001 R0 STK Substructure Design AMH to Be Sent

April 7, 2017 | Author: Thulasi Raman Kowsigan | Category: N/A
Share Embed Donate


Short Description

Download 001 R0 STK Substructure Design AMH to Be Sent...

Description

3.2.1 Input Data for Design of EJ Pier P3 EJ FRL

9.309

0.065 thick WC

Left Span

Right Span PSC

PSC

1.150

superstructure

1.150

superstructure

RL of Pier cap top

0.350

7.744 =9.309-0.065-1.150-0.350 0.750

0.750 1.300 2.300

4.612

HFL 7.350

1.800 dia circular pier

Existing GL

3.312

1.632 RL of foundation base 3.132 RL of pile cap base

1.500

Foundation

1.632 4.3

Longitudinal Elevation at EJ Pier

9.8

All dimensions & levels are in m unless otherwise specified

THE SECTION SHOWN IN ELEVATION AND CROSS SECTION ARE ONLY INDICATIVE

2.300 0.15

1.800 dia circular pier

Foundation

4.3

Sectional Elevation Existing bridge is on this side Y

Pier BL1

BR1 Deck Slab

BL2

BR2

BL3

BR3

Pier CG

X , Traffic BL4

BR4

BL5

BR5

BL6

BR6

Crash barrier

Plan of deck and piercap 3.2.1.1

Details of Superstructure Left Span

Right Span

Span

22.25

22.25

Type

PSC Girder

PSC Girder

Overall Depth

1.150

1.150

CG from bottom

0.615

0.615

1.00E+06

1.00E+06

Radius of Horizontal Curvature

Max height of bearing + pedestal 0.350 0.350 (refer superstructure design note for CG location, out of various values, maximum value has been considered to have maximum lever arm for horizontal forces. )

C.L of Pier/ C.L of deck Origin

0 -4.5

4.5 -2.5

3.5

-0.5 1.5

The co-ordinate of each girder with respect to the center of pier and deck. 3.2.1.2

Reactions due to DL Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

180

4.5

-0.750

810.0

-135.0

BL2

214

3.5

-0.750

749.0

-160.5

BL3

240

1.5

-0.750

360.0

-180.0

Left

BL4

240

-0.5

-0.750

-120.0

-180.0

span

BL5

240

-2.5

-0.750

-600.0

-180.0

BL6

237

-4.5

-0.750 -1066.5

-177.8

Total

1351

BR1

180

4.5

0.750

810

135.0

BR2

214

3.5

0.750

749

160.5

Right

BR3

240

1.5

0.750

360

180.0

span

BR4

240

-0.5

0.750

-120

180.0

BR5

240

-2.5

0.750

-600

180.0

BR6

237

-4.5

0.750 -1066.5

177.8

Total

1351

132.5

1013.3

2702

265

0

Total=Left+Right 3.2.1.3

Reactions due to SIDL + Diaphragm Due to Weight of Wearing Coat + Due to Weight of Crash Barrier & other services Bearing Vertical

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

Trans

Longitu

BL1

13.5

4.5

-0.75

60.8

-10.1

BL2

31.3

3.5

-0.75

109.7

-23.5

BL3

41.5

1.5

-0.75

62.2

-31.1

Left

BL4

56.9

-0.5

-0.75

-28.5

-42.7

span

BL5

85.4

-2.5

-0.75

-213.5

-64.0

BL6

281.2

-4.5

-0.75 -1265.3

-210.9

Total

509.8

-1274.6

-382.3

BR1

13.5

4.5

0.75

60.8

10.1

BR2

31.3

3.5

0.75

109.7

23.5

BR3

41.5

1.5

0.75

62.2

31.1

Right

BR4

56.9

-0.5

0.75

-28.5

42.7

span

BR5

85.4

-2.5

0.75

-213.5

64.0

BR6

281.2

-4.5

0.75 -1265.3

210.9

Total

509.8

-1274.6

382.3

1020

-2549

0

Total=Left+Right 3.2.1.4

132.5 -1013.3

Reactions due to LL As per Table 2 of IRC: 6 -2010, the superstructure has 2 lanes for movement of live loads for the given width of carriageway. Following three cased of live loads has been considered for the design of substructure A Maximum Reaction & Transverse moment case Both spans loaded fully with live loads with maximum eccentricity (i.e. LL placed nearest to edge) such that both the vertical reaction and transverse moment at the B

EJ pier is maximum. Maximum Longitudinal Moment case Only one span loaded with live load fully such that the longitudinal moment at the

EJ pier is maximum For each of the above cases, following live loads locations along the transverse direction has been considered. Case 1- Class 70R(Wheeled) - 1 lane placed at edge on the inner side of carriageway C.L of Pier/ C.L of deck

5.150 e

Origin

1000kN 0.965 Inner edge

Transverse Eccentricity 'e'

=

5.150-0.965

4.185 m

Case 2- Class 70R(Wheeled) -2L (one at inner edge and the other at outer edge) C.L of Pier/ C.L of deck

5.150 Origin

1000kN 0.965

1000kN 3.095

Distance of CL of pier from edge 5.150 = m Distance of Resultant from edge = =(1000×0.965+1000×(10.3-3.095))/(1000+1000) = Transverse Eccentricity 'e'

=

4.085 -1.065 m

Case 3- Class 70R(Tracked) - 1 lane placed at edge on the inner side of carriageway C.L of Pier/ C.L of deck

5.150 e

Origin

700kN 1.025 Inner edge

Transverse Eccentricity 'e'

=

5.150-1.025

4.125 m

Case 4- Class 70R(tracked) -2L (one at inner edge and the other at outer edge) C.L of Pier/ C.L of deck

5.150 Origin

700kN 0.965

700kN 3.155

Distance of CL of pier from edge 5.150 = m Distance of Resultant from edge = =(700×0.965+700×(10.3-3.155))/(700+700) = Transverse Eccentricity 'e'

=

4.055 -1.095 m

Case 5- Class A - 1 lane placed at edge on the inner side of carriageway C.L of Pier/ C.L of deck

5.150 e

Origin

554kN 1.800

Inner edge

Transverse Eccentricity 'e' = 5.150-1.800 3.350 m Case 6- Class A - 2 lanes placed at edge on the inner side of carriageway C.L of Pier/ C.L of deck

5.150

Origin

554kN 0.9

3.5

554kN 554kN e

e

Distance of CL of pier from edge

=

Distance of Resultant from edge

=

5.150 m (554×0.900+554×(0.900+3.500))/(554+554)

=

2.650 m

Transverse Eccentricity 'e' = 2.500 m =5.150-2.650 Case 7- Class A - 3 lanes placed at edge on the inner side of carriageway C.L of Pier/ C.L of deck

5.150

Origin

554kN

554kN 0.9

554kN

3.5

1.8 e

Distance of CL of pier from edge

=

Distance of Resultant from edge

=

Transverse Eccentricity 'e'

5.150 m (554×0.9+(554×(0.9+3.5))+(554×(10.3-1.8)))/(3×554)

=

4.600 m

=

0.550 m

=5.150-4.600

Case 8- 70R Tracked + Class A - 1 lane C.L of Pier/ C.L of deck

Origin

5.150

554kN

1000kN 1.025

1.8 e

Distance of CL of pier from edge

=

Distance of Resultant from edge

=

5.150 m =(700×1.025+554×(10.3-1.8))/(700+554)

=

4.327 m

Transverse Eccentricity 'e' = 0.823 m Case 9- 70R Wheeled + Class A - 1 lane

=5.150-4.327

C.L of Pier/ C.L of deck

Origin

5.150

1000kN

554kN

0.965

1.8 e

Distance of CL of pier from edge

=

Distance of Resultant from edge

=

Transverse Eccentricity 'e'

5.150 m =(1000×0.965+(554×(10.3-1.8)))/(1000+554)

=

3.651 m

=

1.499 m

=5.150-3.651

3.2.1.4.1 Maximum Reaction & Transverse moment case For this case, a grillage beam model for both spans with live loads moving along the beam has been analyzed using StaadPro software to get the maximum combined reaction on the EJ pier. Results are tabulated below. Transverse eccentricity of the applied load at each bearing is taken that has been used to calculate the transverse moment on the pier. ACase 1- Class 70R(Wheeled) - 1 lane placed at edge on the inner side of carriageway

Left

Bearing Vertical

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

Trans

Longitu

BL1

195.8

4.5

-0.75

881.2

-146.9

BL2

82.5

3.5

-0.75

288.8

-61.9

BL3

46.4

1.5

-0.75

69.6

-34.8

BL4

-9.5

-0.5

-0.75

4.8

7.1

span

BL5

2.3

-2.5

-0.75

-4.5

-0.75

BL6

-3.4

Total

314

BR1

294.4

BR2

190.6

BR3 Right span

-5.7

-1.7

15.4

2.6

1254.0

-235.6

4.5

0.75 1324.77

220.8

3.5

0.75

667.21

143.0

92.7

1.5

0.75

139.10

69.5

BR4

-3.1

-0.5

0.75

1.56

-2.3

BR5

-2.4

-2.5

0.75

6.12

-1.8

BR6

-6.7

-4.5

0.75

30.09

-5.0

Total

566

2168.8

424.13

880

3423

189

Total=Left+Right

ACase 2- Class 70R(Wheeled) -2L (one at inner edge and the other at outer edge) Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

-2.9

4.5

-0.75

-13.0

2.2

BL2

3.4

3.5

-0.75

11.9

-2.6

BL3

-11.9

1.5

-0.75

-17.9

8.9

left

BL4

84.2

-0.5

-0.75

-42.1

-63.1

span

BL5

193.8

-2.5

-0.75

-484.6

-145.4

BL6

54.7

-4.5

-0.75

-246.0

-41.0

Total

321

-792

-241

BR1

-9.3

4.5

0.75

-41.9

-7.0

BR2

3.7

3.5

0.75

12.9

2.8

BR3

13.4

1.5

0.75

20.1

10.0

right

BR4

151.2

-0.5

0.75

-75.6

113.4

span

BR5

299.9

-2.5

0.75

-749.6

224.9

BR6

99.5

-4.5

0.75

-447.9

74.6

Total

558

-1282

419

880

-2074

178

Total=Left+Right

Total effect of two lanes of 70R. Total (70R+70R)L =

635

462

-477

Total (70R+70R)R =

1124

887

843

A Case3 Class A - 1 lane placed at edge on the outer side of carriageway Bearing Vertical

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

141.0

4.500

-0.75

Trans 634.7

Longitu -105.8

BL2

173.4

3.500

-0.75

607.0

-130.1

BL3 left

BL4

164.6

1.500

-0.75

246.9

-123.5

122.5

-0.500

-0.75

-61.2

-91.8

span

BL5

44.9

-2.500

-0.75

-112.3

-33.7

-4.500

-0.75

BL6

-6.4

Total

640

28.6

4.8

1343.6

-480.1

BR1

-17.6

4.500

BR2

-91.3

3.500

0.75

-79.1

-13.2

0.75

-319.6

-68.5

BR3

-38.8

1.500

0.75

-58.2

-29.1

right

BR4

-24.9

-0.500

0.75

12.5

-18.7

span

BR5

-30.2

-2.500

0.75

75.5

-22.6

BR6

1.8

-4.500

0.75

-7.9

1.3

Total

-201.0

-376.9

-150.8

439

967

-631

Total=Left+Right

A Case4 Class A - 2 lane Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

282.1

4.500

-0.75

1269.4

-211.6

BL2

346.9

3.500

-0.75

1214.0

-260.2

BL3

329.2

1.500

-0.75

493.8

-246.9

left

BL4

244.9

-0.500

-0.75

-122.5

-183.7

span

BL5

89.9

-2.500

-0.75

-224.7

-67.4

BL6

-12.7

-4.500

-0.75

57.2

9.5

Total

1280

2687.3

-960.2

BR1

-35.2

4.500

0.75

-158.3

-26.4

BR2

-182.6

3.500

0.75

-639.2

-137.0

BR3

-77.5

1.500

0.75

-116.3

-58.2

right

BR4

-49.9

-0.500

0.75

24.9

-37.4

span

BR5

-60.4

-2.500

0.75

150.9

-45.3

BR6

3.5

-4.500

0.75

-15.8

2.6

Total

-402.1

-753.7

-301.6

Total=Left+Right 878 A Case5- Class A - 3 lane

1934

-1262

Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

268.7

4.500

-0.75

1209.1

-201.5

BL2

339.2

3.500

-0.75

1187.0

-254.4

BL3

355.2

1.500

-0.75

532.9

-266.4

left

BL4

361.5

-0.500

-0.75

-180.7

-271.1

span

BL5

378.0

-2.500

-0.75

-945.0

-283.5

BL6

167.6

-4.500

-0.75

-754.2

-125.7

Total

1870

BR1

-29.1

4.500

0.75

-130.9

-21.8

BR2

-175.1

3.500

0.75

-612.8

-131.3

BR3

-97.0

1.500

0.75

-145.5

-72.7

right

BR4

-118.4

-0.500

0.75

59.2

-88.8

span

BR5

-113.1

-2.500

0.75

282.7

-84.8

BR6

-20.3

-4.500

0.75

91.3

-15.2

Total

-552.9

-456.0

-414.7

1317

593

-1817

Total=Left+Right

1049.1 -1402.6

A Case6- Class 70R(Tracked) - 1 lane placed at edge on the inner side of carriageway Bearing Vertical

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

Trans

Longitu

BL1

208.7

4.500

-0.75

939.3

-156.6

BL2

88.8

3.500

-0.75

310.7

-66.6

BL3

72.4

1.500

-0.75

108.7

-54.3

Left

BL4

-15.2

-0.500

-0.75

7.6

11.4

span

BL5

3.4

-2.500

-0.75

-8.6

-2.6

-4.500

-0.75

BL6

-1.2

Total

357

5.6

0.9

1363.3

-267.7

BR1

194.6

4.500

BR2

79.7

3.500

0.75

875.75

146.0

0.75

278.81

59.7

BR3

67.4

1.500

0.75

101.12

50.6

Right

BR4

span

BR5

-14.6

-0.500

0.75

7.31

-11.0

3.5

-2.500

0.75

-8.65

2.6

BR6

-1.2

-4.500

0.75

5.18

-0.9

Total

329

1259.5

247.03

686

2623

-21

Total=Left+Right

A Case7- Class 70R(Tracked) -2L (one at inner edge and the other at outer edge) Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

-2.3

4.500

-0.75

-10.4

1.7

BL2

4.9

3.500

-0.75

17.0

-3.6

BL3

-13.4

1.500

-0.75

-20.1

10.1

left

BL4

105.7

-0.500

-0.75

-52.9

-79.3

span

BL5

214.5

-2.500

-0.75

-536.2

-160.9

BL6

47.3

-4.500

-0.75

-212.6

-35.4

Total

357

-815

-267

BR1

-2.1

4.500

0.75

-9.5

-1.6

BR2

4.8

3.500

0.75

16.7

3.6

BR3

-13.4

1.500

0.75

-20.1

-10.0

right

BR4

97.6

-0.500

0.75

-48.8

73.2

span

BR5

198.9

-2.500

0.75

-497.2

149.2

BR6

44.1

-4.500

0.75

-198.4

33.1

Total

330

-757

247

686

-1572

-20

714

548

-535

Total (70R+70R)R = 659

502

494

Total=Left+Right

Total effect of two lanes of 70R. Total (70R+70R)L =

A Case8- Class 70R(Tracked)+ Class A - 1L Total effect (70RT+Cl A) 1L=

997

2707

-748

(70RT+Cl A) 1L=

128

883

96

A Case9- Class 70R(Wheeled)+ Class A - 1L Total effect (70RW+Cl A) 1L=

455

2598

-716

(70RW+Cl A) 1L=

364

1792

273

3.2.1.4.2 Maximum Longitudinal Moment case For this case, grillage model of span with live loads moving along a specified path with eccentricities has been analyzed using StaadPro software to get the maximum combined reaction on the set of bearings supporting the above span to maximize longitudinal moment on the EJ pier. The other span is not loaded at all so that bearing reactions for that span are all zero. Results are tabulated below.

