01-R Matemático (1 - 6)
Short Description
Download 01-R Matemático (1 - 6)...
Description
Raz. Matemático
1
Situaciones Lógicas y Recreativas
OBJETIVOS: Utilizar sus habilidades creativas con sentido lógico al afrontar la resolución de nuevas situaciones proble-máticas. Descubrir lo ameno que es jugar con las matemáticas.
Nociones Previas
Resolución:
Los ejercicios tratados en este capítulo muestran situaciones, a veces familiares pero relacionadas con el pensamiento creativo, y a medida que los vayas resolviendo, amigo lector, mejorará notoriamente tu capacidad de razonamiento.
♦ Jueves < > + 1 + 0 Jueves < > + 1
(Dato)
♦ Piden: -2 +1 + 2 = +1 < > Jueves ∴ Rpta.: d
Para resolver estos tipos de problemas se deben sacar conclusiones con solamente un criterio lógico, sin hacer uso de conocimentos profundos de la matemática y la lógica. Se verán problemas sobre relación de tiempos, ejercicios con cerillos, problemas sobre parentescos, problemas sobre traslados, problemas sobre calendarios, problemas sobre certezas y problemas sobre orden de información.
Ejemplo 2: Siendo el mañana de pasado mañana martes, ¿qué día será el anteayer del ayer de mañana? a) sábado d) jueves
b) miércoles e) domingo
c) lunes
Resolución: ♦ Dato : +1 + 2 = +3 < > martes Piden : -2 -1 + 1 = -2
“Defiende tu derecho a pensar, porque incluso pensardemaneraerrónea es mejor que no pensar”.
J V
S D L M
-2 -1 0 +1 +2 +3
(Piden)
Hipatía
(Dato) ∴ Rpta.: e
I. PROBLEMAS SOBRE RELACIÓN DE TIEMPOS Ejemplo 1: Siendo jueves el mañana de hoy, ¿qué día será el anteayer del mañana de pasado mañana? a) miércoles d) lunes
b) jueves e) sábado
c) martes
* SISTEMA RELACIÓN - TIEMPO Ejemplo 3: Si el anteayer de dentro de 5 días es domingo, ¿qué día será el pasado mañana de ayer de hace 3 días del pasado mañana de mañana? a) lunes d) viernes
b) sábado e) jueves
c) martes
9
5to Secundaria Resolución: Dato: -2 + 5 domingo +3 domingo ... (I)
Resolución: Hagamos un gráfico
Piden: +2 - 1 - 3 + 2 + 1 = 1 ...(II) ahora de (I) y (II): Dato
+1
+3
+2
viernes
sábado
domingo
abuelo
Incógnita ∴ Rpta.: e Ejemplo 4: Si el anteayer del mañana de pasado mañana es martes, ¿qué día fue el ayer del ayer de anteayer?
Ejemplo 2: En un restaurante estaban presentes: 1 padre, 1 madre, 1 tío, 1 tía, 1 hermano, 1 hermana, 1 sobrino, 1 sobrina y 2 primos. Si cada uno consumió un menú de 5 soles, ¿cuánto gastaron en total, como mínimo?
Resolución: Dato: Anteayer del mañana de +1
a) 30 soles b) 40 soles d) 50 soles e) 60 soles
pasado mañana martes +2
⇒ -2 + 1 + 2 martes
+1 martes
Piden:
Ayer del ayer de anteayer -1
-1
-2
= -1 - 1 - 2 = - 4 retroceder
-4
-2
-3
jueves viernes
es el abuelo de Camila.
∴ Rpta.: d
a) lunes d) sábado b) martes e) viernes c) jueves
-1
∴ Del gráfico se deduce que el hermano de ese hombre
-4
sábado domingo
0
Dato
c) 20 soles
Resolución: En este tipo de problemas debemos tener en cuenta, en el momento de la resolución, que cada uno de los integrantes de la familia puede desempeñar en un mismo problema papeles diferentes. Así por ejemplo, una misma persona puede ser padre e hijo a la vez. Luego haciendo un esquema utilizando la menor cantidad de personas, se tiene:
+1
lunes martes
Incógnita
∴ Rpta.: c
II. PROBLEMAS SOBRE PARENTESCO Ejemplo 1: Camila ve en la vereda a un hombre y dice: “El único hermano de ese hombre es el padre de la suegra de mi esposo”. ¿Qué parentesco tiene el hermano de ese hombre con Camila? a) padre d) abuelo 10
b) tío e) suegro
c) tío abuelo
∴ Como mínimo estuvieron 4 personas. Luego pagaron 4(S/. 5) = S/. 20 ∴ Rpta.: b
Raz. Matemático
1
¿Cuántos cerillos debes mover como mínimo
3
para formar siete cuadrados?
La hermana del hijo de la hermana del hijo del hermano de mi padre es mi: Resolución:
Resolución:
Rpta:
2
Rpta:
¿Cuántos palitos hay que mover como mínimo
4
para obtener una verdadera igualdad?
¿Qué parentesco tiene conmigo, la hija de la nuera de la mamá de mi madre? Resolución:
Resolución:
Rpta:
Rpta: 11
5to Secundaria Rosa ve en el mercado a un hombre y dice: “El
5
único hermano de ese hombre es el padre de la
mañana de hace 3 días es miércoles, ¿qué día
suegra de mi esposo”. ¿Qué parentesco tiene el
será el ayer del pasado mañana del mañana del
hermano de ese hombre con Rosa?
pasado mañana?
Resolución:
Resolución:
Rpta:
Rpta:
7.
De las fichas que se muestran en la figura, ¿cuáles deben ser invertidas para que la suma de los puntos de la parte superior sea el triple de la suma de las partes de la parte inferior?
(1)
(2)
(4)
a) 2 y 5 b) 3 y 4 d) 2 y 4
12
Si el mañana del pasado mañana del ayer de
6
8.
Si el ayer del pasado mañana del mañana de anteayer de mañana es jueves, ¿qué día fue ayer? a) lunes d) jueves b) martes e) domingo c) miércoles
9.
El hermano de Sofía tiene un hermano más que hermana. ¿Cuántos hermanos más que hermanas tiene Sofía?
a) 3 b) 1 d) 5
(3)
(5)
c) 2 e) 4
10. Si el presente mes tiene 5 martes, 5 miércoles y 5 jueves, ¿qué día caerá el 20 de dicho mes? c) 1 y 3 e) 1 y 2
a) sábado d) jueves e) viernes
b) lunes c) domingo
Raz. Matemático 11. Coloca los números del 1 al 9, uno por círculo, de manera que las sumas de los números de cada lado sea igual a 20. Da como respuesta la suma de los números que van en los vértices.
1.
Si hoy es jueves, ¿qué día de la semana fue hace 100 días? a) lunes d) viernes b) martes e) domingo c) sábado 2.
12. En la siguiente figura, distribuye los números del 1 al 12, de modo que la suma de los números que se hallan en cada lado del cuadrado sea 22. De como respuesta la suma de los números que van en los vértices (x + y + z + w). w
y
z
4.
Si el ayer del anteayer de mañana es sábado, ¿qué día será el mañana del mañana del pasado mañana de ayer?
a) lunes b) miércoles c) jueves
5.
Martín se jactaba de tratar muy bien a la suegra de la mujer de su hermano, ¿por qué?
d) viernes e) sábado
¿Cuántos cerillos se debe mover como mínimo para obtener 5 cuadrados iguales a los mostrados?
x
a) 1 d) 4
b) 2 e) 5
c) 3
3.
¿Qué es respecto a mí el abuelo materno del mellizo de Leonel si la madre de Leonel es la hermana de mi hermano gemelo?
a) abuelo b) hijo c) tío
d) padre e) yerno
a) es su mamá b) es su hermano c) es su hermana d) es su tío e) es su abuela
6.
Mi nombre es Mentorcito y mi hermano Miguelito, además mi abuela tuvo un hijo solamente. ¿Qué parentesco tiene conmigo la hija de la nuera de la mamá de mi madre?
a) mi hermana d) prima b) tía e) abuela c) madre
13
5to Secundaria 7. Si m = 2m, calcula:
10. ¿Cuántos palitos se debe mover como mínimo para dejar la basurita fuera del recogedor?
m+m+m+m+m
a) 5m b) m d) 0
8.
Siendo viernes el mañana de mañana de hace 5 días, ¿qué día será el anteayer del anteayer de dentro de 4 días?
a) lunes b) martes c) jueves d) sábado e) viernes
11. En un mes hay 5 jueves, 5 viernes y 5 sábados. ¿Qué fecha cae el tercer miércoles de dicho mes? a) 18 b) 19 c) 20 d) 21 e) 22
9.
Cuatro profesores de la academia y 2 alumnas tienen que cruzar un río en una canoa. En cada viaje puede ir uno de los profesores o las dos alumnas, pero no un profesor y una alumna a la vez. ¿Cuál es el mínimo número de veces que la canoa tiene que cruzar el río en cualquier sentido para que todos logren cruzar dicho río?
12. Saúl, Anibal y Marco son médicos. Dos de ellos son cardiólogos y uno pediatra. Anibal y Marco afirman que uno de ellos es cardiólogo y el otro es pediatra, por lo que podemos deducir que:
a) 12 b) 16 d) 21
14
c) 3m e) 1
c) 17 e) 9
a) 1 b) 2 d) 4
c) 3 e) ninguno
a) Anibal y Marco son pediatras. b) Saúl es pediatra. c) Anibal y Marco son cardiólogos. d) Anibal es cardiólogo y pediatra. e) Saúl es cardiólogo.
