCH needed for each HSUPA UE.
Adaptive Coding in HSUPA
• HSUPA adapts the Coding to the current Radio Link Quality • HSUPA varies the effective Coding between 1/4 – 1(4/4)
Node B
UE
4/4
3/4
2/4
1/4
UE
Note that support for 4/4 coding is optionally given by UE and not supported in NSN RU 10!
Modulation in HSUPA • Rel. 6 defines only QPSK (“Dual-branch BPSK“) as modulation method for HSUPA. • 16QAM Modulation (“ Dual-branch QPSK”) has been regarded as to complex for initial HSUPA • (16 QAM = Dual-branch QPSK is defined in Release 7) • no Adaptive Modulation takes place in Rel. 6; Adaptive Modulation with QPSK/16QAM in Rel. 7
“Dual-Branch BPSK 1-Bit Keying (Q)
QPSK: I -1
1
2-Bit Keying 16 QAM 64QAM
on both Code Trees in the UE
FDD E-DCH physical layer categories max. E- DCH Category E-DCH Codes
min. SF
2 & 10 ms TTI E-DCH support
max. #. of E-DCH Bits* / 10 ms TTI
max. # of E-DCH Bits* / 2 ms TTI
Reference combination Class
1
1
4
10 ms only
7110
-
0.73 Mbps
2
2
4
10 & 2 ms
14484
2798
1.46 Mbps
3
2
4
10 ms only
14484
-
1.46 Mbps
4
2
2
10 & 2 ms
20000
5772
2.92 Mbps
5
2
2
10 ms only
20000
-
2.0 Mbps
6
4
2
10 & 2 ms
20000
11484
5.76 Mbps
7*
4
2
10 & 2 ms
20000
22996
11.52 Mbps
Extracted from TS 25.306: UE Radio Access Capabilities 7* category 7 is defined in 3GPP Rel 7 and supports QPSK and 16 QAM in Uplink NSN RU10 (WBTS5.0) gives support to UE categories 1-7 up to 2 Mbps per UE (only 10 ms TTI)
MAC Architecture: UE Side MAC-es/MAC-e are handling E-DCH specific functions • Split between MAC-es & MAC-e in the UE is not detailed • comprises following entities: • H-ARQ: buffering MAC-e payloads & re-transmitting them • Multiplexing : concatenating multiple MAC-d PDUs MAC-es PDUs & multiplex 1 / multiple MAC-es PDUs 1 MAC-e PDU • E-TFC selection: Enhanced Transport Format Combination selection according to scheduling information (Relative & Absolute Grants) received from UTRAN via L1 PCCH BCCH CCCH
MAC Control
CTCH
DCCH DTCH
DTCH
MAC-d MAC-es/ MAC-e
MAC-hs
E-DCH
HS-DSCH
associated DL Signalling
associated UL Signalling
associated DL Signalling
MAC-c/sh
PCH
associated UL Signalling
FACH FACH RACH
CPCH
DSCHDSCH
DCH
DCH
MAC Architecture: UTRAN side 1 MAC-e entity in Node B for each UE & 1 E-DCH scheduler function handle HSUPA specific functions in Node B • E-DCH Scheduling: manages E-DCH cell resources between UEs; implementation proprietary • E-DCH Control: receives scheduling requests & transmits scheduling assignments. • De-multiplexing: de-multiplexing MAC-e PDUs • H-ARQ: generating ACKs/NACKs
Node B
MAC Control
• Reordering: reorders received MAC-es PDUs according to the received TSN • Macro diversity selection: for SHO (Softer HO in Node-B). delivers received MAC-es PDUs from each Node B of E-DCH AS reordering function • Disassembly: Remove MAC-es header, extract MAC-d PDU’s & deliver MAC-d MAC Control
MAC Control
PCCH
RNC
• 1 MAC-es entity for each UE in S-RNC
BCCH CCCH CTCH
MAC Control MAC Control DCCH DTCH DTCH
MAC-es Configuration without MAC-c/sh
MAC-e
E-DCH associated DL Signalling
associated UL Signalling
MAC-hs
Configuration with MAC-c/sh
HSIub DSCH associated associated DL Signalling UL Signalling
PCH
Configuration with MAC-c/sh
MAC-d
MAC-c/sh
FACH
RACH
CPCH
DSCH
Iur or local
DCH DCH
HSUPA Fast Packet Scheduling HSUPA HSUPA(Rel. FastPacket PacketScheduling: Scheduling: (Rel.6) 6)Fast • • Node NodeBBcontrolled controlled • • resources resourcesallocated allocatedon onScheduling SchedulingRequest Request • • short TTI = 2 / 10 ms short TTI = 2 / 10 ms • • Scheduling SchedulingDecision Decisionon onbasis basisofofactual actualphysical physicallayer layerload load(available (availableinin Node NodeB) B) up-to date / Fast scheduling decision high UL resource efficiency up-to date / Fast scheduling decision high UL resource efficiency higher Load Target (closer to Overload Threshold) possible higher Load Target (closer to Overload Threshold) possible high highUL ULresource resourceefficiency efficiency L1 signalling overhead L1 signalling overhead
Scheduling Request (buffer occupation,...)