Right Span

Left Span

BCase 1-Class 70R(Wheeled) - 1 lane placed at edge on the inner side of carriageway Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

0

4.5

-0.75

0

0

BL2

0

3.5

-0.75

0

0

BL3

0

1.5

-0.75

0

0

BL4

0

-0.5

-0.75

0

0

BL5

0

-2.5

-0.75

0

0

BL6

0

-4.5

-0.75

0

0

Total

0

0.00

0

BR1

422.6

4.5

0.75

1901.6

316.9

BR2

252.9

3.5

0.75

885.1

189.7

BR3

127.6

1.5

0.75

191.4

95.7

BR4

-1.4

-0.5

0.75

0.7

-1.0

BR5

-2.6

-2.5

0.75

6.5

-2.0

BR6

-14.6

-4.5

0.75

65.9

-11.0

Total

784.4

3051.2

588.3

784

3051

588

Total=Left+Right

Right Span

Left Span

BCase 2-Class 70R(Wheeled) -2L (one at inner edge and the other at outer edge) Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

0

4.5

-0.75

0

0

BL2

0

3.5

-0.75

0

0

BL3

0

1.5

-0.75

0

0

BL4

0

-0.5

-0.75

0

0

BL5

0

-2.5

-0.75

0

0

-4.5

-0.75

0

0

0

0

BL6

0

Total

0

BR1

-16.6

4.5

0.75

-74.5

-12.4

BR2

7.5

3.5

0.75

26.1

5.6

BR3

21.2

1.5

0.75

31.9

15.9

BR4

209.3

-0.5

0.75

-104.7

157.0

BR5

403.0

-2.5

0.75 -1007.5

302.2

BR6

159.9

-4.5

0.75

-719.7

120.0

Total

784.4

-1848.4

588.3

784

-1848

588

Total = Left + Right

Total effect of two lanes of 70R. Total (70R+70R)L =

0

0

0

Total (70R+70R)R =

1569

1203

1177

Right Span

Left Span

BCase 3-Class A - 1 lanes placed at edge on the inner side of carriageway Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

0

4.5

-0.75

0

0

BL2

0

3.5

-0.75

0

0

BL3

0

1.5

-0.75

0

0

BL4

0

-0.5

-0.75

0

0

BL5

0

-2.5

-0.75

0

0

BL6

0

-4.5

-0.75

0

0

Total

0

0

0

BR1

-6.6

4.5

-0.75

-29.7

5.0

BR2

0.2

3.5

-0.75

0.5

-0.1

BR3

7.0

1.5

-0.75

10.5

-5.3

BR4

38.5

-0.5

-0.75

-19.2

-28.9

BR5

205.5

-2.5

-0.75

-513.9

-154.2

BR6

134.6

-4.5

-0.75

-605.7

-100.9

Total

379.2

-1157.4

-284.4

379

-1157

-284

Total = Left + Right

Right Span

Left Span

BCase 4-Class A - 2 lanes placed at edge on the inner side of carriageway Bearing Vertical

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

Trans

Longitu

BL1

0

4.5

-0.75

0

0

BL2

0

3.5

-0.75

0

0

BL3

0

1.5

-0.75

0

0

BL4

0

-0.5

-0.75

0

0

BL5

0

-2.5

-0.75

0

0

BL6

0

-4.5

-0.75

0

0

Total

0

0

0

BR1

165.4

4.5

0.75

744.3

124.1

BR2

136.1

3.5

0.75

476.4

102.1

BR3

166.7

1.5

0.75

250.0

125.0

BR4

125.9

-0.5

0.75

-63.0

94.4

BR5

36.2

-2.5

0.75

-90.6

27.2

Right Span

BR6

-10.5

Total Total = Left + Right

-4.5

0.75

47.1

-7.8

619.9

1364.3

464.9

620

1364

465

Right Span

Left Span

BCase 5-Class A - 3 lanes placed at edge on the inner side of carriageway Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

BL1

0.0

4.5

0.75

0

0

BL2

0.0

3.5

0.75

0

0

BL3

0.0

1.5

0.75

0

0

BL4

0.0

-0.5

0.75

0

0

BL5

0.0

-2.5

0.75

0

0

BL6

0.0

-4.5

0.75

0

0

Total

0

0

0

BR1

156.0

4.5

0.75

701.9

117.0

BR2

135.7

3.5

0.75

474.9

101.8

BR3

179.1

1.5

0.75

268.7

134.3

BR4

172.0

-0.5

0.75

-86.0

129.0

BR5

175.1

-2.5

0.75

-437.7

131.3

BR6

111.9

-4.5

0.75

-503.5

83.9

Total

929.8

418.3

697.3

930

418

697

Total = Left + Right

Right Span

Left Span

BCase 6-Class 70R(Tracked) - 1 lane placed at edge on the inner side of carriageway Bearing Vertical

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

Trans

Longitu

BL1

0

4.5

0.75

0

0

BL2

0

3.5

0.75

0

0

BL3

0

1.5

0.75

0

0

BL4

0

-0.5

0.75

0

0

BL5

0

-2.5

0.75

0

0

BL6

0

-4.5

0.75

0

0

Total

0

0.00

0

BR1

359.3

4.5

0.75

1616.8

269.5

BR2

174.4

3.5

0.75

610.4

130.8

BR3

121.3

1.5

0.75

181.9

91.0

BR4

-16.5

-0.5

0.75

8.3

-12.4

BR5

2.5

-2.5

0.75

-6.3

1.9

Right Span

BR6

-4.9

22.1

-3.7

Total

636.1

2433.1

477.0

636

2433

477

Total=Left+Right

-4.5

0.75

BCase 7-Class 70R(Tracked) -2L (one at inner edge and the other at outer edge) Bearing Vertical

Trans

Longitu

Trans

Longitu

marked Reaction

Eccen

Eccen Moment Moment

0

4.5

0.75

0

0

BL2

0

3.5

0.75

0

0

BL3

0

1.5

0.75

0

0

BL4

0

-0.5

0.75

0

0

BL5

0

-2.5

0.75

0

0

BL6

0

-4.5

0.75

0

0

Total

0

0

0

BR1

-6.3

4.5

0.75

-28.3

-4.7

BR2

5.8

3.5

0.75

20.1

4.3

BR3

-8.4

1.5

0.75

-12.7

-6.3

BR4

188.0

-0.5

0.75

-94.0

141.0

BR5

357.0

-2.5

0.75

-892.5

267.7

BR6

100.1

-4.5

0.75

-450.3

75.0

Total

636.0

-1457.5

477.0

636

-1458

477

Right Span

Left Span

BL1

Total = Left + Right

Total effect of two lanes of 70R. Total (70R+70R)L =

0

0

0

Total (70R+70R)R =

1272

975

954

A Case8- Class 70R(Tracked)+ Class A - 1L Total effect (70RT+Cl A) 1L=

0

0

0

(70RT+Cl A) 1L=

1015

1276

193

A Case9- Class 70R(Wheeled)+ Class A - 1L Total effect

3.2.1.5

(70RW+Cl A) 1L=

0

0

0

(70RW+Cl A) 1L=

1164

1894

304

Summury of Reaction ReactionLeft Span

Reaction from Right Span

Total

DL

LL Case

SIDL

LL

DL

SIDL

LL

ACase 1-

314.099

566

ACase 2-

403

640

Total (70R+70R)R = 1351 BCase 1-

510

640

1351

0

510

-201 784

BCase 2-

0

868

BCase 4-

0

620

DL

SIDL

2702

1020

Bearing Reaction on EJ Pier when LL moves from one span to another Reactio n Criteria Max Reaction & transeverse moment case Max Long moment case

Due to Class 70R only From Left 314

From Right 566

Total

0

784

784

880

Due to Class 70R +FPLL on footpath side From From Total Left Right 403 640 1044 0

868

868

Due to Class A only From Left 640

From Right -201

0

620

Maximum Reaction & Transverse moment case Bearing Reaction (T) Span Type 0 Reaction Left Right from Span Span Class 70R 314 566 70R+FPLL 403

640

Class A

-201

640

Live Load ACase 1-

314

566

ACase 2-

403

640

Total (70R+70R)R 640 =

-201

Bearing Reaction (T)

Maximum Longitudinal Moment case Bearing Reaction (T) (From Staad Analysis)

Eccentri BM=Rx Description of Live Loads city eT eT (t-m) Class 70R(Wheeled) - 1 lane placed 4.185 3681 at edge70R(Wheeled) on the inner side-2L of (one at Class -1.065 -1111 inner edge and the other at outer 2.500 1098 0

Span Type 0 Reaction Left Right from Span Span Class 70R 0 784 70R+FPLL

0

868

Class A

0

620

Live Load BCase 1-

0

784

BCase 2-

0

868

BCase 4-

0

620

Eccentri BM=Rx Description of Live Loads city eT eT (t-m) Class 70R(Wheeled) - 1 lane placed 4.185 3283 at edge on the inner side of at Class 70R(Wheeled) -2L (one -1.065 -924 inner edge and the other at outer 2.500 1550 0

Bearing Reaction (T)

Left Span

Right Span

I

I

SPAN TYPE DL & SIDL SIDL + diphragm Crash Barrier

Dead Load

22.25m span

Distance from bottom of Pier cap to design Section (m) 3.312 Pier Base

22.25m span

Reaction

Reaction

510

510

0

0

1351

1351

Curtailment

0.000

Piercap bottom

0.000

Column Dimensions CG of Girder from bot 0.615

0.615

Traffic Direction Transverse Direction 1.800

MAXIMUM REACTION CASE : LOAD CASES TO BE

A1

Left Span I

A2

I

I

#N/A

A3

I

I

MAXIMUM LONGITUDINAL MOMENT CASE : LOAD CASES TO

B1

I

B2 B3

LL Case

Right Span I

Reactio Reactio n from n from #N/A #N/A

1.800

eT (m)

Description of Live Load

#N/A

#N/A

#N/A

#N/A

#N/A

#N/A

#N/A

#N/A

#N/A

I

#N/A

#N/A

#N/A

#N/A

I

I

#N/A

#N/A

#N/A

#N/A

I

I

#N/A

#N/A

#N/A

#N/A

3.2.1.6

Horizontal Forces Bearing Placed at top of the pier cap will be resisting horizontal forces. With respect to movement along traffic/longitudinal direction, it is assumed that the EJ pier will have elastomeric bearing. Thus the EJ pier will have to resist all braking and seismic longitudinal forces due to loads from longer span while only the friction forces due to loads on the shorter span will need to be resited by the same. However, for the transverse direction, horizontal loads from both spans have to be resisted by the same pier

3.2.1.6.1 Bearing Friction (For elestomeric bearing) m = coefficient of friction =

0

acting along transverse direction at hieght of

(Cl. 211.5.1 of IRC : 6 - 2010)

0.350 m above level of pier cap top

Considering LL reactions from the Right span only LL CaseReaction All cases 565.51

Calculation

Friction

= 565.506×0 =

Shear Rating

0

= GA/h

N/mm =1×82644/55

Ref. bearing design

1502.6 N/mm Max. Change in Temperature = Coefficient of thermal expansion = Coefficient of Shrinkage =

20 0Celcious 1.17E-05 / 0Celcious 2.00E-04

Total strain due to temperature and shrinkage=

20×1.17E-05+2.00E-04 =

4.340E-04

5.00E-04 As per Cl. 916.3.4.(2) of IRC 83(part II), strain due to shrinkage, temp etc can be taken as = 5.188 mm =20.75 x 1000 x 5.E-04 = Translation along long. Direction Force due to translation of one girder

=5.188×1502.6/1000=

Force due to translation of six girders

5.188×1502.6/1000x6=

7.8 kN 46.8 N

Since the span on both side of the pier having same length and same no. Force due to translation of six girders on the pier cap from one side = 5.188×1502.6/1000x6=" Therefore force due to translation of girders on pier

(46.769-46.8)/1000="

Ecc. =

46.8 N 0.0 KN 0.35

m

3.2.1.6.2 Braking Forces As per Cl. 211.2 of IRC: 6 -2010, following value so f braking force have been considered. Considering live loads from the LL Case Description of traffic load Case 1 70R Wheeled - 1 lane

Left Span only Calculation =0.2×1000

Case 2 70R Wheeled - 2 lane Case 3 Class A - 1 Lane

=0.2×1000+0.05×1000

Case 4 Class A - 2 Lane

=0.2×554+2×0.05×554

=0.2×554+0.05×554

Case 5 Class A - 3 Lane Case 6 70R Tracked - 1 lane

=0.2×554+3×0.05×554

Case 7 70R Tracked - 2 lane Case 8 70R Tracked + Class A - 1 Lane

=0.2×700+0.05×700

Case 9 70R Wheeled+ Class A - 1 Lane

=0.2×1000+0.05×554

=0.2×700 =0.2×700+0.05×554

Braking force act along longitudinal direction at height i.e. 1.2+(9.309-7.744) =

1.2 m above level of carriageway

2.765 m above level of pier cap top

3.2.1.6.3 Centrifugal Forces 2 Centrifugal force, F WV = /127R

from CL. 212.2 of IRC: 6 -2010

V = design speed = 100 kmph W = Reaction due to Live Load R = Radius of Horizontal Curvature =

1000000 m

Centrifugal forces are not considered as the values are very small 3.2.1.6.4 Seismic Forces (Table 1 of IRC : 6 - 2010) Load factors for

Live load

0.2

Bearing Friction

1

1

Braking Forces

0.5

Water Current Forces

(From Table 1 of IRC 6 : 2010) Allowable increase in stresses of concrete & steel =

50 % for seismic case

Horizontal seismic force due to LL acts at a height of

1.20 m above top of road

The horizontal seismic force is assumed to be equally distributed to

1

pier

For seismic load combination Resultant Transverse =

100 % Trans. +

30 % Long. +

30 % Vert.

Resultant Longitudinal =

30 % Trans. +

100 % Long. +

30 % Vert.

Resultant Vertical =

30 % Trans. +

30 % Long. +

100 % Vert.

3.2.1.6.5 Water current forces (HFL case) Since the alignment moves along the river and crosses it at various angles the direction of flow is assumed to act parallel to the alignment, which is the most critical case. The intensity due to water current in direction parallel to the flow is calculated as below. Water pressure intensity, P HFL

=

52KV2 =

7.350 (Ref. GAD)

Maximum Mean velocity of water, v

=

3.000

Max velocity of water, V

=

4.240

Max scour depth

=

13.660

Bed level

=

1.632

=3.000×2^0.5 (refer IRC 6:2010 - 210.3)

Pile cap top level

=

3.132

Pile cap bottom level

=

1.632

Max scour level

=

-6.31

Scour depth below bed level=1.632--6.31

=7.350-13.660

=

7.94

Scour depth below pile cap bottom =1.632--6.31

=

7.94

=

4.24

=4.24/(7.350--6.31)×(3.132--6.31)

=

2.93

Velocity at pile cap bottom =4.24/(7.350--6.31)×(1.632--6.31)

=

2.47

K in case of circular piers

=

0.660

Estimation of Velocitiy of Water at Various depths Velocity at HFL Velocity at pile cap top

(refer IRC:6-2010 Cl. 210.2)

Estimation of Water Pressure Intensities at Various depths At HFL

=52×0.660×4.24^2/100

=

6.170

At pile cap top level

=52×0.660×2.93^2/100

=

2.948

At pile cap bottom level

=52×0.660×2.47^2/100

=

2.086

Water Pressure Profile Location

Reduced Pressure Level

HFL

7.350

6.170

Pilecap Top

3.132

2.948

Pilecap Bottom

1.632

2.086

Max scour level

-6.310

0

Structur al Compon

Force

Load CG Lever arm RL

above pile cap

Pier

34.6

5.489

2.357

Pile cap

16.2

2.425

-0.707

7.677

All dimensions & levels are in m unless otherwise specified

0.5

0.800 .