Raz. Matemático
2
Orden de Información (Horizontal y Vertical)
OBJETIVOS: Afianzar el desarrollo de la creatividad y el ingenio. Potenciar la habilidad analítica. Ejercitar la capacidad recreativa con la matemática.
Nociones Previas En este capítulo nos encontraremos con diversos tipos de problemas en cuya resolución debemos tener en cuenta lo siguiente: La información que nos da el problema necesita ser ordenada. Se comienza el ordenamiento utilizando la información precisa o la más relacionada. Debemos verificar que la respuesta final que hallamos cumpla con las condiciones del problema. Para su mejor estudio han sido agrupados, según la manera de ordenar la información, en:
Orden de Información I
a) Ordenamiento lineal. b) Ordenamiento por posición de datos.
Orden de Información II c) Relación de datos (cuadro de afirmaciones). d) Ordenamiento circular. A. ORDENAMIENTO LINEAL En este caso se procede a ordenar la información, ubicando los datos en forma vertical u horizontal, según corresponda. a) Creciente o decreciente
Ejemplo 1: En una fiesta se encuentran 4 amigos Sandro, Luis, Pedro y Martín. Además: Sandro es más alto que Martín pero más bajo que Luis. Pedro es más alto que Sandro.
Indica verdadero (V) o falso (F), según corresponda. El más alto de los 4 es Luis. ( ) El más bajo es Martín. ( ) Es imposible que Pedro sea el más alto. ( ) Ejemplo 2: Se sabe que: Carlos es 3 cm más alto que Diego. Juan es 2 cm más bajo que Diego. Juan es 5 cm más bajo que Carlos. Lucy es 3 cm más baja que Diego. Indica verdadero (V) o falso (F) según corresponda. Diego y Juan son de la misma talla. ( ) Lucy es la más baja. ( ) Diego es el más alto. ( )
Genio e Ingenio Durante su etapa como profesor activo, al final de un examen un alumno se acercó a Albert Einstein y le comentó sorprendido: “¡Las preguntas del examen de este año son las mismas que las del año pasado!” “Sí” - le contestó Einstein-, “pero este año las respuestas son totalmente diferentes”.
15
5to Secundaria Nota Las proposiciones: A no es mayor que B, significa que A pued e ser menor o igual que B. A no es menor que B, significa que A puede ser mayor o igual que B. b) Lateral
El procedimiento es similar al seguido en el ordenamiento creciente o decreciente. izquierda ↔ derecha oeste ↔ este occidente ↔ oriente Ejemplo 2: Un postulante a la Católica compra 6 libros y los ubica en un estante de su biblioteca de la siguiente manera: El libro de Aritmética está siempre junto y a la izquierda del de Álgebra. El libro de Física está siempre junto y a la izquierda del libro de Química. El libro de Geometría está a la izquierda del de Álgebra. El libro de Trigonometría está a la derecha del de Aritmética y a la izquierda del libro de Física. Indica verdadero (V) o falso (F), según corresponda. El libro que está a la derecha de los demás es el libro de Química. ( ) El libro que está a la izquierda de los demás es el libro de Aritmética. ( ) El cuarto libro contando desde el extremo derecho es el libro de Álgebra. ( ) El quinto libro contando desde el extremo izquierdo es el libro de Física. ( )
¡Cuidado! Existen ejercicios en los que hay más de un ordenamiento; para que una afirmación sea verdadera debe cumplirse en todos los posibles ordenamientos.
16
Ejemplo 2: Cinco amigos van al estadio Monumental a ver el clásico “U” vs. Alianza Lima y ocupan 7 asientos seguidos en fila. Si se sientan juntos siempre que no sean del mismo sexo, y en ese caso se deja un asiento desocupado, entonces un jugador desde el campo observa que: Susy está en el extremo derecho. Braulio está entre Leandro y Lucía. Boris está a la izquierda de Leandro que está sentado junto a Susy. Indica verdadero (V) o falso (F), según corresponda. Lucía se sienta en el extremo izquierdo. ( ) Braulio se sienta junto a Lucía. ( ) La quinta posición a partir del extremo derecho está vacía. ( ) La quinta posición a partir del extremo izquierdo está vacía. ( ) B. ORDENAMIENTO POR POSICIÓN DE DATOS En este tipo de ejercicios algunos datos ya tienen una posición determinada y la ubicación de los otros está en función de ellos. Los problemas más comunes son los problemas de edificios y los de carreras. Ejemplo 1: Cuatro hermanos viven en un edificio de 4 pisos. Si Arturo vive en el primer piso, Mario vive abajo de Jorge y Willy vive en el piso inmediatamente superior al de Mario, ¿en qué piso vive Willy?
4 3 2 1
Ejemplo 2: Se observa nueve automóviles estacionados en fila, y cada uno de ellos es de un color determinado. Se desea saber el color del auto que está en el segundo lugar, sabiendo que: El primero es blanco. El de color habano está entre el negro y el gris. El verde está entre el azul y el rojo. El de color arena está al último. El rojo está entre el verde y el lila. El negro está después del habano. El gris entre el lila y el habano. 1
2
3
4
5
6
7
8
9
Raz. Matemático Ejemplo 3: Un edificio de 6 pisos está ocupado por 6 familias, cada familia ocupa un piso , los Aburto viven 2 pisos más arriba que los Calderón y 2 pisos más abajo que los Barrera, los Durán viven en el segundo piso y los Gómez no viven adyacentes con los Aburto. ¿En qué piso viven los Muñoz?
Nótese que es necesario trazar 2 segmentos, debido a que no se presenta ningún vínculo entre las anteriores proposiciones. * Ahora utilicemos el vínculo que los relaciona: “Pedro” es menor que “Pipo” Pino Pipo Pepe Pedro
Resolución: Según el primer dato hay 2 posibilidades: (1)
Barrera
∴ Se aprecia que el mayor es Pino.
Aburto
Ejemplo 5: En la llegada a la meta de 100 metros planos en Madrid, un periodista hizo las siguientes anotaciones de los siete atletas participantes (Ñol, Pepe, Mario, Cano, Kilito y Makito). Ñol llegó antes que Pepe y después que Mario. Mario llegó después que Cano y éste después que Kilito. Trilcito llegó antes que Cano. ¿Quién llegó en cuarto lugar?
Barrera Aburto Calderón
Puesto que los Durán viven en el 2.º piso, sólo es posible (1). Los Gómez no viven en el 4.º piso, sino en el 6.º En consecuencia los Muñoz viven en el 4.º piso. En conclusión Gómez Barrera Muñoz Aburto 2° Durán 1° Calderón 6° 5° 4° 3°
Resolución: Pepe Mario Cano
Ñol Mario Cano Kilito Makito “Makito” y “Kilito”
Resolución: Empecemos representando en segmentos verticales la información inicial con precisión, no debemos suponer lo que el enunciado no indique; veamos:
Pepe Pedro
4.°
2.°
1.°
Ca n
o
3.°
rio
5.°
Ma
Pedro es menor que Pepe, Pipo es menor que Pino y Pepe es menor que Pipo, ¿cuál es el mayor?
6.°
l
Ejemplo 4:
“Pedro” es menor que “Pepe”
Ño
2.° 1.° Calderón
Pep e
6.° 5.° 4.° 3°
(2)
∴ En cuarto lugar Mario. Ejemplo 6: Dada la siguiente información: I) Aristóteles es menor que José. II) José es un año menor que Walter. III) Walter es 21 años menor que Renán. Si resto las edades de Renán y José, obtengo: Resolución: Renán 21 Walter
- = 22
1 “Pipo” es menor que “Pino”
José
Pino Pipo
∴ 22 años.
Aristóteles
17
5to Secundaria
1
Se tiene un edificio con cuatro pisos y en cada
Cinco amigos están sentados en una banca en
piso vive una familia. La familia “Mendez” vive
el parque, ubicados uno a continuación de otro.
un piso más arriba que la familia “García”. La
Zarahí y Pedro se ubican en forma adyacente,
familia “Dueñas” vive más arriba que la familia
Pedro no está al lado de Silvia ni de Juan y
“Prado” y la familia “Mendez” más abajo que
Zarahí está en un extremo. Si Silvia y Manuel
la familia “Prado”.
están peleados (no se sientan juntos), ¿quién se
¿En qué piso viven los
“Mendez”?
sienta al lado de Silvia?
Resolución:
Resolución:
Rpta:
2
3
Rpta:
En un edificio Beatriz vive más arriba que Álex,
4
Sobre una mesa hay un lapicero, un color y un
Javier más arriba que Saúl y éste más arriba que
plumón. Si sabemos que:
Álex. Si Beatriz y Javier viven en el mismo piso,
- A la izquierda del color hay un lapicero.
¿cuáles de las afirmaciones son necesariamente
- A la derecha del plumón está el que pinta azul.
verdaderas?
- A la izquierda del que pinta azul está el que
I. Javier vive más arriba que Álex.
pinta verde.
II. Javier vive más abajo que Álex.
- A la derecha del que pinta rojo hay un
III. Beatriz vive más arriba que Saúl.
plumón.