S-RNC
Scheduling Grants
Iub
Node B
(max. amount of UL resources to be used)
E-DCH E-DCH
data datatransmission transmission
UE
HSUPA Link Adaptation MAC-e (UE) decides E-DCH Link Adaptation (TFC; effective Coding)
on basis of: • Channel quality estimates (CPICH Ec/Io) Scheduling
• Every TTI (2/10 ms)
Request Scheduling Grants
Node B
Rel.99: 99: Rel. Fixed Fixed TurboCoding Coding1/3 1/3 Turbo
E -
H DC ( T I = E -D ( TT TI = 2 / C H 2 / 1 1 00 m m s ) s ) Rel. Rel.66HSUPA HSUPA: : dynamic dynamicLink LinkAdaptation Adaptation effectiveCoding Coding1/4 1/4 - -4/4 4/4 effective higher UL higher ULdata datarates rates higher resource efficiency higher resource efficiency
UE
HSUPA Fast H-ARQ HSUPA: HSUPA:Fast FastH-ARQ H-ARQwith withUL ULE-DCH E-DCH • • Node NodeBB(MAC-e) (MAC-e)controlled controlled H-ARQ protocol • • SAW* SAW* H-ARQ protocol • • based DL(L1) ACK/NACK basedon onsynchronous synchronousDL (L1)ACK/NACK • • Retransmission strategies: Retransmission strategies: Incremental IncrementalRedundancy Redundancy&&Chase ChaseCombining Combining st 40 / 16 ms • • 11stRetransmission (TTI Retransmission 40 / 16 ms (TTI==10 10/ /22ms) ms) • • limited number of Retransmissions* limited number of Retransmissions* • • lower lowerprobability probabilityfor forRLC RLCRetransmission Retransmission Soft & Softer Handover • • Support of Support of Soft & Softer Handover
Short delay times Short delay times
(support (supportofofQoS QoSservices) services) less Iub/ Iur traffic less Iub/ Iur traffic
E-DCH E-DCHPackets Packets RNC correctly correctlyreceived received packets packets
UE
L1ACK/NACK ACK/NACK L1
Node B
Retransmission Retransmission
Iub MAC-e MAC-econtrols controlsL1 L1H-ARQ: H-ARQ: • •storing & retransmitting storing & retransmittingpayload payload • •packet combining (IR & CC) packet combining (IR & CC)
IR: Incremental Redundancy CC: Chase Combining HARQ: Hybrid Automatic Repeat Request SAW: Stop-and-Wait * HARQ profile - max. number of transmissions attribute
HSUPA Soft Handover SHO Gains:
Soft SoftHandover: Handover:
full Coverage
UE UEconnected connectedtotoUTRAN UTRAN via different Node via different NodeBs Bs
for HSUPA Node B
UE Iub
Node B
Softer SofterHandover: Handover:
• •UE UEconnected connectedtotocells cellsofofsame same Node B (same MAC-e entity) Node B (same MAC-e entity) • •combining combiningNode NodeBBinternal internal • •no extra Iub capacity no extra Iub capacityneeded needed
Sector cells
Node B
Node B
Iub
S-RNC: S-RNC:
select selectE-DCH E-DCH data data(MAC-es) (MAC-es) &&deliver delivertotoCN CN
R N C
EDCH AS
Iu
CN
Iub
E-DCH E-DCHActive ActiveSet: Set: • • set setofofcells cellscarrying carryingthe the E-DCH for 1 UE. E-DCH for 1 UE. • • can canbe beidentical identical/ /aa subset subsetofofDCH DCHAS AS • • isisdecided by the decided by theS-RNC S-RNC
Iub
R N C
EDCH AS
View more...
Comments