Right Span PSC Girder

1.00E+06

structure design note for CG location, out of various values, maximum value has ered to have maximum lever arm for horizontal forces. )

2 of IRC: 6 -2010, the superstructure has 2 lanes for movement of live loads width of carriageway. Following three cased of live loads has been considered

h spans loaded fully with live loads with maximum eccentricity (i.e. LL placed

arest to edge) such that both the vertical reaction and transverse moment at the

ly one span loaded with live load fully such that the longitudinal moment at the

the above cases, following live loads locations along the transverse direction has ered.

ass 70R(Wheeled) - 1 lane placed at edge on the inner side of carriageway

ass 70R(Wheeled) -2L (one at inner edge and the other at outer edge)

=(1000×0.965+1000×(10.3-3.095))/(1000+1000)

ass 70R(Tracked) - 1 lane placed at edge on the inner side of carriageway

(554×0.9+(554×(0.9+3.5))+(554×(10.3-1.8)))/(3×554)

e, a grillage beam model for both spans with live loads moving along the beam has ed using StaadPro software to get the maximum combined reaction on the EJ pier. tabulated below. Transverse eccentricity of the applied load at each bearing is as been used to calculate the transverse moment on the pier.

ass 70R(Wheeled) - 1 lane placed at edge on the inner side of carriageway

ass 70R(Wheeled) -2L (one at inner edge and the other at outer edge)

ass 70R(Tracked) - 1 lane placed at edge on the inner side of carriageway

e, grillage model of span with live loads moving along a specified path with s has been analyzed using StaadPro software to get the maximum combined he set of bearings supporting the above span to maximize longitudinal moment on The other span is not loaded at all so that bearing reactions for that span are all s are tabulated below.

ass 70R(Wheeled) - 1 lane placed at edge on the inner side of carriageway

ass 70R(Wheeled) -2L (one at inner edge and the other at outer edge)

ass 70R(Tracked) - 1 lane placed at edge on the inner side of carriageway

Total

LL 880 1044 439 784 868 620

Due to Class A only Total 439 620

Description of Live Loads Class 70R(Wheeled) - 1 lane placed at edge70R(Wheeled) on the inner side-2L of (one at Class inner edge and the other at outer 0

Description of Live Loads Class 70R(Wheeled) - 1 lane placed at edge on the inner side of at Class 70R(Wheeled) -2L (one inner edge and the other at outer 0

Distance from bottom of Pier cap to design Section (m)

Column Dimensions Transverse Direction

Descriptio n of Live #N/A #N/A #N/A #N/A #N/A #N/A

ced at top of the pier cap will be resisting horizontal forces. With respect to along traffic/longitudinal direction, it is assumed that the EJ pier will have bearing.

pier will have to resist all braking and seismic longitudinal forces due to loads from while only the friction forces due to loads on the shorter span will need to be e same. the transverse direction, horizontal loads from both spans have to be resisted

Braking 200.00 250.00 138.50 166.20

193.90 140.00 175.00 167.70 227.70 m above level of carriageway

gnment moves along the river and crosses it at various angles the direction of flow o act parallel to the alignment, which is the most critical case. due to water current in direction parallel to the flow is calculated as below. m (Ref. GAD) m/sec m/sec m from HFL m

m m m m m

m/sec m/sec m/sec

kN/m2 kN/m2 kN/m2

Lever arm above pile cap

Annexure - C Calculation for Horizontal Seismic Coefficient for EJ Pier:

From Soil Inve C.1 Calculation of stiffness for pile foundation Diameter of pile , dpl

=

1m

Number of pile per pier location, n

=

4 Nos.

Length of pile

=

Scour depth below bottom of pile cap

=

17 m 7.94 m

Cross sectional area of piles, Apl

=3.14×1^2/4

=

0.7850 m2

Moment of inertia of one pile (Ipl)

=3.14×1^4/64

=

0.0491 m4

=

9.282 m

Length of fixity (refer calculation given below) Length of pile to be considered for horizontal action, LplH

=

17.22 m

Length of pile to be considered for vertical action, LplV

=9.282+7.94

=

17.00 m

Grade of concrete in pile

=

M35

Modulus of elasticity of concrete, Ec (From Table 9 of IRC: 21 - 2000)

=

31.5 kN/mm2

3 Stiffness of one pile KplH = 12EIpl/LplH=(12×32×10^6×0.0491/17.22^3)

=

3629 kN/m

Stiffness of pile group = n x KplH

=

14518 kN/m

Stiffness of one pile KplV = EApl/LplV =31.5×10^6×0.7850/17.00

=

1454559 kN/m

Stiffness of pile group = n x KplV

=

5818235 kN/m

Horizontal Stiffness

=4×3629

VerticalStiffness =4×1454558.8

C.2 Calculation of stiffness for Pier Pier diameter, dpr

=

1.8 m

Cross sectional area of pier, Apr

=3.14×1.8^2/4

=

2.5434 m2

Moment of inertia of pier (Ipr)

=3.14×1.8^4/64

=

0.5150 m4

Grade of concrete in pier

=

M45

Modulus of elasticity of concrete, Ec (From Table 9 of IRC: 6 - 2000)

=

Height of pier above the pile cap up to pier cap top, Lpr

=

34 kN/mm2 4.612 m

Horizontal Stiffness Horizontal stiffness KprH = (3EIpr/Lpr3= ) 3×34×10^6×0.515/4.612^3

=

527640 kN/m

Vertical Stiffness Stiffness of one pile KprV = EApr/Lpr =34×10^6×2.5434/4.612

=

18474393 kN/m

Value of Stiffness (KN/m) Foundation

Pier

14518

527640

Transverse Direction Longitudinal Direction

14518

527640

Vertical Direction

5818235

18474393

C.3 Calculation of Equivalent stiffness Equivalent stiffness K = 1/(1/k1+ 1/k2) Equivalent stiffness along horizontal direction

=1/(1/14518+1/527640) =

14129 kN/m

Equivalent stiffness along vertical direction

=1/(1/5818235+1/18474393) =

4424732 kN/m

C.4 Calculation of Seismic Mass C.4.1

Along Transverse Direction

For, this case, loads from both the spans are considered as the pier will have to resist transverse force from both spans.

Total DL (Girder+Deck+Diaph.)

=

270.2 T

Total SIDL (WC+CB+Median)

=

102.0 T

=

8.8 T

=

380.9 T

20% of total LL reaction without impact =20%×439.0755/10 (minm live load reaction considered) Seismic Mass along transverse direction C.4.2

=270.2+102.0+8.8

Along Longitudinal Direction

For this case, loads from Left Span only are considered as the pier will have to resist longitudinal forces from Left Span only.

Total DL (Girder+Deck+Diaph.)

=

135.1 T

Total SIDL (WC+CB+Median)

=

51.0 T

No Live loads of need total LL to reaction be considered withoutforimpact seismic longitudinal case as given in Cl. 219.5.2 of IRC:6-2010 Seismic Mass along longitudinal direction

=135.1+51.0

=

186.1 T

C.4.3

Along Vertical Direction

For, this case, loads from both the spans are considered as the pier will have to resist transverse force from both spans.

Total DL (Girder+Deck+Diaph.)

=

270.2 T

Total SIDL (WC+CB+Median)

=

102.0 T

=

8.8 T

=

380.9 T

20% of total LL reaction without impact =20%×0/10 (minm live load reaction considered) Seismic Mass along vertical direction direction =270.2+102.0+8.8 C.5 Calculation of Seismic Coefficients From Cl. 219.5.1 of IRC: 6 - 2010, Seismic Zone :

III

Zone factor, Z =

0.16

Importance Factor, I =

1.5

Soil Type :

Response reduction Factor =

(refer Table 7 of IRC: 6 -2010) C.5.1

Rocky 1.5

(refer Table 8 of IRC: 6 -2010)(for elestomeric bearing)

Along Transverse Direction Total mass (DL + SIDL + LL) Equivalent stiffness Natural time period, TT = Since

=2×3.14×(380.9/14129)^0.5

1.031 sec Sa/g =

>

AhT

380.9 T

=

14129 KN/m

=

1.031 sec

0.4 sec

1 / 1.031 =

0.97 0.16

Transvers Seismic Coefficient

=

2

=

x

0.97

1.5 1.5

= C.5.2

0.078

Along Longitudinal Direction Total mass (DL + SIDL + LL) Equivalent stiffness Natural time period, TT = Since

=2×3.14×(186.1/14129)^0.5

0.721 sec Sa/g =

> 1 / 0.721 =

0.4 sec 1.39

=

186.1 T

=

14129 KN/m

=

0.721 sec

0.16 AhT

Longitudinal Seismic Coefficient

x

2

=

1.39

1.5 1.5

= C.5.3

0.112

Along Vertical Direction Total mass (DL + SIDL + LL) Equivalent stiffness Natural time period, TT = Since

=2×3.14×(380.9/4424732)^0.5

0.058 sec

<

380.9 T

=

4424732 KN/m

=

0.058 sec

0.4 sec

Sa/g =

2.50 0.16

Vertical Seismic Coefficient

=

AhT

=

x

2

2.50

1.5 1.5

= Annexure - D

0.200

Calculation of depth of fixity and maximum moment in pile

The depth of fixity and bending moments in the pile have been worked out as per IS 2911 Part 1/ sec2 Appendix C (clause 5.5.2). The pile is considered to be in submerged soil of dense sand type. Fixed head Pile Dia R

= =

Diameter of the pile (E * I / K2)^0.25

=

Youngs Modulus of the concrete in kg/cm2

=

1.000 m

where E

=

2

I K2

=

Moment of Inertia of the pile cross section in cm

=

=

Modulus of subgrade reaction as per Table 1

=

315000 kg/cm 4 4908739 cm 2 48.8 kg/cm

R

=

(315000 * 4908739 / 48.8) ^ 0.25 )

=

421.9 cm

L1

=

Free length of pile above ground level

=

794.2 cm

=

7.942 m

L1 /R

=

794.2 / 421.9

=

1.9

Lf / R

=

(fig 2 - for fixed headed piles in sands )

=

2.2

Lf

=

2.2 * 421.9

=

928.2 cm

=

9.282 m

4

3.2.2 Load Combination For Pier P3 Total height from founding level to the top of Road level Pier height for design = 3.2.2.1

DEAD LOADS From Superstructure

Left span 22.25m span

Reaction due to DL Reaction due to SIDL

Total Dead load due to DL+SIDL Longitudinal moment due to

DL SIDL

135.1

Right span22.25m span T

135.1 T

Height of crash barrier Thickness of Wearing coat 51.0 T =

135.1

+

= =

135.1

Left span 22.25m span ( T-m ) 13.3 -127.5

DL SIDL

1 m. 65 mm. 51.0 T

Left span 22.25m span ML Reaction (T) ( T-m ) 135.1 -101.3 51.0 -38.2

Transverse moment due to

3.2.2.2

= 7.677 m. 3.312 m. ( Existing G.L to proposed Road level )

+

51.0 +

51.0 =

373 T

Right span 22.25m span ML Reaction (T) ( T-m ) 135.1 101.3 51.0 38.2

Total ML ( T-m ) 0.0 0.0

Right span 22.25m span ( T-m ) 13.3 -127.5 TOTAL =

Moment (T-m) 26.5 -254.9 -228

LIVE LOAD EFFECT

Maximum Reaction & Transverse moment case I) LL CASE A1 LL Reaction due to LL CASE A1 = L.L eccentricity in transverse direction = Trans. B.M. due to LL CASE A1 = Long. B.M. due to LL CASE A1 =

31 4.185

+ m.

II) LL CASE A2 LL Reaction due to LL CASE A2 L.L eccentricity in transverse direction Trans. B.M. due to LL CASE A2 Long. B.M. due to LL CASE A2

= = = =

40 + -1.065 m.

III) LL CASE A3 LL Reaction due to LL CASE A3 L.L eccentricity in transverse direction Trans. B.M due to LL CASE A3 Long. B.M. due to LL CASE A3

= = = =

64 4.125

IV) LL CASE A4 LL Reaction due to LL CASE A4 L.L eccentricity in transverse direction Trans. B.M. due to LL CASE A4 Long. B.M. due to LL CASE A4

= = = =

128 + -1.095 m.

V) LL CASE A5 LL Reaction due to LL CASE A5 L.L eccentricity in transverse direction

= =

187 + 3.350 m.

+ m.

57

64

-20

-40

-55

=

88

T

= =

343 19

T-m T-m

=

105

T

= =

135 37

t-m T-m

=

44

T

= =

97 -64

T-m T-m

=

88

T

= =

193 -126

T-m T-m

=

132

T

Trans. B.M. due to LL CASE A5 Long. B.M. due to LL CASE A5

= =

= =

59 -182

t-m T-m

=

69

T

= =

263 -3

T-m T-m

=

69

T

= =

105 -4

T-m T-m

=

113

T

= =

359 -65

t-m T-m

=

82

T

= =

439 -44

T-m T-m

= = =

79 306 59

T T-m T-m

VI) LL CASE A6 LL Reaction due to LL CASE A6 L.L eccentricity in transverse direction Trans. B.M due to LL CASE A6 Long. B.M. due to LL CASE A6

= = = =

36 2.500

VII) LL CASE A7 LL Reaction due to LL CASE A7 L.L eccentricity in transverse direction Trans. B.M. due to LL CASE A7 Long. B.M. due to LL CASE A7

= = = =

36 0.550

VIII) LL CASE A8 LL Reaction due to LL CASE A8 L.L eccentricity in transverse direction Trans. B.M. due to LL CASE A8 Long. B.M. due to LL CASE A8

= = = =

IX) LL CASE A9 LL Reaction due to LL CASE A9 L.L eccentricity in transverse direction Trans. B.M due to LL CASE A9 Long. B.M. due to LL CASE A9

= = = =

46 1.499

Maximum Longitudinal Moment case I) LL CASE B1 LL Reaction due to LL CASE B1 Trans. B.M. due to LL CASE B1 Long. B.M. due to LL CASE B1

= = =

0

II) LL CASE B2 LL Reaction due to LL CASE B2 Trans. B.M. due to LL CASE B2 Long. B.M. due to LL CASE B2

= = =

0 +

87

= = =

87 -220 66

T t-m T-m

III) LL CASE B3 LL Reaction due to LL CASE B3 Trans. B.M due to LL CASE B3 Long. B.M. due to LL CASE B3

= = =

0 +

38

= = =

38 -116 -28

T T-m T-m

IV) LL CASE A4 LL Reaction due to LL CASE A4 Trans. B.M. due to LL CASE A4 Long. B.M. due to LL CASE A4

= = =

= = =

62 136 47

T T-m T-m

V) LL CASE A5 LL Reaction due to LL CASE A5 Trans. B.M. due to LL CASE A5 Long. B.M. due to LL CASE A5

= = =

= = =

93 42 70

T t-m T-m

VI) LL CASE A6 LL Reaction due to LL CASE A6 Trans. B.M due to LL CASE A6 Long. B.M. due to LL CASE A6

= = =

= = =

64 243 48

T T-m T-m

+ m.

+ m.

33

33

100 + 0.823 m.

+ m.