IV. Beatriz adora a Javier.
Entonces al extremo derecho, ¿qué objeto está? Resolución: Resolución:
Rpta: 18
Rpta:
Raz. Matemático 5
En una competencia de motocrós participan 6
6
En una carrera participan 4 amigas: Milena,
personas cada una con sus motos numeradas
Rosa, Katy y Úrsula. Si del orden en que lle-
del 1 al 6. Se sabe que:
garon se conoce:
- Los tres últimos lugares lo ocupan motos
- Ni las trampas ayudaron a ganar a Rosa. - Úrsula y Katy llegaron una detrás de otra
con numeración de los primeros números
en orden alfabético.
primos. - La moto 6 llegó inmediatamente después del 1.
- Milena aventajó a Rosa en 3 puestos.
- La diferencia entre el quinto y el segundo es 4.
¿Quién ganó la carrera?
- La moto de cuarto lugar es la semisuma de
¿Quién llegó tercera?
los números de las motos de lugares extremos. Resolución:
¿Qué moto se encuentra a dos lugares de la moto número 1? Resolución:
Rpta:
7.
Rpta:
En cierto examen, Sara obtuvo menos puntaje que Nataly, Vanessa menor puntaje que Karina, Irene el mismo puntaje que Susana, Sara más que Silvia, Vanessa el mismo puntaje que Nataly e Irene más que Karina. ¿Quién obtuvo menos puntaje?
8.
En una carrera participan 6 personas: A, B, C, D, E y F. Se sabe que A llegó antes que D, pero 2 puestos después que F, y B llegó inmediatamente después que A, pero antes que E. Se puede afirmar que: I. C llegó en segundo lugar. II. D llegó antes que E. III. E llegó en sexto lugar.
9.
En un edificio de 5 pisos viven las familias: Flores, Zanabria, Miranda, Pérez e Islas cada una en pisos diferentes. - Los Islas viven encima de los Zanabria. - Los Flores viven lo más alejado de los Miranda. - Los Miranda no pueden subir las escaleras. - A los Pérez les hubiera gustado vivir en el último piso. Son ciertas: I. Los Flores viven en el piso dos. II. Los Pérez viven en el piso tres. III. Los Miranda viven en el piso uno.
10. Seis amigos viven en un edificio, cada uno en un piso diferente. Carlos vive más abajo que Bica, pero más arriba que David. Franco vive 3 pisos más abajo que Carlos. Andrés vive 2 pisos más arriba que Carlos y a 4 pisos de Enzo. El tercer piso lo ocupa:
19
5to Secundaria 11. Se colocan en un estante seis libros de razonamiento matemático, aritmética, álgebra, física, historia y geometría. Si: - El libro de aritmética está junto y a la izquierda del de álgebra. - El libro de física está a la derecha del de aritmética y a la izquierda del de historia. - El libro de historia está junto y a la izquierda del de geometría. - El libro de razonamiento matemático está a la izquierda del de álgebra. De derecha a izquierda, el cuarto libro es de:
1.
Cinco profesores: Medina, Parodi, Fernández, Cartolín y López están sentados en fila. Parodi está en el extremo de una fila y Fernández en el otro extremo. Cartolín estaba al lado de Parodi y Medina al lado de Fernández. ¿Quién estaba en el medio?
12. Seis amigas están escalando una montaña, Carla está más abajo que Juana, quien se encuentra un lugar más abajo que María. Daniela está más arriba que Carla pero un lugar más abajo que Tania, quien está más abajo que Rosa, que se encuentra entre Juana y Tania. ¿Quién está en el cuarto lugar del ascenso?
4.
a) Medrano b) Cartolín c) Fernández d) López e) Parodi 2.
Se afirma: I. B vive en el sexto piso. II. A no vive en el tercer piso. III. C vive más arriba que A. Son verdaderas: a) Sólo I b) II y III c) I y III d) Todas e) I y II
En una banca en el parque se sientan Juana a la derecha de María y Ana a la izquierda de Juana, por lo tanto:
a) Juana está al medio. b) Juana está a la derecha. c) Juana está a la izquierda. d) Ana está al medio. e) María está al medio. 3.
Si María es mayor que Lucía, Irene es menor que María y Lucía es menor que Irene, ¿quién no es mayor ni menor? a) María b) Lucía c) Irene d) Ninguna e) F.D.
20
Cinco amigos A, B, C, D y E viven en un edificio de 6 pisos, cada uno en un piso diferente. Si se sabe que: - El departamento del cuarto piso está desocupado. - D vive adyacente a A y C. - E no vive en el último piso.
5.
Cinco personas rinden un examen. Si se sabe que: - B obtuvo un punto más que D. - D obtuvo un punto más que C. - E obtuvo dos puntos menos que D. - B obtuvo dos puntos menos que A. Ordénalos de mayor a menor puntaje. a) ABCDE b) EDCBA c) ECDBA d) CBADE e) ABDCE
Raz. Matemático 6.
En un examen de Razonamiento Matemático Rosa obtuvo menos puntos que María, Laura menos puntos que Lucía, Noemí el mismo puntaje que Sara, Rosa más que Sofía, Laura el mismo puntaje que María; y Noemí más que Lucía. ¿Quién obtuvo menos puntaje? a) Laura b) Sofía c) María d) Sara e) Rosa
7.
Se sabe que Pablo es 4 cm más alto que Julio, Mónica es 3 cm más baja que Julio. Ricardo es 7 cm más bajo que Pablo, Ruth es 4 cm más baja que Julio. ¿Cuáles de las siguientes afirmaciones son ciertas? I. Ricardo y Mónica son de la misma talla. II. Julio es más alto. III. Ruth es la más baja. a) Todas b) II y III c) I y II d) Sólo una es cierta e) I y III
8.
Carlos, Dante, Toño, Erick, Beto y Flavio se ubican en 6 asientos contiguos en una hilera de un teatro. Toño está junto y a la izquierda de Beto, Carlos a la derecha de Toño entre Flavio y Dante, y Dante está junto y a la izquierda de Erick. ¿Quién ocupa el tercer asiento si los contamos de izquierda a derecha? a) Carlos b) Flavio c) Erick d) Toño e) Dante
9.
Cuatro amigos viven en un edificio de 4 pisos. Alberto vive en el primer piso, Martín vive más abajo que José y Walter vive en el piso inmediatamente superior a Martín. ¿En qué piso vive Walter? a) Primero b) Cuarto c) Segundo d) Tercero e) F.D. 10. En un examen de Razonamiento Matemático Luis obtuvo menos puntos que Álex, Ábner menos puntos que Luis y Cristian más puntos que Jessica. Si Jessica obtuvo más puntos que Álex, ¿quién obtuvo el mayor puntaje? a) Luis c) Álex e) Cristian
b) Jessica d) Ábner
11. Se deben realizar cinco actividades A, B, C, D y E una por día desde el lunes hasta el viernes. B se realiza después de D. C se realiza el jueves o el miércoles. D se realiza el jueves o el viernes. Halla la secuencia en que se realizan las actividades si A se realiza antes que E. a) AECBD c) AECDB e) CAEDB
b) CEADB d) EACBD
12. De un total de 30 inculpados; habían 8 que El Chino quería castigar y a los demás dejarlos libres. Puso a los 30 en círculo y castigó a cada uno que ocupara el 8.° lugar. Hay 2 castigados que inicialmente ocuparon lugares consecutivos. ¿Cuáles son esos lugares? a) 8.° y 9.° b) 2.° y 3.° c) 16.° y 17.° d) 20.° y 21.° e) 24.° y 25.°
21
5to Secundaria
3
Orden de Información (RelacióndeDatos-CuadrodeDecisiones)
C. RELACIÓN DE DATOS (CUADRO DE AFIRMACIONES) Se debe construir una tabla en la cual se relacionan los datos proporcionados, marcando las relaciones correctas y eliminando las negativas. Ejemplo 1: Tres amigas: Carmen, Fátima y Milagros comentan sobre el color de polo que llevan puesto. - Carmen dice: “Mi polo no es rojo ni azul como los de ustedes”. - Milagros dice: “Me gustaría tener un polo verde como el tuyo”. - Fátima dice: “Me gusta mi polo rojo”. ¿Qué color de polo tiene cada una? Resolución Primero construimos un cuadro con todas las posibilidades. Azul
Rojo
Verde
Carmen Fátima Milagros Primer Dato: Como Carmen no usa polo rojo ni azul, entonces usa polo verde.
Carmen
Azul
Rojo
Verde
X
X
Fátima
X
Milagros
X
Tercer Dato: Fátima tiene polo rojo. 22
Azul
Rojo
Verde
Carmen
X
X
Fátima
X
X
Milagros
X
X
Por lo tanto: Carmen Verde ; Fátima Rojo ∴ Milagros Azul
Gauss, a la edad de diez años su maestro solicitó a la clase que encontrará la suma de todos los números comprendidos entre uno y cien. El maestro, pensando que con ello la clase estaría ocupada algún tiempo, quedó asombrado cuando Gauss, levantó en seguida la mano y dio la respuesta correcta. Gauss reveló que encontró la solución usando el álgebra, el maestro se dio cuenta de que el niño era una promesa en las matemáticas.
Reto ¿Cuántas cerillas hay que mover como mínimo para obtener una verdadera igualdad?
a) 1
b) 2
c) 3
d) 4
e) 5
Raz. Matemático Resolución
Ejemplo 2: Mily, Pili, Lenín y Ely terminaron sus estudios de Medicina, Ingeniería, Matemática y Derecho, se sabe que: - Mily no estudia Medicina. - Pili hubiera estudiado Derecho si Lenín hubiera estudiado Ingeniería. - Ely quiere empezar a estudiar Matemática. - Lenín estudiaría Medicina si Pili no lo hiciera. - Mily estudiaba Derecho pero se trasladó a Matemática, ¿qué estudia Pili?