+

0

+

13

36

78

62

0 +

93

` 0

+

64

VII) LL CASE A7 LL Reaction due to LL CASE A7 Trans. B.M. due to LL CASE A7 Long. B.M. due to LL CASE A7

= = =

VIII) LL CASE A8 LL Reaction due to LL CASE A8 Trans. B.M. due to LL CASE A8 Long. B.M. due to LL CASE A8

= = =

IX) LL CASE A9 LL Reaction due to LL CASE A9 Trans. B.M due to LL CASE A9 Long. B.M. due to LL CASE A9

= = =

3.2.2.3

0

+

0 +

0

127

102

+

116

FORCE DUE TO BEARING FRICTION (For elestomeric bearing) 0 m = coefficient of friction =

Left span 22.25m span Bearing+Pedestal Height 0.35 m Reaction Bearing Friction Force due to (T) Friction (T) 135 0.0 DL+SIDL 51.0 0.0 Wearing coat 0.0 0.0 Crash barrier 0.0 0.0 0.0 0.0 Total Maximum Reaction & Transverse moment case I) LL CASE A1 0 Friction mobilised by sliding bearings = Max. Horizontal force / pier = acting at B.M at top of pier cap = 0 x II) LL CASE A2 0 Friction mobilised by sliding bearings = Max. Horizontal force / pier = acting at B.M at top of pier cap = 0 x III) LL CASE A3 0 Friction mobilised by sliding bearings = Max. Horizontal force / pier = acting at B.M at top of pier cap = 0 x Maximum Longitudinal Moment case I) LL CASE B1 0 Friction mobilised by sliding bearings = Max. Horizontal force / pier = acting at B.M at top of pier cap = 0 x II) LL CASE B2 0 Friction mobilised by sliding bearings = Max. Horizontal force / pier = acting at

= = =

128 98 95

T T-m T-m

= = =

102 128 19

T t-m T-m

= = =

117 189 30

T T-m T-m

(Cl. 211.5.1 of IRC : 6 - 2010)

Right span 22.25m span 0.35 m Reaction Bearing Totol Bearing (T) Friction (T) Friction (T) 135 0.0 0.0 51.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

0.00 x( 31 + 57 0 T 0.350 m above top of pier cap 0.350 = 0 T-m 0.00 x( 40 + 64 0 T 0.350 m above top of pier cap 0.35 = 0 T-m 0.00 x( 64 + -20 0 T 0.350 m above top of pier cap 0.35 = 0.00 t-m.

0.00 x( 0 + 78 0 T 0.350 m above top of pier cap 0.350 = 0 T-m 0.00 x( 0 + 87 0 T 0.350 m above top of pier cap

)

Lever arm Longitudinal (m) above Moment (Tm) pier cap 0.000 0.0 0.000 0.0 0.000 0.0 0.0 0.0 0

=

0.0

T

(in the Longitudinal Direction) )

=

0.0

T

(in the Longitudinal Direction) )

=

0.0

T

= 0 T-m (in the Longitudinal Direction)

)

=

0.0

T

(in the Longitudinal Direction) )

=

0.0

T

B.M at top of pier cap = 0 x III) LL CASE B3 0 Friction mobilised by sliding bearings = Max. Horizontal force / pier = acting at B.M at top of pier cap = 0 x

0.35

=

0 T-m

0.00 x( 0 + 38 0 T 0.350 m above top of pier cap 0.35 = 0.00 t-m.

(in the Longitudinal Direction) )

=

0.0

T

= 0 T-m (in the Longitudinal Direction)

In elastomeric bearing the friction co-efficient is 0 so there is no bearing friction force due to other horizontal and vertical forces Forces due to elestomeric bearig = ecc. From the base of pier cap top = = B.M at top of pier cap

0.0 KN 0.35 m 0.00 KN-m

0.00 t 0.00 t-m

3.2.2.4 FORCE DUE TO BRAKING Maximum Reaction & Transverse moment case I) LL CASE A1 Total Braking Force = Max. Horizontal force / pier

20.000 t =

acting above top of pier cap at a hieght of B.M at top of pier cap = 10.00 x

10.00 t. = 2.765 m = 28 t-m., Say (in the Longitudinal Direction)

=

27.65 t-m.

=

34.56 t-m.

= 35 t-m., Say (in the Longitudinal Direction)

III) LL CASE A3 Total braking force = 13.850 t Max. Horizontal force / pier = 6.93 t. acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 6.93 x 2.765 =

19.15 t-m.

= 20 t-m., Say (in the Longitudinal Direction)

II) LL CASE A2 Total Braking Force = 25.000 t Max. Horizontal force / pier =

2.765

12.50 t.

acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 12.50 x 2.765

IV) LL CASE A4 Total Braking Force = Max. Horizontal force / pier

16.620 t =

acting above top of pier cap at a hieght of B.M at top of pier cap = 8.31 x

8.31 t. = 2.765 m = 23 t-m., Say (in the Longitudinal Direction)

=

22.98 t-m.

=

26.81 t-m.

VI) LL CASE A6 Total braking force = 14.000 t Max. Horizontal force / pier = 7.00 t. acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 7.00 x 2.765 =

19.36 t-m.

=

20 t-m., Say

24.19 t-m.

= =

2.765 m 25 t-m., Say

V) LL CASE A5 Total Braking Force = 19.390 t Max. Horizontal force / pier =

2.765

9.70 t.

acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 9.70 x 2.765

VII) LL CASE A7 Total Braking Force = Max. Horizontal force / pier

= 27 t-m., Say (in the Longitudinal Direction)

17.500 t =

acting above top of pier cap at a hieght of B.M at top of pier cap = 8.75 x

8.75 t. 2.765

=

(in the Longitudinal Direction) VIII) LL CASE A8 Total Braking Force = 16.770 t Max. Horizontal force / pier =

8.39 t.

acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 8.39 x 2.765

=

23.18 t-m.

IX) LL CASE A9 Total braking force = 22.770 t Max. Horizontal force / pier = 11.39 t. acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 11.39 x 2.765 =

31.48 t-m.

= 24 t-m., Say (in the Longitudinal Direction)

=

32 t-m., Say

Maximum Longitudinal Moment case I) LL CASE B1 Total Braking Force = Max. Horizontal force / pier

16.620 t =

acting above top of pier cap at a hieght of= B.M at top of pier cap = 8.31 x

8.31 t. = 2.765 m = 23 t-m., Say (in the Longitudinal Direction)

=

22.98 t-m.

=

26.81 t-m.

= 27 t-m., Say (in the Longitudinal Direction)

Max. Horizontal force / pier = 7.00 t. acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 7.00 x 2.77 =

19.36 t-m.

= 20 t-m., Say (in the Longitudinal Direction)

II) LL CASE B2 Total Braking Force = 19.390 t Max. Horizontal force / pier =

2.765

9.70 t.

acting at 2.765 m. above top of pier cap. B.M at top of pier cap = 9.70 x 2.77 III) LL CASE B3 Total braking force

=

14.000 t

3.2.2.5 FORCE DUE TO CENTRIFUGAL FORCES Maximum Reaction & Transverse moment case I) LL CASE A1

0

Total Centrifugal Force

=

0.0 t

Max. Horizontal force / pier

=

0.00 t.

acting above top of pier cap at a hieght of= B.M at top of pier cap II) LL CASE A2

=

2.765

=

0.00 t-m.

= 0 t-m., Say (in the Longitudinal Direction)

=

0.00 t-m.

= 0 t-m., Say (in the Longitudinal Direction)

0.0 t =

0.00 t.

2.765 m. above top of pier cap.

B.M at top of pier cap

III) LL CASE A3

x

2.765 m

0

Total Centrifugal Force = Max. Horizontal force / pier acting at

0.00

=

=

0.00

0

Total Centrifugal Force

=

0.0 t

x

2.77

Max. Horizontal force / pier = 0.00 t. acting at 2.765 m. above top of pier cap. B.M at top of pier cap

=

0.00

x

2.77

=

0.00 t-m.

= 0 t-m., Say (in the Longitudinal Direction)

Maximum Longitudinal Moment case I) LL CASE B1

0

Total Centrifugal Force

=

0.0 t

Max. Horizontal force / pier

=

0.00 t.

acting above top of pier cap at a hieght of= B.M at top of pier cap II) LL CASE B2

=

x

2.765

2.765 m

=

0.00 t-m.

= 0 t-m., Say (in the Longitudinal Direction)

=

0.00 t-m.

= 0 t-m., Say (in the Longitudinal Direction)

=

0.00 t-m.

= 0 t-m., Say (in the Longitudinal Direction)

0

Total Centrifugal Force = Max. Horizontal force / pier acting at

0.00

=

0.0 t =

0.00 t.

2.765 m. above top of pier cap.

B.M at top of pier cap

III) LL CASE B3

=

0.00

x

2.77

0

Total Centrifugal Force

=

0.0 t

Max. Horizontal force / pier = 0.00 t. acting at 2.765 m. above top of pier cap. B.M at top of pier cap

=

0.00

x

2.77

3.2.2.6

WIND CONDITION Wind load does not govern the design; hence the same has not been presented.

3.2.2.7

SEISMIC CONDITION Horizontal seismic coefficient in transverse direction

=

0.078

Horizontal seismic coefficient in longitudinal direction Vertical seismic coefficient

= =

0.112 0.200

Seismic force in transverse direction Seismic force in Longitudinal direction Seismic force in Vertical direction

(Ref. Anexure-A)

= Weight of the structural components = Weight of the structural components = Weight of the structural components

x x x

0.078 0.112 0.200

3.2.2.7.1 CALCULATION OF LOADS & LEVER ARMS FOR SEISMIC FORCES (in Transverse direction only) For, this case, loads from both the spans are considered as the pier will have to resist transverse force from both spans. DEAD LOAD 1) Wearing Coat + Crash barrier Total Reaction = 50.98 acting at = 0.350 2) Girder & Deck slab

+ +

50.98 1.150

+

0.5

= =

102 T 2.000 m., above top of pier cap

Combined CG of girder & Deck slab = 0.615 m. ( from bottom of girder ) wt. of girder + deck slab / span = 135.1 + 135.1 = 270.2 T acting at = 0.350 + 0.615 = 0.965 m., above top of pier cap LIVE LOAD Horizontal seismic force acts at a height of 1.20 m above top of road The horizontal seismic force is assumed to be equally distributed to 1 piers Reduction coefficient for live load in seismic condition = 0.20 (Table 1 of IRC : 6 - 2010) Maximum Reaction & Transverse moment case I) LL CASE A1 Load due to live load Seismic force

= = acting at

II) LL CASE A2 Load due to live load Seismic force

= = =

III) LL CASE A3 Load due to live load Seismic force

x 20% = 9 x 0.078 = 0.7 1 2.765 m. , above top of pier cap

T

88 18

x 20% = 18 x 0.078 = 1.4 1 2.765 m. , above top of pier cap

T

132 26

x 20% = 26 x 0.078 = 2.1 1 2.765 m. , above top of pier cap

T

69 14

x 20% = 14 x 0.078 = 1.1 1 2.765 m. , above top of pier cap

T

69 14

x 20% = 14 x 0.078 = 1.1 1 2.765 m. , above top of pier cap

T

113 23

T

=

x 20% = 23 x 0.078 = 1.8 1 2.765 m. , above top of pier cap

=

82

T

=

= = = = acting at

VI) LL CASE A6 Load due to live load Seismic force

=

= = acting at

VII) LL CASE A7 Load due to live load Seismic force

=

= = =

VIII) LL CASE A8 Load due to live load Seismic force

= = acting at

IX) LL CASE A9 Load due to live load

+

44 9

=

=

V) LL CASE A5 Load due to live load Seismic force

T

T

= acting at

T

x 20% = 21 x 0.078 = 1.6 1 2.765 m. , above top of pier cap

=

IV) LL CASE A4 Load due to live load Seismic force

x 20% = 18 x 0.078 = 1.4 1 0.350 + 1.150 + 0.065 2.765 m. , above top of pier cap 105 21

= acting at

88 18

x

20%

=

16

T

T

T

T

T

T

T

1.200

Seismic force

= acting at

=

16

x 0.078 = 1.3 1 2.765 m. , above top of pier cap

T

Maximum Longitudinal Moment case I) LL CASE A1 Load due to live load Seismic force

= = acting at

II) LL CASE A2 Load due to live load Seismic force

= =

= = acting at

=

79 16

x 20% = 16 x 0.078 = 1.2 1 0.350 + 1.150 + 0.065 2.765 m. , above top of pier cap

87 17

x 20% = 17 x 0.078 = 1.4 1 2.765 m. , above top of pier cap

T T +

T T

1.200

III) LL CASE A3 Load due to live load Seismic force

= = acting at

IV) LL CASE A4 Load due to live load Seismic force

=

= = =

V) LL CASE A5 Load due to live load Seismic force

= = acting at

VI) LL CASE A6 Load due to live load Seismic force

=

= = acting at

VII) LL CASE A7 Load due to live load Seismic force

=

= = =

VIII) LL CASE A8 Load due to live load Seismic force

= = acting at

IX) LL CASE A9 Load due to live load Seismic force

=

= = acting at

=

38 8

x 20% = 8 x 0.078 = 0.6 1 2.765 m. , above top of pier cap

T

62 12

x 20% = 12 x 0.078 = 1.0 1 0.000 m. , above top of pier cap

T

93 19

x 20% = 19 x 0.078 = 1.5 1 0.000 m. , above top of pier cap

T

64 13

x 20% = 13 x 0.078 = 1.0 1 0.000 m. , above top of pier cap

T

128 26

x 20% = 26 x 0.078 = 2.0 1 0.000 m. , above top of pier cap

T

102 20

x 20% = 20 x 0.078 = 1.6 1 0.000 m. , above top of pier cap

T

117 23

T

x 20% = 23 x 0.078 = 1.8 1 0.000 m. , above top of pier cap

T

T

T

T

T

T

T

3.2.2.7.2 CALCULATION OF LOADS & LEVER ARMS FOR SEISMIC FORCES (in Longitudinal direction only) DEAD LOAD For this case, loads from Left Span only are considered as the pier will have to resist longitudinal forces from left span only 1) Wearing Coat & crash barrier Total Reaction = 50.98 + 0.00 = 51 T Seismic Force along longitudinal direction= 50.98 x 0.112 = 5.71 T acting at = 0.350 + 1.150 + 0.500 = 2.000 m., above top of pier cap Longitudinal Moment = 5.71 x 2.000 = 11.4 Tm 2) Girder & Deck slab Combined CG of girder & Deck slab = 0.615 m. ( from bottom of girder ) wt. of girder + deck slab / span = 135.1 = 135 T Seismic Force along longitudinal direction= 135.10 x 0.112 = 15.1 T acting at = 0.350 + 0.615 = 0.965 m., above top of pier cap Longitudinal Moment = 15.13 x 0.965 = 14.6 Tm

LIVE LOAD No Live loads need to be considered for seismic longitudinal case as given in Cl. 219.5.2 of IRC:6-2010 SEISMIC FORCE AT TOP OF PIER CAP

Load from

Weight (T)

Lever arm Transverse Seismic Forces Longitudinal Seismic Forces for Horz. Force Seismic force B.M. Seismic force B.M. (m) (T) ( T-m ) (T) ( T-m )

DL.

102

2.000

8.0

15.9

5.7

11.4

20.4

SIDL.