Viuda Ruiz
Quiroz
Páez
Ana
No
Sí
No
Carmen
Sí
No
No
Betty
No
No
Sí
∴ Betty Páez
∴ Rpta.: b
Resolución * De los dos primeros enunciados: - Lenín no estudia Medicina. - Pili no estudia Derecho, Lenín no estudia Ingeniería.
Reto Medicina Mily
Ingeniería Matemática
Derecho
No
Pili
No
Lenín
No
Ely
- Lenín estudiaria Medicina si Pili no lo hiciera. - Mily estudiaba Derecho pero se trasladó a Matemática. Se tiene: - Ely no estudia Matemática. - Lenín no estudia Medicina, Pili si estudia Medicina. - Mily estudia Matemática.
Medicina
Ingeniería Matemática
Derecho
Mily
No
No
Sí
No
Pili
Sí
No
No
No
Lenín
No
No
No
Sí
Ely
No
Sí
No
No
Ejemplo 3:
Tres amigos en el bar Les voy a contar una vieja historia que muy bien pudiera ser real: Van tres amigos a tomarse un refresco. Después de tomarlo, al pedir la cuenta, es donde viene el lío. - Amigos : Camarero, nos trae la cuenta, por favor. - Camarero: Son 300 pesetas, caballeros. Y cada uno de ellos pone 100 pesetas. Cuando el camarero va a poner el dinero en caja, lo ve el jefe y le dice: - Jefe : No, esos son amigos míos. Cóbrales sólo 250 ptas. El camarero se da cuenta que si devuelve las 50 ptas puede haber problema para repartirlas y decide lo siguiente: - Camarero: Ya está. Me quedaré con 20 ptas y les devuelvo 30, diez para cada uno. Les devuelve a cada uno 10 ptas. Ahora es cuando viene el problema. Si cada uno puso 100 ptas y le devuelven 10 ptas, realmente puso cada uno de ellos 90 ptas. 90 x 3 = 270 ptas. Si añadimos las 20 que se queda el camarero son 290 ptas. ¿DÓNDE ESTÁN LAS OTRAS 10 PESETAS ?
De tres amigas se sabe que: - Ana y la divorciada visitan siempre a Carmen. - Ana era muy amiga del fallecido esposo de la señora Cruz. - La viuda y Betty son menores que la señora Quiroz. - La señora Páez es bien alegre. El nombre correcto es: a) Betty Ruiz d) Carmen Páez
b) Betty Páez e) Carmen Ruiz
c) Ana Páez
23
5to Secundaria C. ORDENAMIENTO CIRCULAR En estos casos se presenta la información indicando que se ubican los datos alrededor de un objeto, formando así una línea cerrada (circunferencia). Ejemplo 1: Seis amigos se sientan a comer helados alrededor de una mesa. - Julio está al lado de Carlos y al frente de Ana. - David no se sienta nunca al lado de Ana y de Carlos. Entonces es siempre cierto que: A) Ana y Carlos se sientan juntos. B) David está a la derecha de Julio. C) David está a la izquierda de Julio. D) Ana y Carlos están separados por un asiento. Resolución Carlos Julio Ana
(Primera posibilidad)
Resolución
D
* Empezandopor el último dato, tendremos:
P
L
R
S C
∴ A la derecha de Coquito esta Silvia. Ejemplo 3: Ana invita a cenar a sus amigos: Betty, Coryna, Daniel, Ely y Felipe; este último por razones de trabajo no pudo asistir. Se sientan alrededor de una mesa redonda con seis asientos distribuidos simétricamente y se sabe que: - Ana se sienta junto a Ely y Daniel. - Frente a Ely se sienta Betty. - Junto a un hombre no se encuentra el asiento vacío. ¿Entre quiénes se sienta Ely? Resolución - Ana se sienta junto a Ely y Daniel.
D
E A
Julio Ana
Carlos
- Frente a Ely se sienta Betty.
B D
E
(Segunda posibilidad) Al analizar las alternativas, observamos que la que cumple en ambas posibilidades es la “D” (no es necesario el segundo dato).
∴ Rpta.: d
A
- “Junto a un hombre no se encuentra el asiento vacío”. Entonces, dicho asiento debe de estar entre las dos mujeres, luego:
Ejemplo 2: Seis amigos juegan dominó alrededor de una mesa redonda. David no está al lado de Coquito ni de Silvia. Piero no está al lado de Liz ni de Silvia. Coquito no está al lado de Piero ni de Liz. Regina está junto y a la izquierda de Coquito. ¿Quién está sentado junto y a la derecha de Coquito? 24
B
C
D
E A
∴ Ely se sienta entre Ana y Corina.
Raz. Matemático
1
Raúl, Carlos, Pedro y Bruno tienen diferentes
3
Seis amigos A, B, C, D, E y F se sientan alre-
ocupaciones y se sabe que:
dedor de una mesa circular con seis asientos
Raúl y el gasfitero son amigos del mecánico.
distribuidos simétricamente.
Carlos es amigo del mecánico.
Además:
El comerciante es familia de Bruno.
D no se sienta junto a B.
El pintor es muy amigo de Pedro y del mecánico.
A se sienta junto y a la derecha de B y frente a C.
Raúl es comerciante.
E no se sienta junto a C.
¿Cuál es la ocupación de Carlos?
¿Entre quiénes se sienta F? Resolución: Resolución:
Rpta:
2
Rpta:
Felipe, Marco, Pedro, Daniel y Carlos harán
4
En una mesa circular de 7 sillas se sientan a
una encuesta en cinco distritos de Lima: La
discutir cuatro obreros A, B, C y D y tres em-
Molina, San Isidro, Pueblo Libre, Lince y Mi-
pleados: X, Y, Z, y se sabe que:
raflores cada uno en un distrito diferente. Y se
Ningún empleado se sienta junto a otro empleado.
sabe que:
B se sienta junto a D, pero Z no se sienta
Felipe irá a La Molina, pero Marco la hará
junto a ellos.
en su propio distrito.
¿Cuál(es) de las siguientes afirmaciones son
Las suegras de Pedro y Daniel viven en San Isidro, por lo cual ellos no aceptan ir a ese
correctas?
distrito.
I. Entre D y Z hay por lo menos 2 asientos. II. X se sienta junto a B.
Marco vive en Lince y es el único que en-
III. A se sienta junto a Y.
cuesta en su distrito. Daniel vive en Pueblo Libre.
Resolución:
¿Dónde encuesta Carlos? Resolución:
Rpta:
Rpta: 25
5to Secundaria 5
Cinco amigos A, B, C, D y E se sientan alred-
6
En una mesa circular hay 6 asientos y se sien-
edor de una mesa circular y se sabe que:
tan 4 amigos: A, B, C y D.
Las 5 sillas se encuentran distribuidas simé-
Nadie se ha sentado junto a A.
tricamente.
Si llega un amigo más, podría estar junto a
A se sienta junto a B.
B.
D no se sienta junto a C.
Frente a D no hay nadie.
Podemos afirmar con certeza que:
¿Quién está frente a C?
I. D se sienta junto a A.
II. E se sienta junto a C.
Resolución:
III. B se sienta junto a D. Resolución:
Rpta:
7.
Alicia, Carmen, Francis y Edith tienen diferentes profesiones: periodista, médico, kinesiólogo y matemático y viven en las ciudades X, Y, Z y W. Además, se sabe que: Francis no vive en X ni en Y. El médico vive en X. Alicia vive en W. Edith es kinesióloga. El periodista nunca ha emigrado de Z. ¿Qué profesión tiene Alicia?
8.
Un estudiante, un médico y un abogado comentan que cada uno de ellos ahorra en un banco diferente: “Yo ahorro en Interbank”, dice el médico a Roberto. Tito comenta: “El banco que más interés paga es el Wiese”. El abogado dice: “¨Mi secretaria lleva mi dinero al Banco de Lima” El tercer personaje se llama José. ¿Cómo se llama el estudiante?
26
Rpta:
9.
Están en una sala de conferencia: un ingeniero, un contador, un abogado y un médico. Los nombres, aunque no necesariamente en ese orden, de los profesionales son: Pedro, Diego, Juan y Luis. Y si se sabe que: 1. Pedro y el contador no se llevan bien. 2. Juan se lleva muy bien con el médico. 3. Diego es pariente del abogado y éste es amigo de Luis. 4. El ingeniero es muy amigo de Luis y del médico. ¿Quién es el médico?
10. Juana tiene un amigo en cada una de las ciudades siguientes: Lima, Cusco e Iquitos; pero cada uno tiene carácter diferente: tímido, agresivo y liberal. Marcos no está en Lima. Luis no está en el Cusco. El que está en Lima no es tímido. Luis no es liberal, ni tímido. Se quiere saber en qué ciudad vive Víctor, que es uno de los amigos, y qué carácter tiene. Además se sabe que quien vive en Iquitos es agresivo.
Raz. Matemático 11. Ana, Betty, Carol y Dina son 4 señoritas cuyas ocupaciones son: enfermera, profesora, secretaria y actriz (aunque no en ese orden necesariamente). Además se sabe lo siguiente: Ana y Betty son vecinas y se turnan para llevarse el auto al trabajo. Betty gana más dinero que Carol. Ana le gana siempre a Dina jugando casino. La actriz no vive cerca de la casa de la profesora. La enfermera camina siempre a su trabajo. La única vez que la secretaria vio a la actriz detuvo su auto para pedirle un autógrafo. La actriz gana más dinero que la profesora o la secretaria, pero no tiene auto. ¿Qué ocupación tiene Carol?
1.
Tres amigos: Ana, Beto y Carlos tienen diferentes profesiones; profesor, médico y electricista, no necesariamente en ese orden y se sabe que: Ana es el médico. Beto no es el electricista. ¿Cuál es la profesión de Carlos? a) Profesor b) Contador c) Médico d) Mecánico e) Electricista
2.
Raúl, Carlos, Pedro y Bruno tienen diferentes profesiones: ingeniero, profesor, abogado y médico pero ninguno en ese orden. Y se sabe que: Carlos, el abogado y el médico juegan fútbol. Raúl, el médico y el abogado juegan ajedrez. ¿Qué profesión tiene Pedro? a) Ingeniero b) Médico c) Abogado d) Profesor e) Contador
12. “A”, “B”, “C” y “D” corresponden a los nombres de Roberto, Gerardo, Manuel y Jesús (no necesariamente en ese orden). Roberto, “C” y “D” fueron al teatro juntos. Gerardo, “A” y “B” trabajan en la misma fábrica. “A”, “C” y Manuel concurren a los juegos mecánicos con regularidad. “D”, “B” y Jesús juegan en el mismo equipo. “C” es moreno, en cambio, Gerardo es de tez blanca. Determina quién es moreno y quién es “A”.
3.
En una mesa circular con seis asientos distribuidos simétricamente se sientan cinco hermanos: Erica, Fabiola, Miluska, Guisela y Francisco. Se sabe que: Francisco y Miluska no se sientan juntos. Guisela se sienta junto a Erica y Francisco. Fabiola se sienta frente a Guisela. ¿Quién se sienta frente al sitio vacío? a) Erica b) Guisela c) Miluska d) Fabiola e) Francisco
4.
Tres personas X, Y, Z disponen de A, B y C libros aunque no necesariamente en ese orden. Además se conoce que: Y le dice a la que tiene B que la otra tiene A libros. Z le dice a la que tiene A que tiene sed. Se pregunta: ¿Quién tiene A libros? a) X b) Y c) Z d) X o Z e) Y o Z
27
5to Secundaria 5.
6.
A, B y C tienen una mascota cada uno, perro, gato y mono. Si B le dice al que tiene el gato, que la otra tiene un perro, y C le dice a la que tiene el perro, que debería vacunarlo contra la rabia; entonces: a) A tiene el mono b) C tiene el gato c) B tiene el perro d) A tiene el gato e) B tiene el gato Por mi casa vive un gordo, un flaco y un enano que tienen diferentes temperamentos. Uno para alegre, el otro colérico y el otro triste y se sabe que: Al gordo nunca se le ve reír. El enano para molesto porque siempre lo fasti dian por su tamaño. Entonces: a) El gordo para alegre b) El flaco para triste c) El enano para triste d) El flaco para alegre e) El gordo para colérico
7.
Rommel, Álex, Luis y Eduardo practican los siguientes deportes: fútbol, atletismo, natación y tenis; y viven en los distritos de Los Olivos, Breña, San Borja y Miraflores. Y se sabe que: Luis no vive en Los Olivos ni en Breña. El atleta vive en Los Olivos. Rommel vive en Miraflores. Eduardo es futbolista. El nadador nunca ha emigrado de San Borja. ¿Qué deporte practica Rommel? a) Natación b) Atletismo d) Tenis
8.
Tres hermanos practican natación, atletismo o básquet; cada deporte se identifica con un color: azul, rojo o verde, Juan no sabe nadar; el que juega por el verde es atleta; los rojos no juegan básquet y Gustavo participa por el verde. ¿Qué deporte le corresponde a Alberto y Gustavo, respectivamente? a) Natación y básquet b) Básquet y atletismo c) Atletismo y natación d) Natación y atletismo e) Faltan datos
28
c) Fútbol e) Básquet
9.
Luis, Judith, Armando y su prima Marilyn ordenaron helados de sus sabores favoritos. Cada uno ordenó un sabor diferente, tomaron helado de chocolate, fresa, vainilla y marrasquino. A Armando y Marilyn no les gusta la fresa. Judith tomó chocolate. Marilyn solía tomar marrasquino pero se cansó de éste. ¿Qué ordenaron Armando y Marilyn, respectivamente? a) Chocolate y fresa b) Vainilla y fresa c) Marrasquino y chocolate d) Marrasquino y vainilla e) Fresa y marrasquino
10. Los señores Pérez, Sánchez, García y Lazo son médico, abogado, ingeniero y matemático, aunque no necesariamente en ese orden. Pérez no sabe de medicina ni de leyes, Sánchez no sabe de números ni de planos García sabe los códigos legales y Lazo no sabe medicina ni tampoco de construcción. ¿Qué profesión tiene el Sr. Pérez? a) Médico d) Matemático b) Abogado e) Pintor c) Ingeniero 11. Marcos, Janeth, Manuel y Magaly son hinchas de los siguientes equipos (no necesariamente en ese orden): Boys, Universitario, Cristal y Alianza. Marcos no es hincha de Boys y su amigo tampoco. Si sabemos que Magaly es hincha de Universitario y su en amorado es hincha de Cristal y es el único amigo de Marcos, ¿hincha de qué equipo es Marcos? a) Universitario b) Boys d) Boys y Cristal
c) Cristal e) Alianza
12. Los cursos de R.M. y R.V., Aritmética y Álgebra son dictados por Andrés, Carlos, Luis y César; y se sabe que: Luis es amigo del profesor de R.M. El profesor de R.M. no conoce a Carlos ni al que dicta Aritmética. César y el profesor de Aritmética son amigos en común con el profesor de R.V. El único amigo de Andrés es Carlos. Entonces la relación correcta es: a) César - R.V. c) Andrés - Álgebra d) Carlos - Álgebra
b) Luis - R.M. e) Andrés - R.V.
Raz. Matemático
4
Habilidad Matemática
OBJETIVOS: Dominar métodos prácticos en las operaciones, para aplicarlos en la multiplicación, adición, potenciación, etc. Resolver las situaciones complejas con fluidez y habilidad.
2) CUADRADO DE UN NÚMERO DE 2 CIFRAS
Nociones Previas En este capítulo aprenderemos técnicas y formas de solución que nos permitan efectuar operaciones aritméticas con mayor rapidez que lo común, para ello utilizaremos un poco de habilidad matemática, basándonos en las propiedades básicas de las matemáticas.
CÁLCULO DE NÚMEROS AL CUADRADO
Desarrollo del Binomio 2
(ab) = a2 ...2(a)(b)...b2 Ejemplos 1. (24)2 = ? (24)2 = 22 ...2(2)(4)...42
1) CUADRADO DE UN NÚMERO QUE TERMINA
llevo 1
EN 5
(N5)2 = ..........25
llevo 1
576
2. (83)2 = ? (83)2 = 82 ...2(8)(3)...32 Ejemplos
llevo 4
1. (35)2 =
12 25
x4 2. (145)2 =
210 25
¡Con decimales! 72 , 25
x9 4. (16,5)2 = x 17
6889
3) CUADRADO DE UN NÚMERO CUALQUIERA
x 15
3. (8,5)2 =
no llevo
(N)2 = (N - a) (N + a) + a2 Donde “a” es el C.A. para ser un múltiplo de 10 una unidad inmediata superior o inferior. Ejemplos 1. (108)2=(108 - 8) (108+8)+ 82 =(100) (116) + 64
272 , 25
= 11 664
2. (212)2 =(212 - 12) (212+12) + 122 =(200) (224) + 144
= 44 944 29
5to Secundaria ¿Cómo lo hizo?
3) PARA NÚMEROS QUE TERMINAN EN: 2, 3, 5Y8
Una profesora sacó a un alumno a la pizarra para multiplicar: 57 324 x 236 el alumno multiplicó comenzando por la izquierda y sorprendió a todos, ¿cómo lo hizo? 5 7 3 24 x
171972
(...8)4 = ...6
°
°
Resolución: En el exponente:
343944 13528464
61 4 1 15
CIFRAS TERMINALES
°
(...0)n = ...0 (...1)n = ...1 1. (11)2 = 121 (31)2 = 961
∴ 9763
E = (...2)4 + 1 = (...2)1 = ...2
1) PARA NÚMEROS QUE TERMINEN EN: 0, 1, 5Y6 (...5)n = ...5 (...6)n = ...6
terminan en “1”
2. ¿En qué cifra termina el desarrollo de RM = (5673)9763? Resolución: En el exponente: 63 4 3 15
9763
= 9700 + 63
2. (20)2 = 400
terminan en “0”
(40)2 = 1600 3. (15)2 = 225
terminan en “5”
(65)2 = 4225 4. (26)2 = 676
terminan en “6”
(16)2 = 256
2) PARA NÚMEROS QUE TERMINAN EN: 4 Y 9 (...4)impar = ...4 (...4)par = ...6
(...9)impar = ...9 (...6)par = ...1
Ejemplos 1. ¿En qué cifra termina 20042004 (2004)2004 = (...4)par = ...6? ∴ Termina en 6 2222
555
33
2. Si A = 99999 hallar la cifra terminal. A = 99999 par = ...1
30
(...3)4 = ...1
1. ¿En qué cifra termina el desarrollo de: E = 3256261 ?