270

0.965

21.1

20.3

15.1

14.6

54.0

30

37

21

27

75

Total due to DL+SIDL

Vertical Force (T)

Maximum Longitudinal Moment case

Maximum Reaction & Transverse moment case

Due to Live Loads

3.2.2.8

LL CASE A1

18

2.765

1.4

4

3.5

LL CASE A2

21

2.765

1.6

5

4.2

LL CASE A3

9

2.765

0.7

2

1.8

LL CASE A4

18

2.765

1.4

4

3.5

LL CASE A5

26

2.765

2.1

6

5.3

LL CASE A6

14

2.765

1.1

3

2.8

LL CASE A7

14

2.765

1.1

3

2.8

LL CASE A8

23

2.765

1.8

5

4.5

LL CASE A9

16

2.765

1.3

4

3.3

LL CASE A1

16

2.765

1.2

4

3.2

LL CASE A2

17

2.765

1.4

4

3.5

LL CASE A3

8

2.765

0.6

2

1.5

LL CASE A4

12

2.765

1.0

3

2.5

LL CASE A5

19

2.765

1.5

5

3.7

LL CASE A6

13

2.765

1.0

3

2.6

LL CASE A7

26

2.765

2.0

6

5.1

LL CASE A8

20

2.765

1.6

5

4.1

LL CASE A9

23

2.765

1.8

6

4.7

SUMMARY OF LOADS & BENDING MOMENTS AT TOP OF PIER CAP (All loads are in tonnes & moments in t-m)

Vertical Load P (T) 1 2 a b c d e f g h

373 Dead load including SIDL Live Load Maximum Reaction & Transverse moment case 88 LL CASE A1 105 LL CASE A2 44 LL CASE A3 88 LL CASE A4 132 LL CASE A5 69 LL CASE A6 69 LL CASE A7 113 LL CASE A8

AT TOP OF PIER CAP Longitudinal Forces Transverse Forces HL (T)

ML (T-m)

HT (T)

MT (T-m)

0

0

0

-228

0 0 0 0 0 0 0 0

19 37 -64 -126 -182 -3 -4 -65

0 0 0 0 0 0 0 0

343 135 97 193 59 263 105 359

82 i LL CASE A9 Maximum Longitudinal Moment case 79 a LL CASE A1 87 b LL CASE A2 38 c LL CASE A3 62 d LL CASE A4 93 e LL CASE A5 64 f LL CASE A6 128 g LL CASE A7 102 h LL CASE A8 117 i LL CASE A9

0

-44

0

439

0 0 0 0 0 0 0 0 0

59 66 -28 47 70 48 95 19 30

0 0 0 0 0 0 0 0 0

306 -220 -116 136 42 243 98 128 189

a b c d e f g h i

Braking Force Maximum Reaction & Transverse moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9

10.0 12.5 6.9 8.3 9.7 7.0 8.8 8.4 11.4

28 35 20 23 27 20 25 24 32

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

a b c d e f g h i

Maximum Longitudinal Moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9

10.0 12.5 6.9 8.3 9.7 7.0 8.8 8.4 11.4

28 35 20 23 27 20 25 24 32

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0

0

30.0

37

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1.4 1.6 0.7 1.4 2.1 1.1 1.1 1.8 1.3

4 5 2 4 6 3 3 5 4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1.2 1.4 0.6 1.0 1.5 1.0 2.0 1.6 1.8

4 4 2 3 5 3 6 5 6

0

0

0

0

2

3

Seismic in transverse direction 0 a due to D.L Maximum Reaction & Transverse moment case 0 a LL CASE A1 0 b LL CASE A2 0 c LL CASE A3 0 d LL CASE A4 0 e LL CASE A5 0 f LL CASE A6 0 g LL CASE A7 0 h LL CASE A8 0 i LL CASE A9 a b c d e f g h i

5

Maximum Longitudinal Moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9

Seismic in Vertical direction 75 a due to D.L Maximum Reaction & Transverse moment case

a b c d e f g h i a b c d e f g h i

3.5 LL CASE A1 4.2 LL CASE A2 1.8 LL CASE A3 3.5 LL CASE A4 5.3 LL CASE A5 2.8 LL CASE A6 2.8 LL CASE A7 4.5 LL CASE A8 3.3 LL CASE A9 Maximum Longitudinal Moment case 3.2 LL CASE A1 3.5 LL CASE A2 1.5 LL CASE A3 2.5 LL CASE A4 3.7 LL CASE A5 2.6 LL CASE A6 5.1 LL CASE A7 4.1 LL CASE A8 4.7 LL CASE A9

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Vide cl.203 of IRC: 6 - 2000 ; Allowable increase in stresses of concrete & steel = 50 % for seismic case Actual Load (or Moment) Factored Load / moment = for Seismic condition 1.5 For seismic condition load factors (LFs) are (From Table 1 of IRC 6 : 2010) Live load = 0.2 Bearing Friction = 1 Water Current Forces = 1 Braking Forces = 0.5 Centrifugal Forces = 0.5 For seismic load combination Resultant Transverse Force = 100 % Trans. Force + 30 % Long. Force + Resultant Longitudinal Force = 30 % Trans. Force + 100 % Long. Force + Resultant Vertical Force = 30 % Trans. Force + 30 % Long. Force + 3.2.2.9

CALCULATION OF LOADS FOR SUBSTRUCTURE Area of the piercap trapezoidal portion =(9.800+2.300)/2×0.800 Depth of CG from top =0.500+0.800/3×(2×9.800+2.300)/(9.800+2.300) Volume of concrete in pier cap = 9.800 x 0.500 x 2.300 + = 22.40 m3. Self wt. of pier cap = 22.40 x 2.4 = 53.76 t. = Height of CG of Pier cap Area (A) LeverArm (L) AxL Rectangular area at top 4.900 m2 0.250 m 1.225 m3 Trapezodal Portion 4.840 m2 1.483 m 7.178 m3 Total 9.740 m2 CG of pier cap from its top = 8.403/9.740 CG of pier cap from its bottom = 1.300 - 0.863

= =

8.403 m3 0.863 m 0.437 m

30 % Vert. Force 30 % Vert. Force 100 % Vert. Force

= = 4.84 54 T

x

4.840 m2 0.983 m 2.300

CALCULATION OF SELF WEIGHT OF PIER UP TO PIER SECTIONS AT DIFFERENT HEIGHT DISTANCE OF BASE OF PIER FROM BOTTOM OF PIER CAP = 3.312 m. Distance 3.312 0.000 0.000 from Dist.bottom from 4.612 1.300 1.300 Diatop of of pier 1.800 1.800 1.800 (m) Weight of pierof pier ( T +) wt. pier cap

20 74

0 54

0 54

CALCULATION OF SEISMIC FORCES ON SUBSTRUCTURE AT DIFFERENT HEIGHT PIER CAP Pier Cap Wt. =

Lever arm (m) Trans. BM ( T-mBM ) Long. ( T-m ) Trans. Seism. force Long. Seism. force Vert. Seism. force (arm T) Lever (m) MT ( T - m ) ML ( T - m ) Total HT ( T )HL Total ( T Vert ) Total Force (T Total M T ) ( T-mM)L Total ( T-m )

54 t. Trans. seismic force = Long. seismic force = Vert. seismic force = 3.749 0.437 0.437 15 2 2 22 3 3 PIER 1.6 0 0 2.3 0 0 4.0 0 0 1.656 0.000 0.000 3 0 0 4 0 0 6 4 4 8 6 6 16 11 11 18 2 2 26 3 3

4.0 t. 6.0 t. 11.0 t.

The above forces are added to the summary of forces & the revised summary of forces are presented below for different design sections. The additional BM at the design sections are calculated by multiplying the horizontal force at top of pier cap & the dist. of design section from top of pier cap 3.2.2.10 SUMMARY OF LOADS & BENDING MOMENTS AT PIER BASE Distance from top of Road to Section = 6.177 m

Dist. from top of pier cap = Vertical load Longitudinal Forces HL (T) ML (T-m) P (T) 447 0 0

1 Dead load including SIDL 2 Live Load Maximum Reaction & Transverse moment case 88 a LL CASE A1 105 b LL CASE A2 44 c LL CASE A3 88 d LL CASE A4 132 e LL CASE A5 69 f LL CASE A6 69 g LL CASE A7 113 h LL CASE A8 82 i LL CASE A9 a b c d

(All loads are in tonnes & moments in t-m)

Maximum Longitudinal Moment case 79 LL CASE A1 87 LL CASE A2 38 LL CASE A3 62 LL CASE A4

4.612 m. Transverse Forces HT (T) MT (T-m) 0 -228

0 0 0 0 0 0 0 0 0

19 37 -64 -126 -182 -3 -4 -65 -44

0 0 0 0 0 0 0 0 0

343 135 97 193 59 263 105 359 439

0 0 0 0

59 66 -28 47

0 0 0 0

306 -220 -116 136

0 0 0 0 0

70 48 95 19 30

0 0 0 0 0

42 243 98 128 189

a b c d e f g h i

93 LL CASE A5 64 LL CASE A6 128 LL CASE A7 102 LL CASE A8 117 LL CASE A9 Braking Force Maximum Reaction & Transverse moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9

10.0 12.5 6.9 8.3 9.7 7.0 8.8 8.4 11.4

74 93 52 61 72 52 65 63 85

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

a b c d e f g h i

Maximum Longitudinal Moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9

10.0 12.5 6.9 8.3 9.7 7.0 8.8 8.4 11.4

74 93 52 61 72 52 65 63 85

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

3.5

8.2

3.5

8.2

0

0

36.0

193

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1.4 1.6 0.7 1.4 2.1 1.1 1.1 1.8 1.3

10 13 5 10 15 8 8 13 10

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1.2 1.4 0.6 1.0 1.5 1.0 2.0 1.6 1.8

10 10 7 8 11 9 13 11 12

0

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

e f g h i 4

0 6 Water current forces 7 Seismic in transverse direction 0 a due to D.L Maximum Reaction & Transverse moment case 0 a LL CASE A1 0 b LL CASE A2 0 c LL CASE A3 0 d LL CASE A4 0 e LL CASE A5 0 f LL CASE A6 0 g LL CASE A7 0 h LL CASE A8 0 i LL CASE A9 a b c d e f g h i 9 a a b c d

Maximum Longitudinal Moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9 Seismic in Vertical direction 91 due to D.L Maximum Reaction & Transverse moment case 3.5 LL CASE A1 4.2 LL CASE A2 1.8 LL CASE A3 3.5 LL CASE A4

e f g h i

NORMAL

Maximum Longitudinal Moment case

Maximum Reaction & Transverse

a b c d e f g h i

5.3 LL CASE A5 2.8 LL CASE A6 2.8 LL CASE A7 4.5 LL CASE A8 3.3 LL CASE A9 Maximum Longitudinal Moment case 3.2 LL CASE A1 3.5 LL CASE A2 1.5 LL CASE A3 2.5 LL CASE A4 3.7 LL CASE A5 2.6 LL CASE A6 5.1 LL CASE A7 4.1 LL CASE A8 4.7 LL CASE A9

SEISMIC TRANSVERSE

Maximum Reaction & Transverse Maximum Longitudinal Moment case

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

LOAD COMBINATIONS 535 13

101

3

123

1+2(b)+3(a)+4(b)+ 5(b)-6

552

9

121

-3

-101

103

1+2(c)+3(a)+4(c)+ 5(c)+6

491

10

-4

3

-123

104

1+2(d)+3(a)+4(d)+ 5(d)+6

526

13

141

3

86

105

1+2(e)+3(a)+4(e)+ 5(e)-6

534

9

150

-3

-456

106

1+2(f)+3(a)+4(f)+5 (f)+6 101 (including LF) +7(a+b)+30%x8(a +b)+30%x9(a+b) 102 (including LF) -

564

10

91

3

-30

493 ( 329 ) 497 ( 331 ) 484 ( 323 ) 491 ( 328 ) 493 ( 329 ) 498 ( 332 ) 493 ( 329 ) 497 ( 331 ) 484 ( 323 ) 491 ( 328 ) 493 ( 329 ) 498 ( 332 ) 559 ( 373 ) 563 ( 376 ) 549 ( 366 )

13 (9) 13 (9) 13 (9) 13 (9) 13 (9) 13 (9) 33 ( 22 ) 34 ( 22 ) 33 ( 22 ) 33 ( 22 ) 34 ( 22 ) 33 ( 22 ) 13 (9) 13 (9) 13 (9)

64 ( 43 ) 70 ( 46 ) 45 ( 30 ) 72 ( 48 ) 76 ( 50 ) 64 ( 43 ) 169 ( 113 ) 174 ( 116 ) 150 ( 100 ) 177 ( 118 ) 180 ( 120 ) 169 ( 113 ) 64 ( 43 ) 70 ( 46 ) 45 ( 30 )

41 ( 27 ) -34 -( 23 ) 40 ( 27 ) 41 ( 27 ) -34 -( 23 ) 40 ( 27 ) 15 ( 10 ) 15 ( 10 ) 14 ( 10 ) 15 ( 10 ) 15 ( 10 ) 14 ( 10 ) 15 ( 10 ) 15 ( 10 ) 14 ( 10 )

52 ( 35 ) -398 -( 266 ) -2 -( 2 ) 44 ( 29 ) -467 -( 311 ) 18 ( 12 ) -90 -( 60 ) -131 -( 87 ) -141 -( 94 ) -98 -( 65 ) -203 -( 135 ) -122 -( 81 ) -90 -( 60 ) -131 -( 87 ) -141 -( 94 )

108 109 110 111

114 115 116 117 118 119

SEISMIC VERTICAL

0 0 0 0 0

102

112

SEISMIC LONGITUDINAL

Maximum Reaction & Transverse

0 0 0 0 0

1+2(a)+3(a)+4(a)+ 5(a)+6

113

Maximum Longitudinal Moment case

0 0 0 0 0

101

107

Maximum Reaction & Transverse

0 0 0 0 0

120 121

7(a+c)+30%x8(a+ c)+30%x9(a+c) 103 (including LF) +7(a+d)+30%x8(a +d)+30%x9(a+d) 104 (including LF) +7(a+e)+30%x8(a 105 (including LF) 7(a+f)+30%x8(a+f) +30%x9(a+f) 106 (including LF) +7(a+g)+30%x8(a +g)+30%x9(a+g) 101 (including LF) +30%x7(a+b)+8(a +b)+30%x9(a+b) 102 (including LF) +30%x7(a+c)+8(a +c)+30%x9(a+c) 103 (including LF) +30%7(a+d)+8(a+ d)+30%x9(a+d) 104 (including LF) +30%x7(a+e)+8(a +e)+30%x9(a+e) 105 (including LF) +30%x7(a+f)+8(a+ f)+30%x9(a+f) 106 (including LF) +30%x7(a+g)+8(a +g)+30%x9(a+g) 101 (including LF) +30%x7(a+b)+30 %x8(a+b)+9(a+b) 102 (including LF) +30%x7(a+c)+30 %x8(a+c)+9(a+c) 103 (including LF) +30%7(a+d)+30% x8(a+d)+9(a+d)

SEISMIC VERTICAL

Maximum Longitudinal Moment case

122 123 124

104 (including LF) +30%x7(a+e)+30 %x8(a+e)+9(a+e) 105 (including LF) +30%x7(a+f)+30% x8(a+f)+9(a+f) 106 (including LF) +30%x7(a+g)+30 %x8(a+g)+9(a+g)

557 ( 371 ) 559 ( 373 ) 563 ( 375 )

13 (9) 13 (9) 13 (9)

72 ( 48 ) 76 ( 50 ) 64 ( 43 )

15 ( 10 ) 15 ( 10 ) 14 ( 10 )

-98 -( 65 ) -203 -( 135 ) -122 -( 81 )

At the level of 1st reinforcement curtailment in pier Distance from top of Road to Section = 2.87 m

Dist. from top of pier cap = Vertical load Longitudinal Forces HL (T) ML (T-m) P (T) 427 0 0

1 Dead load 2 Live Load Maximum Reaction & Transverse moment case 88 a LL CASE A1 105 b LL CASE A2 44 c LL CASE A3 d e f 3 a

Maximum Longitudinal Moment case 79 LL CASE A1 87 LL CASE A2 38 LL CASE A9

Bearing Friction 0 due to D.L Maximum Reaction & Transverse moment case 0 b LL CASE A1 0 c LL CASE A2 0 d LL CASE A3 Maximum Longitudinal Moment case 0 e LL CASE A1 0 f LL CASE A2 0 g LL CASE A9

4 Seismic in transverse direction 0 a due to D.L Maximum Reaction & Transverse moment case 0 b LL CASE A1 0 c LL CASE A2 0 d LL CASE A3

0 0 0

19 37 -64

0 0 0

343 135 97

0 0 0

59 0 -28

0 0 0

306 -220 -116

0

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0

34

78

0 0 0

0 0 0

1 2 1

6 7 3

0 0 0

1 1 2

6 6 8

19

0

115

NORMAL SEISMIC TRANSVERSE

Maximum Longitudinal Moment case

Maximum Reaction & Transverse

Maximum Longitudinal Moment case 0 0 e LL CASE A1 0 0 f LL CASE A2 0 0 g LL CASE A9 LOAD COMBINATIONS 515 0 101 1+2(a)+3(a)+3(b)