114648
°
(...7)4 = ...1
Ejemplos
236
°
(...2)4 = ...6
∴ Termina en 1
°
°
4
4 °
+ 3
4+3 °
∴ RM = (...3)4+3 = (...3)3 = ...7
Soldados en apuros Una patrulla de soldados, de maniobras por la jungla, se encuentra de pronto con un gran río, profundo e infestado de cocodrilos. En la otra orilla ven a dos muchachos nativos con una canoa. La canoa sólo puede transportar a un soldado con su fusil y su mochila, o a los dos muchachos. ¿Cómo conseguirán los soldados atravesar el río sin “alimentar” a los cocodrilos?
Solución:
La clave de la solución depende del hecho de que la canoa pueda transportar a los dos muchachos, pero sólo se necesita a uno de ellos para llevar la canoa de una orilla a la otra. Así pues, uno de los muchachos lleva la canoa hasta la orilla en que se encuentran los soldados. A continuación este muchacho se baja y el primer soldado con todo su equipo cruza el río; allí desembarca y el segundo muchacho regresa con la canoa y recoge de vuelta a su compañero. Ya están los dos muchachos y la canoa como al principio. Basta repetir la maniobra tantas veces como soldados haya, hasta que el último haya cruzado el río.
Raz. Matemático
1
3
Halla la cifra terminal de “A”
A = (9971+2345)(9971+2345)
999
Si: 3+35+353+3535+ ...= ...SAN
8
20 sumandos Halla: S + A + N
Resolución: Resolución:
Rpta:
2
Rpta:
Halla la suma de las cifras de la operación:
4
J = 24363548 (99999999)
Halla: L + U + I + S en 99 2 + 2 8 2 8 2 2 8 2 8
Resolución:
....
28 sumandos
L U I S
Resolución:
Rpta:
Rpta: 31
5to Secundaria 5
Calcula la suma de cifras del resultado: P=
64
6
(2+1)(22+1)(24+1)...(218+1)+1
P=
Rpta:
8.
2x4 x10 x 82x 6562 x(38x38+1)+1
Rpta:
9. ¿En qué cifra termina:
Calcula: (F - E)3 E=
(87654) (976660) + 9
F=
(87654) (87662) + 16
Calcula la suma de cifras del resultado: E=
(111...1113)2 - (111...11)2 50 cifras
32
16
Resolución:
Resolución:
7.
Calcula:
50 cifras
A = (88888)
77777
+(99999)
22222+5
10. ¿Cuál es el resultado de la expresión? E=(x - a) (x - b) (x - c) ... (x - z)
7 4 3 2
Raz. Matemático 11. Calcula:
12. Si: ABCDEF x 999...99 = ...634528
40 cifras
252525 393939...39 + 161616 161616...16
n cifras
n≥6 Calcula:
40 cifras
(
1.
4.
Halla el resultado de efectuar “E”: E = (107 + 1)2 - (9999999)2
a) 15 x 106 c) 20 x 106 d) 18 x 106
2.
b) 30 x 106 6
e) 40 x 10
Indica la suma de las cifras del resultado de efectuar: (353535...35) (9999...99) 30 cifras
40 cifras
a) 270 b) 300 d) 400
3.
Halla la cifra terminal en el desarrollo total de “A”:
c) 360 e) 630
A=999 x 888 x 777 x 666 x 222 a) 1 b) 2 d) 6
c) 4 e) 8
5
(
Calcula la suma de cifras del resultado de efectuar: P = (777778)2 - (222223)2
a) 60 b) 30 d) 42
5.
Después de efectuar:
A+B+C+D E+F
c) 35 e) 43
E = 10305050301 + 2040604020
calcula la suma de las cifras del resultado:
a) 10 b) 9 d) 6
6.
Calcula:
c) 12 e) 8
(20032003)2 - (20032001)2
e indica la suma de cifras del resultado.
a) 27 b) 11 d) 17
c) 19 e) 8
33
5to Secundaria 7.
10. ¿Cuál es la última cifra del producto?
Si: 4 + 44 + 444 + ... = ...LIMA 24 sumandos
Halla: L + I + M + A
a) 10 b) 18 d) 15
O=(13+1)(23+1)(33+1)(43+1)...(203+1)
c) 16 e) 17
a) 1 b) 0 d) 3
c) 2 e) 6
11. Se sabe que: P = (111...1)
8.
15 cifras
Halla: M + I + N + A si: 9+ 9 9 9 9 9 9 9 9 9
Q = (222...2) 30 cifras 21 sumandos
60 cifras
...9 9 9 9 ..... M I N A
a) 17 b) 18 d) 16
9.
Halla el valor de:
a) 1 b) 2 d) 0,7
34
M = (333...3)
c) 19 e) 20
Calcula la suma de las cifras del resultado de: (P + Q + M)
a) 225 b) 255 d) 125
c) 155 e) 120
12. Simplifica: E=
N = 0,982081 + 0,017838 + 0,000081
c) 0,81 e) 0,83
1111111088888889 123456787654322 - 1
a) 1 b) 2 d) 3
c) 9 e) 4
Raz. Matemático
5
Cálculo Inductivo
OBJETIVOS: Desarrollar la capacidad de observación para establecer relaciones que permitan llegar a la solución de un problema. Dotar al estudiante de herramientas metodológicas adecuadas para la resolución de problemas que exigen el uso del pensamiento creativo.
Lógica Inductiva
Ejemplo 2:
Consiste en la observación y análisis de casos particulares lo cuál nos permite el descubrimiento de leyes generales, con la particularidad de que la validez de las últimas se deduce de la validez de las primeras.
Halla la suma de cifras de: E = (111...111)2
CASO
CASO
CASO
I
II
III
CASO
...
25 cifras
Resolución: Por inducción: Para 2 cifras: (11)2 = 121 Suma de cifras = 4 = (1 + 1)2 2 cifras
GENERAL
2
Para 3 cifras: (111) = 12321 Suma de cifras=9 = (1+1+1)2
Casos Particulares
3 cifras
Razonamiento Inductivo
2
Para 4 cifras:(1+1+1+1) = 1234321 Suma de cifras=16=(1+1+1+1)2
Ejemplo 1:
4 cifras
Al sumar números impares consecutivos en forma ordenada, tenemos: 2
...
...
...
...
= 16 = 42
...
S4 = 1 + 3 + 5 + 7 ...
=1 =1 = 4 = 22 = 9 = 32
...
S1 = 1 S2 = 1 + 3 S3 = 1 + 3 + 5
S10 = 1+3+5+7+...+19= 100 = 102 Vemos que el resultado de sumar números impares consecutivos es de la forma n2 donde “n” es la cantidad de números impares que se suman. Sn = 1+3+5+7+ ... = n2 (n sumandos)
Reto La siguiente anécdota ocurrió en la ocupación de Francia por los alemanes, durante la Segunda Guerra Mundial. Cuatro personas subían en el ascensor de un hotel, uno de los ocupantes era un oficial alemán, de uniforme, otro, un civil francés, enrolado en la resistencia. La tercera ocupante era una atractiva joven, y la cuarta, una dama de edad, ninguno conocía a los demás. Hubo de pronto un corte de energía. El ascensor se detuvo, las luces se fueron y todo quedó en profunda oscuridad, se oyó el chasquido de un beso, seguido por el retallar de un bofetón. Un instante después volvieron las luces. El oficial lucía un enorme chichón junto a un ojo. La señora mayor pensó: “¡Bien merecido lo tiene!, menos mal que las jóvenes de hoy saben hacerse respetar”. La joven pensó: “¡Vaya gustos raros que tienen estos alemanes!, en lugar de besarme a mí ha debido besar a esta señora mayor o a este joven tan atractivo. ¡No me lo explico!”. El alemán pensó: “¿pero qué ha pasado? ¡Yo no he hecho nada!, quizás el francés ha querido abusar de la joven y ésta me ha pegado por error”. Sólo el francés conocía exactamente lo ocurrido. ¿Sabrías deducirlo?
35
5to Secundaria Se concluye que la suma de cifras del resultado de efectuar “E” sería: 2
Suma de cifras = (1+1+1+...+1)
2
= 25 = 625
25 veces
Ejemplo 3: Calcula la cantidad total de esferas que hay en el siguiente arreglo.
Suma de números en un calendario Se trata de poder sumar los nueve números contenidos en el cuadrado seleccionado en el calendario, bastando que nos digan el número menor del cuadrado. En este caso se trata del número 7. Para averiguar la suma, debemos sumar 8 y después multiplicar por 9: (7 + 8) . 9 = 135 OCTUBRE L M M J V S D 1 2 3 4
1
2
3
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
98 99 100
Resolución: Debido a que la distribución de las esferas responde a una forma triangular, entonces analizaremos, recurriendo a la inducción, los casos iniciales a dicha formación. # esferas 1.er caso
1
Números triangulares = 1
=
1x2 2
N.° esferas de la base
Al número que te den le sumas 8 y esta suma la multiplicas por 9. También se puede hacer cuando los días están ordenados en vertical. La suma de los nueve números contenidos en el cuadrado es: (2 + 8) . 9 = 90
L 2 9 16 23 M 3 10 17 24 M 4 11 18 25 J 5 12 19 26
2.º caso 1 2
1+2
= 3
=
2x3 2
N.° esferas de la base
V 6 13 20 27 S 7 14 21 28 D 8 15 22
3.er caso
.....
=
3x4 2
N.° esferas de la base
En general N.° esferas de la base 100 x 101 1 + 2 + 3 + ...+100 = 2 = 5050 1 2 3
36
98 99 100
En cualquier hoja de calendario se pasa de un número al que hay debajo de él, sumando 7. En cualquier cuadrado de nueve números, se pasa del número menor al que ocupa el centro sumando 8.
.....
1+2+3 = 6
.....
1 2 3
∴ Suma de esferas del arreglo triangular 5050.
Los nueve números de cada cuadrado de números se pueden escribir en función del número que ocupa el centro del cuadrado.
Raz. Matemático Ejemplo 4:
Ejemplo 5:
¿De cuántas formas distintas se puede leer “SAN MARCOS” en el siguiente arreglo?
Halla la suma de todos los elementos de la siguiente matriz.
...
...
...
Resolución: Sumar los 100 elementos que conforman la matriz va a ser demasiado operativo, aplicando inducción tendremos: 1.er caso
Analizamos casos particulares:
1
Suma = 1 = ( 1 )3 N.° de Filas
# maneras que se puede leer 1.er caso 1
...
9 10 11 12 ... 17 18 10 11 12 13 ... 18 19
Resolución:
S
...
...
S A A N N N M M M M A A A A A R R R R R R C C C C C C C O O O O O O O O S S S S S S S S S
1 2 3 4 ... 9 10 2 3 4 5 ... 10 11 3 4 5 6 ... 11 12 4 5 6 7 ... 12 13
=
21 - 1
N° esfera de la base
1er.caso caso 2.º 1 2 2 3
Suma = 8 = ( 2 )3 N.° de Filas
3.er caso
2.º caso S
2
=
22 - 1
Suma = 27= ( 3 )3 N.° de Filas
...
A A
1 2 3 2 3 4 3 4 5
N° esferas de la base
En general
23 - 1
.....
... 10 11 12
En general S A A N N N M M M M = S S S
29 - 1
N° esferas de la base = 256
S S S ∴ Maneras distintas de leer “San Marcos”: 256
...
=
...
4
1 2 3 ... 9 10 2 3 4 ... 10 11 3 4 5 ... 11 12 3 4 5 6 ... 12 13 Suma = ( 10 ) = 1000 N.° de Filas
...
A A N N N
N° esferas de la base
...
S
...
3.er caso
18 19
∴ Suma de todos los elementos 1000
Reto Estas frente a tres apagadores, un pasillo y al fondo una habitación con la puerta cerrada. ¿Cómo saber cuál de los apagadores enciende el foco de la habitación recorriendo el pasillo una sola vez? Enciendes el apagador 1 y esperas 5 minutos, lo apagas y enciendes el 2. Recorres el pasillo y abres la puerta: Si el foco está encendido, el apagador 2 es el bueno, si está apagado pero caliente es el 1 y si está frío, debe ser el 3.
37
5to Secundaria
1
Calcula la suma de cifras del resultado en “E”,
3
si:
Calcula la suma de cifras del resultado de efectuar:
E =(333...33)2
P = 997 x 998 x 999 x 1000+1
40 cifras
Resolución:
Resolución:
Rpta:
2
Rpta:
Calcula la suma de cifras de “A”, si:
4
2
ducto:
A = (333...34)
Halla la última cifra luego de efectuar el pro-
100 cifras
R=(22004+1)(22003+1)(22002+1)......(22 + 1)
Resolución: Resolución:
Rpta: 38
Rpta:
Raz. Matemático 5
¿De cuántas maneras diferentes se puede leer
6
Halla el valor de la F(100), si:
MENTOR en el siguiente arreglo? M M E M M E N E M M E NT N E M M E NT OT N E M M E NT O R OT N E M
F(1) = 1
F(2) = 3 + 5
F(3) = 7 + 9 + 11
F(4) = 13 + 15 + 17 + 19
Resolución:
Resolución:
Rpta:
7.
Rpta:
Halla la suma de los elementos de la siguiente matriz de 10 x 10.
18 20 22 ... 34 36 20 22 24 ... 36 38
Halla el valor de n si: n cifras
22= 22+ 2222 + 222222 +...+ 33 3333 333333
¿De cuántas maneras diferentes se puede leer “JESSICA”? J EEE SSSSS SSSSSSS I I I I I I I I I CCCCCCCCCCC AAAAAAAAAAAAA
2 4 6 ... 18 20 4 6 8 ... 20 22 6 8 10 ... 22 24
8.
9.
10. ¿De cuántas maneras se puede leer la palabra “RECONOCER” pudiendo repetir letras? R
222...2 333...3
E C
n cifras
O N
E C
O N
C O
N
O N
N
39
5to Secundaria 11. Halla el total de palitos en:
12. Si:
1
1.
2
3
48 49 50
4.
Calcula la suma de cifras de:
M(1) = 4 x 1 + 1 M(2) = 8 x 4 + 8 M(3) = 12 x 9 + 27
Calcula el valor de x, si: M(x)= 4 x 104
¿De cuántas maneras diferentes se puede leer la palabra INGENIO en el siguiente arreglo?
M = (666...66)2
I I N I I N G N I I N G E G N I I N G E N E G N I I N G E N I N E G N I I N G E N I O I N E G N I
12 cifras
a) 108 b) 102 d) 104
c) 110 e) 103
2.
Calcula la suma de cifras del resultado de: B = (999...995)2
a) 128 b) 127 d) 125
c) 126 e) 124
5.
Los puntajes que tiene un alumno en la academia en sus exámenes son:
101 cifras
c) 625 e) 907
3.
Calcula la suma de cifras del resultado de:
N.º examen 1 ........... 2 ........... 3 ........... 4 ...........
M = 100 x 101 x 102 x 103+1
a) 5 b) 6 d) 8
40
c) 7 e) 10
Puntaje 2 5 10 17 ...
a) 900 b) 925 d) 90
...
¿Cuál fue la nota que obtuvo en el décimo segundo examen?
a) 120 b) 146 d) 148
c) 145 e) 150
Raz. Matemático 6. ¿En qué cifra termina:
P = 4+(10700 +1) ... (103+1) (102 + 1) (10+1)?
a) 1 b) 4 d) 5
7.
Halla la suma de todos los elementos de la siguiente matriz:
10. En la siguiente secuencia gráfica, halla el número total de cuadrados de la figura 60.
c) 8 e) 9
1 2 3 4 ... 9 10 2 3 4 5 ... 10 11 3 4 5 6 ... 11 12 4 5 6 7 ... 12 13
a) 120 b) 200 d) 240
c) 100 e) 241
11. Halla el total de palitos que conforman la figura. 9 10 11 12 ... 17 18 10 11 12 13 ... 1 8
a) 100 b) 500 d) 1001
8.
Calcula:
c) 1000 e) 3000
24 cifras
E= 35 + 3535 + 353535 +...+ 12 1212 121212
3535...35 1212...12
1
2
3
4
38
39
40
24 cifras
a) 35 d) 20
b) 12 e) 24
c) 13
9.
¿De cuántas maneras diferentes se puede leer la palabra “INGRESO”?
a) 16 b) 24 d) 20
c) 24 e) 989
12. ¿De cuántas maneras diferentes se puede leer trotamundos?
I NN G G G R R R R E E E S S O
a) 1 599 b) 1 521 d) 1 650
O
N
D R T M N O T O A U D S R T M N O O U D N
c) 14 e) 30
U
a) 130 b) 128 d) 166
c) 135 e) 120
41
5to Secundaria
6
Ecuaciones
OBJETIVOS: Relacionar matemáticamente hechos de nuestra vida diaria. Ejecutar la capacidad de abstracción para representar y relacionar simbólicamente los datos de un problema con las variables elegidas para las incógnitas.
Nociones previas Plantear una ecuación es traducir al lenguaje matemático (forma simbólica) lo expresado en un lenguaje común (verbal). Nuestro lenguaje está lleno de expresiones que en algunos casos puede ser medido (el costo de un libro, el número de alumnos de un aula, la altura de un estudiante, etc.) y en otros no pueden ser medidos (la alegría de un estudiante, la habilidad de una persona, el heroísmo de un soldado, etc.). En este tema nos ocuparemos de aquellas expresiones que sí podemos representar matemáticamente: * Traducir al lenguaje matemático (forma simbólica) cada uno de los siguientes enunciados: LENGUAJE COMÚN (VERBAL)
LENGUAJE MATEMÁTICO (Forma simbólica)
El triple de un número, aumentado en su mitad. El triple de un número aumentado en su mitad. El cuadrado de un número, aumentado en cinco. El cuadrado de un número aumentado en cinco. La suma de dos números consecutivos es 99. La suma de tres números pares consecutivos es 36. La suma de tres números impares consecutivos es 45. Gastó la tercera parte de lo que no gastó. El número de varones es la quinta parte del total de los reunidos.
?
¡Hola! me llamo incógnita, mi juego favorito son las escondidas, muchos me buscan, pero son muy pocos los que me encuentran.