Maximum Reaction & Transverse

1.300 m. Transverse Forces HT (T) MT (T-m) 0 -228

102

1+2(b)+3(a)+3(c)

532

0

37

0

-93

103

1+2(c)+3(a)+3(d)

471

0

-64

0

-131

104

1+2(d)+3(a)+3(e)

506

0

59

0

78

105

1+2(e)+3(a)+3(f)

514

0

0

0

-448

106

1+2(f)+3(a)+3(g)

465

0

-28

0

-344

107

101+4(a)+4(b)

445 ( 296 )

0 (0)

4 (3)

35 ( 24 )

-76 -( 50 )

SEISMIC TRANSVERSE

Maximum Reaction & Transverse Maximum Longitudinal Moment case

108

102+4(a)+4(c)

109

103+4(a)+4(d)

110

104+4(a)+4(e)

111

105+4(a)+4(f)

112

106+4(a)+4(g)

448 ( 299 ) 436 ( 291 ) 443 ( 295 ) 444 ( 296 ) 435 ( 290 )

0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

7 (5) -13 -( 9 ) 12 (8) 0 (0) -6 -( 4 )

36 ( 24 ) 35 ( 23 ) 35 ( 23 ) 35 ( 24 ) 36 ( 24 )

-116 -( 77 ) -128 -( 85 ) -83 -( 55 ) -188 -( 125 ) -165 -( 110 )

At pier cap bottom Distance from top of Road to Section = 2.87 m

Dist. from top of pier cap = Vertical load Longitudinal Forces HL (T) ML (T-m) P (T) 427 0 0

1 Dead load 2 Live Load Maximum Reaction & Transverse moment case 88 a LL CASE A1 105 b LL CASE A2 44 c LL CASE A3 d e f 3 a

Maximum Longitudinal Moment case 79 LL CASE A1 87 LL CASE A2 38 LL CASE A9

Bearing Friction 0 due to D.L Maximum Reaction & Transverse moment case 0 b LL CASE A1 0 c LL CASE A2 0 d LL CASE A3 Maximum Longitudinal Moment case 0 e LL CASE A1 0 f LL CASE A2 0 g LL CASE A9

4 Seismic in transverse direction 0 a due to D.L Maximum Reaction & Transverse moment case 0 b LL CASE A1 0 c LL CASE A2 0 d LL CASE A3

0 0 0

19 37 -64

0 0 0

343 135 97

0 0 0

59 13 -28

0 0 0

306 -220 -116

0

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0

34

78

0 0 0

0 0 0

1 2 1

6 7 3

0 0 0

1 1 2

6 6 8

19

0

115

NORMAL

Maximum Reaction & Transverse

Maximum Longitudinal Moment case 0 0 e LL CASE A1 0 0 f LL CASE A2 0 0 g LL CASE A9 LOAD COMBINATIONS 515 0 101 1+2(a)+3(a)+3(b)

Maximum Longitudinal Moment case

1.300 m. Transverse Forces HT (T) MT (T-m) 0 -228

102

1+2(c)+3(a)+3(c)

532

0

37

0

-93

103

1+2(c)+3(a)+3(d)

471

0

-64

0

-131

104

1+2(d)+3(a)+3(e)

506

0

59

0

78

105

1+2(e)+3(a)+3(f)

514

0

13

0

-448

NORMAL SEISMIC TRANSVERSE

Maximum Longitudinal Moment case Maximum Reaction & Transverse Maximum Longitudinal Moment case

106

1+2(f)+3(a)+3(g)

107

101+4(a)+4(b)

108

102+4(a)+4(c)

109

103+4(a)+4(d)

110

104+4(a)+4(e)

111

105+4(a)+4(f)

112

106+4(a)+4(g)

465

0

-28

0

-344

445 ( 296 ) 448 ( 299 ) 436 ( 291 ) 443 ( 295 ) 444 ( 296 ) 435 ( 290 )

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

4 (3) 7 (5) -13 -( 9 ) 12 (8) 3 (2) -6 -( 4 )

35 ( 24 ) 36 ( 24 ) 35 ( 23 ) 35 ( 23 ) 35 ( 24 ) 36 ( 24 )

-76 -( 50 ) -116 -( 77 ) -128 -( 85 ) -83 -( 55 ) -188 -( 125 ) -165 -( 110 )

3.2.2.12 CALCULATION OF LOADS FOR PILE CAP Area of the pilecap =(4.300x4.300) Depth of CG from top =0.750 Volume of concrete in pier cap = 18.490 x = 27.74 m3. Self wt. of pier cap = 27.74 x 2.4 = Height of CG of pile cap Area (A) Rectangular area at top 6.450 m2

1.500 66.56 t. LeverArm (L) 0.750 m

Total 6.450 m2 CG of pier cap from its top = 4.838/6.450 CG of pier cap from its bottom = 1.500 - 0.750

Pier Cap Wt. =

Lever arm (m) Trans. BM ( T-mBM ) Long. ( T-mH)T Total ( T )HL Total ( T Vert ) Total Force ( T )

18.490 m2 0.750 m

= =

= =

=

67 T

AxL 4.838 m3

4.838 m3 4.3 0.750 m 0.750 m depth =

4.3

2

CALCULATION OF SEISMIC FORCES ON PILE AT TOP OF THE PILE PILE CAP 67 t. Trans. seismic force = 5.2 t. Long. seismic force = 7.504 t. Vert. seismic force = 13.4 t. 0.750 0.000 0.000 4 0 0 6 0 0 5 8 13

3.2.2.11 SUMMARY OF FORCES AT BASE OF PILE CAP The Forces at the base of foundation are calculated from the forces at the base of pier by multiplying the horizontal forces at the base of pier to the depth of footing (lever arm). The self weight of footing is added at the time of design RTL to GL

=

7.677 m

SUMMARY OF FORCES ON PILES

Dist. from top of pier cap to base of pier = 4.612 m. Dist. from top of pier cap to base of Pile Cap = 6.112 m. Vertical load Longitudinal Forces Transverse Forces HL (T) ML (T-m) HT (T) MT (T-m) P (T) 514 0 0 0 -228

1 Dead load including SIDL 2 Live Load Maximum Reaction & Transverse moment case

a b c d e f g h i

88 LL CASE A1 105 LL CASE A2 44 LL CASE A3 88 LL CASE A4 132 LL CASE A5 69 LL CASE A6 69 LL CASE A7 113 LL CASE A8 82 LL CASE A9 Maximum Longitudinal Moment case 79 LL CASE A1 87 LL CASE A2 38 LL CASE A3 62 LL CASE A4 93 LL CASE A5 64 LL CASE A6 128 LL CASE A7 102 LL CASE A8 117 LL CASE A9

a b c d e f g h i 4 Braking Forces Maximum Reaction & Transverse moment case 0 a LL CASE A1 0 b LL CASE A2 0 c LL CASE A3 0 d LL CASE A4 0 e LL CASE A5 0 f LL CASE A6 0 g LL CASE A7 0 h LL CASE A8 0 i LL CASE A9 a b c d e f g h i 6 7 a a b c d e f g h i

Maximum Longitudinal Moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9 0 Water current forces Seismic in transverse direction 0 due to D.L Maximum Reaction & Transverse moment case 0 LL CASE A1 0 LL CASE A2 0 LL CASE A3 0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9

Maximum Longitudinal Moment case 7 a LL CASE A1 0 b LL CASE A2 0 c LL CASE A3

0 0 0 0 0 0 0 0 0

19 37 -64 -126 -182 -3 -4 -65 -44

0 0 0 0 0 0 0 0 0

343 135 97 193 59 263 105 359 439

0 0 0 0 0 0 0 0 0

59 66 -28 47 70 48 95 19 30

0 0 0 0 0 0 0 0 0

306 -220 -116 136 42 243 98 128 189

10.0 12.5 6.9 8.3 9.7 7.0 8.8 8.4 11.4

89 111 62 74 86 63 78 75 102

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

10.0 12.5 6.9 8.3 9.7 7.0 8.8 8.4 11.4 5.1

89 111 62 74 86 63 78 75 102 26.2

0 0 0 0 0 0 0 0 0 5.1

0 0 0 0 0 0 0 0 0 26.2

0

0

41.2

201

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1.4 1.6 0.7 1.4 2.1 1.1 1.1 1.8 1.3

12 15 6 12 19 10 10 16 12

0 0 0

0 0 0

1.2 1.4 0.6

12 12 6

0 LL CASE A4 0 LL CASE A5 0 LL CASE A6 0 LL CASE A7 0 LL CASE A8 0 LL CASE A9 Seismic in Longitudinal direction 0 due to D.L Maximum Reaction & Transverse moment case 0 b LL CASE A1 0 c LL CASE A2 0 d LL CASE A3 Maximum Longitudinal Moment case 0 e LL CASE A1 0 f LL CASE A2 0 g LL CASE A3

0 0 0 0 0 0

0 0 0 0 0 0

1.0 1.5 1.0 2.0 1.6 1.8

9 14 9 18 15 17

36.5

161

0.0

0

0.0 0.0 0.0

0 0 0

0.0 0.0 0.0

0 0 0

0.0 0.0 0.0

0 0 0

0.0 0.0 0.0

0 0 0

0.0

0

0.0

0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0

LOAD COMBINATIONS 602 15

134

5

141

d e f g h i 8 a

9 Seismic in Vertical direction 104 a due to D.L Maximum Reaction & Transverse moment case 4 a LL CASE A1 4 b LL CASE A2 2 c LL CASE A3 4 d LL CASE A4 5 e LL CASE A5 3 f LL CASE A6 3 g LL CASE A7 5 h LL CASE A8 3 i LL CASE A9

NORMAL

Maximum Longitudinal Moment case

Maximum Reaction & Transverse

a b c d e f g h i

Maximum Longitudinal Moment case 3 LL CASE A1 3 LL CASE A2 2 LL CASE A3 2 LL CASE A4 4 LL CASE A5 3 LL CASE A6 5 LL CASE A7 4 LL CASE A8 5 LL CASE A9 101

1+2(a)+3(a)+4(a)+ 5(a)+6

102

1+2(b)+3(a)+4(b)+ 5(b)-6

619

7

122

-5

-119

103

1+2(c)+3(a)+4(c)+ 5(c)+6

558

12

25

5

-105

104

1+2(d)+3(a)+4(d)+ 5(d)+6

593

15

174

5

104

105

1+2(e)+3(a)+4(e)+ 5(e)-6

601

7

151

-5

-474

106

1+2(f)+3(a)+4(f)+5 (f)+6 101 (including LF) +7(a+b)+30%x8(a +b)+30%x9(a+b) 102 (including LF) -

552

16

99

5

-317

564

17

87

48

80

568

17

93

-38

-391

555

17

68

47

25

SEISMIC TRANSVERSE

Maximum Reaction & Transverse

107 108 109

7(a+c)+30%x8(a+ c)+30%x9(a+c) 103 (including LF) +7(a+d)+30%x8(a +d)+30%x9(a+d)

SEISMIC TRANSVERSE

Maximum Longitudinal Moment case

110 111 112

SEISMIC LONGITUDINAL

Maximum Longitudinal Moment case

Maximum Reaction & Transverse

113 114 115 116 117 118

SEISMIC VERTICAL

Maximum Longitudinal Moment case

Maximum Reaction & Transverse

119 120 121 122 123 124

104 (including LF) +7(a+e)+30%x8(a +e)+30%x9(a+e) 105 (including LF) 7(a+f)+30%x8(a+f) +30%x9(a+f) 106 (including LF) +7(a+g)+30%x8(a +g)+30%x9(a+g) 101 (including LF) +30%x7(a+b)+8(a +b)+30%x9(a+b) 102 (including LF) +30%x7(a+c)+8(a +c)+30%x9(a+c) 103 (including LF) +30%7(a+d)+x8(a +d)+30%x9(a+d) 104 (including LF) +30%x7(a+e)+8(a +e)+30%x9(a+e) 105 (including LF) +30%x7(a+f)+8(a+ f)+30%x9(a+f) 106 (including LF) +30%x7(a+g)+8(a +g)+30%x9(a+g) 101 (including LF) +30%x7(a+b)+30 %x8(a+b)+9(a+b) 102 (including LF) +30%x7(a+c)+30 %x8(a+c)+9(a+c) 103 (including LF) +30%7(a+d)+30% x8(a+d)+9(a+d) 104 (including LF) +30%x7(a+e)+30 %x8(a+e)+9(a+e) 105 (including LF) +30%x7(a+f)+30% x8(a+f)+9(a+f) 106 (including LF) +30%x7(a+g)+30 %x8(a+g)+9(a+g)

569

17

95

48

72

564

17

99

-38

-459

555

17

79

47

-18

564

43

200

18

-69

568

43

206

18

-110

555

42

181

18

-120

564

43

208

18

-77

564

43

211

18

-182

555

43

192

18

-163

640

17

87

18

-69

644

17

93

18

-110

629

17

68

18

-120

640

17

95

18

-77

639

17

99

18

-182

631

17

79

18

-163

3.2.3

Design of Circular Pier Cross-section at Base For Pier P13 Y

M

X Diameter "D" Radius

0.9 m

Clear Cover Diameter of Transverse Reinforcement Effective Cover =75/1000+16/1000+0.02/2

75 mm 16 mm 0.101 m

No of bars Diameter of bar

38 Nos. 0.02 m

Code of Practise Modular Ratio m

IRC 10

Grade of Concrete Permissible Stresses in Concrete for Direct Compression Permissible Stresses in Concrete for bending Compression Permissible Stresses in Steel for Compression Permissible Stresses in Steel for Tension Area of concrete Area of Steel Percentage of Steel Area of concrete to resist axial load only =

M45 11.25 15.00 205 240 2.545 11938 0.47

501526 mm2

564×10000 / 11.25

Minimum Area of Reinforcement 0.8 % of area above =0.8/100×501526 0.4 % of gross area pile =0.4/100×2.545×1000000

4012 mm2 10179 mm2 10179 mm2

Minimum area of reinforcement Load Case 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

P (T) 535 552 491 526 534 564 329 331 323 328 329 332 329 331 323 328 329 332 373 376 366 371 373 375

MT (T-m) 101 121 -4 141 150 91 43 46 30 48 50 43 113 116 100 118 120 113 43 46 30 48 50 43

ML (T-m) 123 -101 -123 86 -456 -30 35 -266 -2 29 -311 12 -60 -87 -94 -65 -135 -81 -60 -87 -94 -65 -135 -81

M=(MT2+ML2)0.5 s CONCRETE s ST COMP 2

(T-m) 160 158 123 166 480 96 55 270 30 56 315 45 128 145 137 135 181 139 74 99 99 81 144 92

N/mm2 N/mm2 N/mm2 N/mm2 m2 mm2 %

2

(N/mm ) (N/mm ) #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?

s ST TENSION 2

Steel Prov > Min reqd

scbc

ssc, all 2

(N/mm ) (N/mm ) #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00 #NAME? 15.00

2

(N/mm ) 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0 205.0

sst, all (N/mm2) -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -240.0

Ductile detailing for Pier Calculation for Lateral tie for Pier Lateral Tie - up to 1.8m below pier cap bottom and above pile cap top level Check for adequacy of diameter of stirrups as per IS- 13920:1993 for Pier

(Reference Cl: 7.4.7of IS: 13920 - 1993)

Area of cross section of bar forming circular hoops, A sh calculated must be less than the Cross sectional area Ash = 0.09 S Dk (fck / fy) (Ag/Ak-1) Ash = Cross sectional area of bar S Dk Ag AK

= = = =

Spacing of hoops Diameter of core measured to outside of hoop Gross area of column cross section Area of the concrete core = /4 DK2

Diameter of Pier Spacing of Lateral ties, S Clear cover for column Dk AK Ag fck fy Ash

= = =

=1800-75-75 =3.14×1650×1650/4 =3.14×1800×1800/4

=0.09×75×1650×(45/500)×((2.54E+06/2.14E+06)-1)

Diameter of Lateral tie Cross sectional Area of Lateral tie bar

1800 mm 75 mm 75 mm

= = = = = =

1650 2.14E+06 2.54E+06 M45 500 191

= =

16 mm 2 201 mm Hence OK

Hence provide confined reinforcement of 16 mm diameter bars at 75 mm C/C for a distance Lateral Tie - beyond 1.8m below pier cap bottom and above pile cap top level As per Cl. 306.3.3 of IRC: 21 -2000 Maximum spacing of ties is 12 times the size of smallest compression bar. Diameter of smallest compression bar = 12 times of smallest compression bar =

20 240

Hence provide 8mm diameter bar at 200mm C/C below 1200mm from pile top

mm mm2 mm2 Mpa Mpa mm2

3.2.4 DESIGN OF PILE FOUNDATION FOR EJ PIER P13 No. of piles Minimum Thickness of Pile cap Thickness of pile cap Pile offset from edge Pile diameter

= = = = =

4 1.5 1.5 0.15 1

Area of pile Pier Size Pile cap top below G.L Density of soil above

= = = =

0.785 1.8 0.000 1.8

Wt. of soil above pile cap

=

Wt. of pile cap

=

Fixity depth Total Length of pile Submerged density

= = =

Vertical Capacity of one pile 25 % increase

= =

Maximum Pile Load Minimum Pile Load

= =

3.2.4.1

4.3 m m m m

OK P4

m2 m dia m

Traffic 4.3

X

t/m3 0 T

ML P2

m. m t/m3

0.65

T (Normal) T (Seismic)

Normal Seismic 223 T 220 T 115 T 100 T

SAFE SAFE

=

Load due to MT

=

ML

x

1.50

4 MT

x

2.250

x

1.50

4

x

2.250

= =

= =

Max. horizontal load on pile

=

ML

ML = Moment along longitudinal direction

6.00 MT

MT = Moment along transverse direction

6.00

Z

Horizontal Capacity of Piles 25 % increase

Calculation of loads on piles for each load combination

Load due to ML

1.5

P1

67 T 9.282 17 1.4 1.4 350 438

P3 1.5

MT

11.5 T (Normal) 14.4 T (Seismic) Normal 4.3

T

Seismic 12.7 T

SAFE

3.2.4.2

Calculation of loads on piles for each load combination Load due to Load due to ML (T- MT (Tm) m)

MT (T-m)

Self wt.of pile (T)

Add.load (pile cap+soil)

P/n (T)

5

141

19

0

151

22

-5

-119

19

0

155

20

5

-105

19

0

140

4

174

5

104

19

0

148

7

151

-5

-474

19

0

552

16

99

5

-317

19

107

564

17

87

48

80

108

568

17

93

-38

109

555

17

68

110

569

17

111

564

112

Load no.

Vertical load P (T)

HL (T)

ML (T-m)

101

602

15

134

102

619

7

122

103

558

12

25

104

593

15

105

601

106

HT (T)

Resultant BM for pile H per (T-m) pile(T)

Max. load (T)

Min. load (T)

24

215

123

4

18

-20

174

173

2

10

-17

172

145

3

15

29

17

213

121

4

18

150

25

-79

223

115

2

10

0

138

17

-53

193

120

4

20

19

0

141

15

13

188

132

13

59

-391

19

0

142

15

-65

210

111

10

48

47

25

19

0

139

11

4

173

142

12

58

95

48

72

19

0

142

16

12

189

133

13

59

17

99

-38

-459

19

0

141

16

-76

220

100

10

48

555

17

79

47

-18

19

0

139

13

-3

167

147

12

58

113

564

43

200

18

-69

19

0

141

33

-12

182

138

12

54

114

568

43

206

18

-110

19

0

142

34

-18

177

145

12

54

115

555

42

181

18

-120

19

0

139

30

-20

167

147

11

53

116

564

43

208

18

-77

19

0

141

35

-13

182

138

12

54

117

564

43

211

18

-182

19

0

141

35

-30

165

155

12

54

118

555

43

192

18

-163

19

0

139

32

-27

162

153

12

54

119

640

17

87

18

-69

19

0

160

15

-12

182

176

6

29

120

644

17

93

18

-110

19

0

161

15

-18

182

177

6

29

121

629

17

68

18

-120

19

0

157

11

-20

185

167

6

28

122

640

17

95

18

-77

19

0

160

16

-13

182

176

6

29

123

639

17

99

18

-182

19

0

160

16

-30

192

165

6

29

124

631

17

79

18

-163

19

0

158

13

-27

190

162

6

29

3.2.4.3 Load no.

Calculation for Design Loads in Pile cap Vertical load in Each Pile (T) due to P, ML & MT

2-way Shear (T)

Vertical Load in Pile Groups (T)

P1

P2

P3

P4

P1+P2

P3+P4

P1+P4

P2+P3

SP

101

196

149

105

152

346

256

348

254

602

102

155

195

154

115

350

115

155

310

619

103

126

161

153

118

287

118

126

279

558

104

195

160

102

137

355

137

195

297

593

105

96

255

204

46

351

46

96

301

601

106

102

208

174

69

309

69

102

276

552

107

169

142

113

140

311

140

169

282

564

108

92

223

192

61

315

61

92

284

568

109

154

146

123

132

300

132

154

277

555

110

170

146

114

138

316

138

170

285

569

111

81

234

201

48

315

48

81

282

564

112

149

155

129

122

304

122

149

277

555

113

163

186

119

96

349

96

163

282

564

114

158

195

126

89

352

89

158

284

568

115

149

189

129

89

338

89

149

277

555

116

163

189

119

94

351

94

163

282

564

117

146

207

136

75

352

75

146

282

564

118

143

198

134

80

341

80

143

277

555

119

163

186

157

134

349

134

163

320

640

120

158

195

164

127

353

127

158

322

644

121

149

189

166

126

337

126

149

315

629

122

163

189

157

131

352

131

163

320

640

123

146

207

174

113

353

113

146

320

639

124

144

198

172

117

342

117

144

315

631

MT

Max. Shear 1-way Shear

2-way Shear

At A - A'

At B - B'

Normal

348

355

T

Seismic

170

353

T

( 113 )

( 235 )

T

B P2

P3

For Pier

For Pile P1

Normal

619

196

T

Seismic

644

170

T

( 429 )

( 113 )

T

0.6 1.5

0.6 ML

1.8 A

A' 1.8

Max BM

Pier P4

3.2.4.4

Normal

209

213

T-m

Seismic

102

212

T-m

( 68 )

( 141 )

T-m

P1

1.5

B'

Design constants

Grade of steel

=

Permissible stress in steel, sst

Fe500

=

240 MPa 2

Grade of concrete

=

M35

Permissible stress in concrete, scbc

=

1167 T/m

Modular Ratio, m

=

10

k

=

0.327

Clear Cover

=

0.075 m

j

=

0.891

Q

=

170.0 T/m2

Dimension Length (m) Along Traffic Direction (A-A')

4.3

Across Traffic Direction (B-B')

4.3

Depth (m) 1.5

Design Loads

=

24000 T/m2

2-way Shear (T)

BM (T-m)

1-way Shear (T)

From pier face (m)

209

348

0.6

213

355

0.6

For Pier

For Pile

619

196

3.2.4.5

Check for Flexure

3.2.4.5.1 Across Traffic Direction (B-B') deff.reqd =

213 170.0

x

=

0.540

m

4.3

Effective cover

=

deff provided

=

Ast reqd Minimum reinforcement Provide

0.2

% of cross sectional area 29 nos. f

1 layer of

25 f bars

0.075

+

1.5

-

0 +

0.025

x

0.5

0.088

24000 x

(Cl. 305.19 of IRC: 21 -2000)

=

0.891 x 0.20% x

14235

2

x

0 =

0.088 m

1.413 m

>

0.540 m

= 0.00705 m2

=

7047

0.0121 m2

=

12148 mm2

=

213

=

+

1.413 1.413 x

4.3 =

12148

0.025

mm2

2

Ast provided

=

Clear Spacing

= (4.3-2×(0.075+0)-29×25/1000)/(29-1)×1000

=

122 mm

C/c Spacing

=

=

147 mm

Effective cover

=

deff.provided

=

mm

122 +

>

mm

OK

OK

25

3.2.4.5.2 Along Traffic Direction (A-A') deff.reqd =

209 170.0

x

=

0.535

m

4.3

Ast reqd Minimum reinforcement Provide

3.2.4.6

1 layer of

0.2

% of cross sectional area 29 nos. f

25 f bars

0.075

+

1.5

-

0

+

0.025

x

1

+

0.113

=

209

= 24000 x

(Cl. 305.19 of IRC: 21 -2000)

= 14235

0.891 x 0.20% x 2

1.388 1.388 x

x

0.5

=

0.113

m

1.388 m

>

= 0.00704 m2

=

0.0119 m2

=

11933 mm2

4.3 =

11933

0.025

0.535 m 7041

2

Ast provided

=

Clear Spacing

= (4.3-2×(0.075+0+25/1000)-29×25/1000)/(29-1)×1000

=

122 mm

C/c Spacing

=

=

147 mm

122

mm +

>

mm

25

3.2.4.6.1 Across Traffic Direction (B-B') =

From Table 12B of IRC: 21- 2000, for

100 x Ast / bd

From Cl. 304.7.1.4 of IRC: 21-2000

Vs

=

= 0

-

0.6 m 0.234 22.5

< and M

x

4.3

1.413 m

Hence one-way shear = tc

35 grade of concrete x

1.413

=

-137 T

=

0.225 MPa

0 T =

22.5 T/m2

(No shear reinforcement required)

3.2.4.6.2 Along Traffic Direction (A-A') Distance betweeen pier face and centre line pile

=

From Table 12B of IRC: 21- 2000, for

100 x Ast / bd

From Cl. 304.7.1.4 of IRC: 21-2000

Vs

=

= 0

-

0.6 m 0.239 22.7

< and M

x

4.3

1.388 m

Hence one-way shear =

35 grade of concrete x

1.388

=

-135 T

tc

mm2

OK

Check for 1-way Shear

Distance betweeen pier face and centre line pile

OK

=

0.227 MPa

0 T =

22.7 T/m2

(No shear reinforcement required)

3.2.4.7

Check for 2-way Shear Permissble stress for 2-way shear (from Cl307.2.5.5 of IRC: 21- 2000) Effective depth Location section

=

1.388 /

2

=

0.16 x

=

1.388 m

=

0.694 m from pier/pile qace

35

=

0.95 MPa =

95 T/m2

=

(minimum of the depths along two repective directions being considered)

3.2.4.7.1 For Pier

1.8

0.694

Perimeter of region for resisting 2-way shear for Pier = Area of region for resisting 2-way shear for Pier

=

3.14

x(

1.388 x

1.8 +

2 x

0.694 )= 10.015 m

10.015

Punching Shear force Punching shear stress

=

619

=

45 T/m2

<

95

=

13.9 m2

=

619 T

Pier Pile cap

T/m2

13.9 OK 3.2.4.7.2 For Pile P1 Since it is a pile at the corner of the pile cap Perimeter

=

3.14

x

(

1

+

Area available for resisting 2-way shear for Pier Punching Shear force = Punching shear stress =

196 196 7.4

2 =

x 5.322

0.694 / x

1.388

<

95

2

=

)=

5.3

7.4 m2

Pile cap

T =

Pile 27

T/m2

T/m2

OK

0.694

3.2.5

Design of Circular Pile for EJ Pier P13

Y

MY

X Diameter "D" Radius

0.5 m

Clear Cover Diameter of Transverse Reinforcement Effective Cover =75/1000+16/1000+0.016/2

75 mm 16 mm 0.099 m

No of bars Diameter of bar

16 Nos. 0.016 m

Code of Practise Modular Ratio m

IRC 10

Grade of Concrete Permissible Stresses in Concrete for Direct Compression Permissible Stresses in Concrete for bending Compression Permissible Stresses in Steel for Compression Permissible Stresses in Steel for Tension Allowable increase in perm. Stresses for earthquake cases Area of concrete Area of Steel Percentage of Steel Area of concrete to resist axial load only =

223×10000 / 8.75

Minimum Area of Reinforcement 0.8 % of area above =0.8/100×254677 0.4 % of gross area pile =0.4/100×0.785×1000000

Max. Vertical Load Cases

Minimum area of reinforcement Load

P

Case 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

(T) 215 174 172 213 223 193 188 210 173 189 220 167 182 177 167 182 165 162 182 182 185 182 192 190

MY

s CONCRETE s ST COMP

(T-m) (N/mm2) (N/mm2) 18 #NAME? #NAME? 10 #NAME? #NAME? 15 #NAME? #NAME? 18 #NAME? #NAME? 10 #NAME? #NAME? 20 #NAME? #NAME? 59 #NAME? #NAME? 48 #NAME? #NAME? 58 #NAME? #NAME? 59 #NAME? #NAME? 48 #NAME? #NAME? 58 #NAME? #NAME? 54 #NAME? #NAME? 54 #NAME? #NAME? 53 #NAME? #NAME? 54 #NAME? #NAME? 54 #NAME? #NAME? 54 #NAME? #NAME? 29 #NAME? #NAME? 29 #NAME? #NAME? 28 #NAME? #NAME? 29 #NAME? #NAME? 29 #NAME? #NAME? 29 #NAME? #NAME?

M35 8.75 11.67 205 240 50 0.785 3217 0.41

N/mm2 N/mm2 N/mm2 N/mm2 % m2 mm2 %

254677 mm2

2037 mm2 3142 mm2 3142 mm2 s ST TENSION

scbc

(N/mm2) (N/mm2) #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50

Steel Prov > Min reqd

ssc, all

sst, all

(N/mm2) 205.0 205.0 205.0 205.0 205.0 205.0 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5

(N/mm2) -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0

Minimum Verical Load Cases

Load

P

Case 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

(T) 123 173 145 121 115 120 132 111 142 133 100 147 138 145 147 138 155 153 176 177 167 176 165 162

MY

s CONCRETE s ST COMP

s ST TENSION

(T-m) (N/mm2) (N/mm2) 18 #NAME? #NAME? 10 #NAME? #NAME? 15 #NAME? #NAME? 18 #NAME? #NAME? 10 #NAME? #NAME? 20 #NAME? #NAME? 59 #NAME? #NAME? 48 #NAME? #NAME? 58 #NAME? #NAME? 59 #NAME? #NAME? 48 #NAME? #NAME? 58 #NAME? #NAME? 54 #NAME? #NAME? 54 #NAME? #NAME? 53 #NAME? #NAME? 54 #NAME? #NAME? 54 #NAME? #NAME? 54 #NAME? #NAME? 29 #NAME? #NAME? 29 #NAME? #NAME? 28 #NAME? #NAME? 29 #NAME? #NAME? 29 #NAME? #NAME? 29 #NAME? #NAME?

scbc

(N/mm2) (N/mm2) #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 11.67 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50 #NAME? 17.50

ssc, all

sst, all

(N/mm2) 205.0 205.0 205.0 205.0 205.0 205.0 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5 307.5

(N/mm2) -240.0 -240.0 -240.0 -240.0 -240.0 -240.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0 -360.0

Ductile detailing for Pile Calculation for Lateral tie for Pile Lateral Tie - up to 1.0m below pile cap bottom level Check for adequacy of diameter of stirrups as per IS- 13920:1993 for pile 7.4.7ofhoops, IS: 13920 - 1993) must be less than the Cross sectional Area of cross section of(Reference bar formingCl:circular A sh calculated area of Lateral tie bar used in the Pile Ash = 0.09 S Dk (fck / fy) (Ag/Ak-1) Ash

=

Cross sectional area of bar

S Dk

= =

Spacing of hoops Diameter of core measured to outside of hoop

Ag

=

AK

=

Gross area of column cross section Area of the concrete core = /4 DK2

Diameter of Pier

=

1000 mm

Spacing of Lateral ties, S

=

90 mm

Clear cover for column

=

75 mm

Dk =1000-75-75 AK =3.14×850×850/4 Ag =3.14×1000×1000/4

= =

850 mm 2 5.67E+05 mm 2 7.85E+05 mm

fck

=

M35 Mpa

fy

=

500 Mpa 2 185 mm

=

Ash =0.09×90×850×(35/500)×((7.85E+05/5.67E+05)-1)

=

Diameter of Lateral tie

=

16 mm

Cross sectional Area of Lateral tie bar

=

2 201 mm

Hence OK Hence provide confined reinforcement of 16 mm diameter bars at 90 mm C/C for a distance D (Diameter of pier) from top & bottom of the pier Lateral Tie - beyond 1.0m below pile cap bottom level As per Cl. 306.3.3 of IRC: 21 -2000 Maximum spacing of ties is 12 times the size of smallest compression bar. Diameter of smallest compression bar

=

16

12 times of smallest compression bar

=

192

Hence provide 8mm diameter bar at 200mm C/C below 1200mm from pile top

3.2.6

Design of Pier Cap For Pier P13 As per Cl. 305.5.3of IRC:21-2000 total depth A

500

= = =

B C

500 + minimum of 500 + 800 1300 mm.