Me agrada ver sufrir a los que no logran hacerlo. Tal regocijo me causa ver sus rostros demacrados por la derrota... ¡Me temen! Je, je, je. Mas aquéllos que me encuentran me causan admiración por su gran habilidad y perseverancia. Incluso muchas veces los he retado con ayuda de mis amigas las fracciones, pero ellos se sonríen y siguen jugando, como si supiesen que van a ganarme. 42
Raz. Matemático Ejemplo 1: Si ganara S/. 300, tendría el triple de lo que me quedaría si hubiera perdido S/. 300. ¿Cuánto tengo? Resolución: Tengo al inicio “S/. x” Si ganara S/.300 tendría: x + 300 Si perdiera S/.300 me quedaría: x - 300 Planteamos la ecuación: x + 300 = 3(x - 300) x + 300 = 3x - 900 300 + 900 = 3x - x 1200 = 2x 600 = x ∴ Tengo S/. 600 Ejemplo 2: Halla el número de hojas de un libro de R.M. si sabemos que si arrancamos 25 quedarán la mitad de hojas que si el libro tuviera 50 hojas más. Resolución: Número de hojas “x” Si arranco 25 hojas me quedaría: x - 25 Si tuviera 50 más tendría: x + 50 Planteamos la ecuación: x - 25 =
1 (x + 50) 2
Ejemplo 3: Halla la longitud de un puente si sabemos que el séxtuplo de dicha longitud disminuido en 300 metros es equivalente al triple de dicha longitud disminuido en 60 metros. Resolución: Longitud del puente: “x” metros Planteamos la ecuación: 6x - 300 = 3x - 60 6x - 3x = 300 - 60 3x = 240 x = 80 ∴ Longitud del puente 80 metros. Ejemplo 4: Si compro 7 cuadernos y 3 lápices, gasto S/. 44; pero si compro 7 lápices y 3 cuadernos, gasto S/. 36. ¿Cuánto cuesta 1 cuaderno y cuánto 1 lapicero? Resolución: Costo de 1 cuaderno: S/. C Costo de 1 lapicero: S/. L De los datos planteamos las ecuaciones: 7C + 3L = 44 ....... (1) 3C + 7C = 36 ...... (2) (1)+(2): 10(C + L)=80 ⇒ C+L= 8 (1)-(2): 4(C - L)= 8 ⇒ C - L= 2 2C = 10
2x -50 = x + 50 2x - x = 50 + 50 x = 100 ∴ Número de hojas 100.
C=5 Por tanto:
L=3
∴ 1 cuaderno cuesta S/. 5 y 1 lapicero cuesta S/. 3.
Curiosidades Las abejas, cuando guardan la miel, tienen que resolver varios problemas. Necesitan guardar la miel en celdillas individuales, de tal manera que formen un mosaico sin huecos ni salientes entre las celdillas, ya que hay que aprovechar el espacio al máximo. Solo podrían hacerlo con triángulos, cuadrados y hexágonos. ¿Por qué eligieron entonces los hexágonos, si son mas difíciles de construir?. La respuesta es un problema isoperimétrico (del griego «igual perímetro»). Papus había demostrado que, entre todos los polígonos regulares con el mismo perímetro, encierran mas área aquellos que tengan mayor número de lados. Por eso, la figura que encierra mayor área para un perímetro determinado es el círculo, que posee un número infinito de lados. Por eso las abejas construyen sus celdillas de forma hexagonal, ya que, gastando la misma cantidad de cera en las celdillas, consiguen mayor superficie para guardar su miel. La pregunta es: ¿y quién le enseñó esto a las abejas?...
Reto
Las arañas y los escarabajos Un chiquito cazó varias arañas y escarabajos, en total ocho, y los guardó en una caja. Si se cuenta el número total de patas que corresponde a los 8 animales resultan 54 patas. ¿Cuántas arañas y cuántos escarabajos hay en la caja?
43
5to Secundaria
1
De los 200 soles que tenía, gasté la tercera parte
3
de lo que no gasté. ¿Cuántos soles gasté?
Compré un lote de pantalones a 180 soles el ciento y vendí a 24 soles la docena, ganando en el negocio 600 soles. ¿Cuántos cientos de
Resolución:
pantalones compré? Resolución:
Rpta:
2
Rpta: 44
Rpta:
En una reunión, la cuarta parte de las personas
4
Sobre un estante se pueden colocar 30 libros
son hombres. Si la diferencia entre el número
de ciencias y 6 libros de letras o 18 librosde
de mujeres y hombres es 80, ¿cuántas mujeres
letras y 10 libros de ciencias. ¿Cuántos libros
hay en dicha reunión?
de letras únicamente se pueden colocar?
Resolución:
Resolución:
Rpta:
Raz. Matemático 5
En un pueblo, a cada habitante le correspondía
6
En un asamblea todos deben votar a favor o en
60 litros de agua por día; como llegan 40 per-
contra de una moción. En una primera rueda,
sonas, corresponden ahora 2 litros menos por
los que votaron en contra ganaron por 20 vo-
semana. ¿Cuántas personas hay en el pueblo?
tos; en una segunda vuelta se aprobó la moción por una diferencia de 10 votos. ¿Cuántos asambleístas cambiaron de opinión?
Resolución:
Resolución:
Rpta:
Rpta:
7.
10. El exceso de 6 veces un número sobre 50 equivale al exceso de 50 sobre 4 veces el número. Halla el número.
En una reunión se contaban tantos caballeros como 3 veces el número de damas. Después llegaron 300 caballeros más y 40 damas más, y ahora por cada dama hay 5 caballeros. ¿Cuántas damas habían al comienzo?
8.
En una reunión se observa que los hombres y las mujeresestánenlarelaciónde3a5respectivamente; los que bailan y los que no bailan están en la relación de 2 a 3. ¿En qué relación están los hombres que bailan y las mujeres que no bailan?
9.
Se tiene un grupo de 84 fichas de 10 gramos cada una y otro grupo de 54 fichas de 25 gramos cada una. ¿Cuántas fichas deben intercambiarse para que ambos adquieran el mismo peso?
11. Se tiene un número impar, se le añade el par de números impares que le anteceden y los tres números pares que son inmediatamente anteriores a dicho número, dando un resultado de 939 unidades. Calcula la suma de cifras del número impar mencionado.
12. Nandito pagó una deuda con monedas de S/.5 y S/.2, el número de monedas de S/.5 excede a las de S/. 2 en 15, y la cantidad de dinero que pagó con monedas de S/.5 es 2 veces más que la cantidad que pagó con monedas de S/. 2. ¿Cuál es el valor de la deuda?
45
5to Secundaria
1.
Halla un número cuyo cuadrado disminuido en 119 es igual a 10 veces el exceso del número con respecto a 8.
a) 13 b) 10 d) 3
2.
Un niño le dice a su padre: “de los 140 soles que me diste, gasté 58 soles más de los que no gasté”. ¿Cuánto no llegó a gastar el niño?
8.
En dos cajas de lapiceros hay 68 de éstos. Si de la caja con más lapiceros extraemos 14 de éstos y los colocamos dentro de la otra, logramos que ambas cajas tengan la misma cantidad. ¿Cuántos lapiceros había inicialmente en la caja con menor cantidad?
a) 18 b) 28 d) 20
9.
Alex y Omar juntos tienen S/. 80. Si el triple del dinero que tiene Omar excede en S/. 5 al doble de lo que tiene Alex, ¿cuánto más tiene Alex que Omar?
a) S/. 10 b) S/. 12 d) S/. 15
c) 7 e) 8
a) S/. 21 b) S/. 25 d) S/. 37
c) S/. 31 e) S/. 41
3.
Pedro paga por 2 polos y 5 faldas un total de 495 soles. Si cada falda cuesta S/. 15 más que un polo, ¿cuántos soles cuestan un polo y una falda juntos?
a) 120 b) 105 d) 95
4.
A cierto número par, se le suma los dos números impares que le anteceden y los dos números pares que le preceden, obteniéndose en total 630. El producto de los dígitos del número par de referencia, es:
a) 10 b) 14 d) 60
5.
Nicolás tiene tres veces más dinero de lo que tiene Víctor. Si Nicolás le diera 15 soles a Víctor, entonces tendrían la misma cantidad. ¿Cuánto tienen entre los dos?
c) 145 e) 135
c) 16 e) 12
c) S/.14 e) S/. 16
10. Un alumno tiene 30 caramelos y los vende a 3 caramelos por 10 soles, otro alumno tiene 30 caramelos y los vende a 2 caramelos por 10 soles. Los alumnos juntan sus caramelos y los venden a 5 caramelos por 20 soles. Entonces, ¿ganan o pierden? y ¿cuánto?
a) Ganan 10 soles b) Pierden 20 soles c) Pierden 10 soles d) Pierden 5 soles e) Ganan 15 soles
11. En una fiesta los invitados ingresaban de la siguiente manera: un caballero con 2 damas o una dama con tres niños. Si en total hay 220 asistentes y además ingresarontantasdamasconloscaballeroscomodamas con los niños, halla el número de niños asistentes.
a) S/. 25 b) S/. 30 d) S/. 50
6.
Tengo cierta cantidad de nuevos soles. Si regalara (2x - 3), me quedaría (8x - 6). ¿Cuánto tengo?
a) 6x - 9 b) 10x - 9 d) 6x + 3
7.
Del producto de dos números enteros positivos consecutivos se resta la suma de los mismos y se obtiene 71. El número mayor es:
12. Juan dice: “Al contar mi dinero, he contado mal porque me confundí contando por 1 sol las monedas que son de 5 soles, así que al final tuve que agregar a ese conteo 240 soles”. ¿Cuántas monedas fueron las que conté mal?
a) 6 b) 7 d) 9
46
c) S/. 45 e) S/. 60
c) 16 e) 15
c) 8x - 3 e) 9x -10
c) 8 e) 10
a) 120 b) 130 d) 150
a) 200 b) 120 d) 60
c) 140 e) 160
c) 48 e) 240
View more...
Comments