800

&

4000 3

800 D Pier Centre Line Depth of pier cap CG from top of pier cap = [4000×500×500/2+4000×800/2×(500+800/3)]/(4000×500+4000×800/2) = 480 mm

Elevation

900

Horizontal distance of Pier cap CG from pier face = 4000/3×(1300+2×500)/(1300+500) = 1704 mm

4000

Concrete unit weight 500

4500 2500 BL4

BL5

BL6

BR5

BR6

Increase SW by

Plan 500

2500

4500

24 kN/m2

Self weight (SW) of pier cap = 4000×(500+1300)/2×2300/10^9×24 = 198.7 kN 2300

BR4

=

10 % to include weight of bearing pedestal etc.

Shear due to self weight, Vsw = 198.7×(1+10/100) = 218.57 kN Bending Moment at pier face due to SW, Msw = 218.57×1.704 = 372.4 kNm

Bearing Mark

BL6

BL5 3.6 3.6

Lever arm from face of pier along transverse direction W (kN) A B

DL SIDL

C

LL (For bending moment in pier cap) LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

D

E

(including 0% increase) (including 0% increase)

4.5/(6+22.25)×100= Impact LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

BL4 1.6 1.6

H (kN)

M

T (kNm)

237 281.186

853.2 1012.3

-3.43 114.62 -6.4

-12.3 412.6 -22.9

0 0 0

0.0 0.0 0.0

16.0 % -0.5 18.3 -1

-2 66 | -3.7

0 0 0

0 0 0

= mW (For elestomeric bearing only LL is considered) Bearing Friction 0 Friction co-efficient, m = horizontal force due to change in tempreture = 0.00 kn 0.00 ecc. = 0.35 m torsional moment developed in per cap = 0 kn-m DL 0×237×(0.350+0.480)= SIDL 0×281.186×(0.350+0.480)= LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 0 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 0 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 0 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 0

0 0

0 0 0

0 0 0

W H (kN) (kN) 240 85.391

0 0 0

M 384.0 136.6

2.299 216.3 44.9

3.7 346.1 71.9

0 0 0

0.0 0.0 0.0

16.0 % 0.4 34.6 7.2

0.6 55.4 11.5

0 0 0

0

0 0 0 0 0

-0.4 0

0 0 0

0.00

0×240×(0.350+0.480)= 0×85.391×(0.350+0.480)= 0 0 0 0 0 0

T (kNm) 0 0

0 0 0

0 0 0

W H (kN) (kN) 240 56.908

M

T (kNm) 0.0 0.0

-9.502 88.0 122.5

0.0 0.0 0.0

0 0 0

0.0 0.0 0.0

16.0 % -1.5 14.1 19.6

0 0 0

0 0 0

0 0 0

0

0.00

0 0

0 0 0

0 0 0

0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

Bearing Mark

BL6

BL5 3.6 3.6

Lever arm from face of pier along transverse direction W (kN) F

G

Braking Force LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

Centrifugal Force = Wv2/127R Design Speed, v = Radius of curvature, R = LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4

BL4 1.6 1.6

H (kN)

M

T (kNm)

W (kN)

-0.4 0 H (kN)

M

T (kNm)

W (kN)

H (kN)

M

T (kNm)

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

100 kmph 1000000 0 0 0

m =-3.427×100^2/127/1000000 =114.62×100^2/127/1000000 =-6.352×100^2/127/1000000

1000000 0 0 0

m =2.299×100^2/127/1000000 =216.322×100^2/127/1000000 =44.932×100^2/127/1000000

Total Reaction at each bearing for load combination = DL+SIDL+LL+Impact+Bearing Friction+Braking Force+Centrifugal Force LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 514.3 1851.1 16.6 328.1 524.9 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 651.1 2344.1 20.8 576.3 922.1 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 510.8 1838.9 11.50 327.3 604.0 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 518.2 1865.5 13.8 325.4 520.6 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 518.2 1865.5 16.1 325.4 520.6 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 518.2 1865.5 11.6 325.4 520.6

1000000 0 0 0

m =-9.502×100^2/127/1000000 =87.973×100^2/127/1000000 =122.4585×100^2/127/1000000

16.6 20.8 11.50

285.9 478.5 382.6

0.0 25.0 0.0

16.6 20.8 11.50

13.8 16.1 11.6

296.9 296.9 296.9

0.0 19.4 0.0

13.8 16.1 11.6

Bearing Mark

BR6

Lever arm from face of pier along transverse direction

A B

DL SIDL

C

LL (For bending moment in pier cap) LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

D

E

(including 0% increase) (including 0% increase)

4.5/(6+22.25)×100= Impact LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

BR5

3.6 3.6 W H (kN) (kN) 237 281.186

BR4

1.6 1.6

853.2 1012.3

T (kNm) 0 0

-6.7 159.5 1.8

-24.1 574.2 6.3

-2.44 33.65 6.08

-2.45 322.33 -30.18

-3.9 515.7 -48.3

-3.56 79.51 -56.34

-14.6 221.1 209.3

-52.7 796.0 753.5

-10.98 165.8 -7.85

-2.62 425.77 36.23

-4.2 681.2 58.0

-1.96 319.33 -7.85

-3.9 91.9 1

-0.4 5.4 1

16.0 % -0.4 51.6 -4.8

-0.6 82.5 -7.7

-0.6 12.7 -9

-8.4 127.4 120.6

-1.8 26.5 -1.3

-0.4 68.1 5.8

-0.7 109 9.3

-0.3 51.1 -1.3

16.0 % -1.1 25.5 0.3 -2.3 35.4 33.5

M

-0.4 0

(For elestomeric bearing only LL is considered) Bearing Friction mW 0 Friction co-efficient, m = horizontal force due to change in tempreture = 0.00 kn 0.00 ecc. = 0.00 m torsional moment developed in per cap = 0 kn-m DL 0×237.0×(0.350+0.480)= SIDL 0×281.2×(0.350+0.480)= LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 0 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 0 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 0 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 0

W H (kN) (kN) 240 85.391

M 384.0 136.6

0 0

0

T (kNm)

0.00

0×240.0×(0.350+0.480)= 0×85.4×(0.350+0.480)=

W H (kN) (kN) 240 56.908

0.0 0.0

T (kNm) 0 0

-3.11 149.43 -24.94

0.0 0.0 0.0

4.79 46.09 -110.55

-1.38 213.03 125.91

0.0 0.0 0.0

-1.04 159.77 94.43

16.0 % -0.5 23.9 -4

0 0 0

0.8 7.4 -17.7

-0.2 34.1 20.1

0 0 0

-0.2 25.6 15.1

0

0.0 0.0 0 0 0

0 0 0

0.0 0.0 0 0 0

0 0 0

0 0 0

0 0 0

M

0.00

0×240.0×(0.350+0.480)= 0×56.9×(0.350+0.480)= 0 0 0 0 0 0

0

0.0 0.0 0 0 0 0 0 0

Bearing Mark

Lever arm from face of pier along transverse direction

BR6 3.6 3.6 W (kN)

F

G

0^2/127/1000000

Braking Force LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

Centrifugal Force Design Speed, v = Radius of curvature, R = LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4

Total Reaction at each bearing for load combination LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

BR5

1000000 0 0 0

BR4

1.6 1.6 H (kN)

M

T (kNm)

W (kN)

-0.4 0 H (kN)

M

T (kNm)

W (kN)

H (kN)

M

T (kNm)

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

20.00 25.00 13.85

0.0 0.0 0.0

16.6 20.8 11.5

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

16.62 19.39 14.00

0.0 0.0 0.0

13.8 16.1 11.6

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

m =-6.686×100^2/127/1000000 =159.491×100^2/127/1000000 =1.751×100^2/127/1000000

= 510.4 703.2 520.2

1837.5 2531.5 1872.8

13.4 59.80 18.57

322.54 699.323 290.41

501.2 774.7 761.0

1804.3 2788.9 2739.6

1.0 208.4 2.5

322.38 819.26 367.42

DL+SIDL+LL+Impact+Bearing Friction+Braking Force+Centrifugal Force 516.11 12.44 293.29 0.00 22.19 1118.86 112.96 470.239 0.00 74.24 464.64 -53.8 267.97 0.00 -116.8 515.74 1310.86 587.89

14.3 370.4 2.3

295.33 544.04 442.91

0.00 0.00 0.00

12.6 185.4 121.1

Design forces Bending Moment at the face of the pier LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

From CL 304.7.1.1.2 of IRC: 21 - 2000 tan b Effective depth

(due to reactions from all above bearings) M 514.259×3.6+328.09×1.6+510.4×3.6+322.543×1.6 = 4729.8 kNm 651.106×3.6+576.313×1.6+703.177×3.6+699.323×1.6 = 6916.4 kNm 510.834×3.6+327.265125×1.6+520.237×3.6+290.4095×1.6 = 4700.1 kNm 518.186×3.6+325.391×1.6+501.24×3.6+322.376×1.6 = 518.186×3.6+325.391×1.6+774.696×3.6+819.262×1.6 = 518.186×3.6+325.391×1.6+760.996×3.6+367.418×1.6 =

4706.4 kNm 6485.8 kNm 5713.5 kNm

V = W - Md tanb / d 0.2 =800/4000 1.212 m

Bending Moment at a distance equal to effective depth from pier face LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

Md (due to reactions from BR5,BR6 + BL5 BL6 alone) =(510.4×(3.6-1.212)+322.54×(1.6-1.212)+514.3×(3.6-1.212)+328.1×(1.6-1.212)) 2699.3 kNm =(703.2×(3.6-1.212)+699.32×(1.6-1.212)+651.1×(3.6-1.212)+576.3×(1.6-1.212)) 3729.0 kNm =(520.2×(3.6-1.212)+290.41×(1.6-1.212)+510.8×(3.6-1.212)+327.3×(1.6-1.212)) 2701.9 kNm

Shear at a distance equal to effective depth from pier face LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

(due to reactions from BR5,BR6 + BL5 BL6 alone) V =(510.4+322.54+514.3+328.1-2699.3×0.2/1.212) 1229.9 kN =(703.2+699.32+651.1+576.3-3729.0×0.2/1.212) 2014.6 kN =(520.2+290.41+510.8+327.3-2701.9×0.2/1.212) 1202.9 kN

Torsion at a distance equal to effective depth from pier face LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

=(501.2×(3.6-1.212)+322.38×(1.6-1.212)+518.2×(3.6-1.212)+325.4×(1.6-1.212)) 2685.7 kNm =(774.7×(3.6-1.212)+819.26×(1.6-1.212)+518.2×(3.6-1.212)+325.4×(1.6-1.212)) 3531.5 kNm =(761.0×(3.6-1.212)+367.42×(1.6-1.212)+518.2×(3.6-1.212)+325.4×(1.6-1.212)) 3323.5 kNm

=(501.2+322.38+518.2+325.4-2685.7×0.2/1.212) =(774.7+819.26+518.2+325.4-3531.5×0.2/1.212) =(761.0+367.42+518.2+325.4-3323.5×0.2/1.212)

T

1224.0 kN 1854.8 kN 1423.6 kN

(due to reactions from BR5,BR6 alone) 25.8 kNm 172.8 kNm -35.3 kNm 15.3 kNm 578.9 kNm 4.8 kNm

From CL 304.7.2.4.2 of IRC: 21 - 2000 Mt = T(1+D/b)/1.7 LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

Me = Msw+M+Mt LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

25.7955×(1+1300/2300)/1.7= 172.76075×(1+1300/2300)/1.7= -35.266875×(1+1300/2300)/1.7=

23.8 kNm 159.1 kNm -32.5 kNm

15.34885×(1+1300/2300)/1.7= 578.85445×(1+1300/2300)/1.7= 4.824×(1+1300/2300)/1.7=

14.1 kNm 533 kNm 4.4 kNm

372.4+4729.8+23.8= 372.4+6916.4+159.1= 372.4+4700.1+-32.5=

5126.0 kNm 7447.9 kNm 5040.0 kNm

372.4+4706.4+14.1= 372.4+6485.8+533= 372.4+5713.5+4.4=

5092.9 kNm 7391.2 kNm 6090.3 kNm

1.6×25.7955/2.3= 1.6×172.76075/2.3= 1.6×-35.266875/2.3=

17.9 kN 120.2 kN -24.5 kN

1.6×15.34885/2.3= 1.6×578.85445/2.3= 1.6×4.824/2.3=

10.7 kN 402.7 kN 3.4 kN

From CL 304.7.2.3 of IRC: 21 - 2000 Vt = 1.6 T/b LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

Ve = Vsw+V+Vt LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 (For torsional moment in pier cap) LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

218.57+1229.857793+17.9= 218.57+2014.576661+120.2= 218.57+1202.894915+-24.5=

1466.3 kN 2353.3 kN 1397.0 kN

218.57+1224.004405+10.7= 218.57+1854.774673+402.7= 218.57+1423.559233+3.4=

1453.3 kN 2476.0 kN 1645.5 kN

Design Parameters Grade of concrete Permissible stress in concrete, scbc

M45 15.0 MPa

Permissible tensile stress in steel in flexure, sst

240 MPa

k j Q

= 10×15.0/(10×15.0+240) = 1-0.385/3 = 0.385×0.872×15.0/2

= = =

Clear Cover Dia. of spacer bars will be used if required

Grade of steel Modular Ratio m Permissible stress in steel in shear, ss

0.385 0.872 2.515

= =

Fe500 10 200

Total depth, D Total depth at a distance equal to effective depth from pier face, D d = 1300-(1300-500)/4000×1212 Width, b

40 mm 32 mm

1300 =

1058 2300

Maximum Bending Moment Maximum Shear

7447.9 2476.0

Provide f f f

Main reinforcement

32 32 0

, , ,

25 13 0

Nos. in Nos. in Nos. in

1 st layer 2 nd layer 3 nd layer

Total reinforcement provided Transverse reinforcement

f

10

10 lgd. stps. at

= = =

20096 mm2 steel at 10450 mm2 steel at 0 mm2 steel at

66 mm depth from top 130 mm depth from top 178 mm depth from top

=

30546 mm2 steel at

88 mm depth from top

200 mm. c/c.

=

785 mm2

Effective cover

= (20096×66+10450×130+0×178)/(20096+10450+0)

=

88 mm.

Effective depth provided

= 1300-88

=

1212 mm.

= [7447.9×10^6/(2.515×2300)]^0.5

=

1134.8 mm

Check for Flexure Effective depth required Reinforcement required Minimum reinforcement

=7447.9×10^6/(240×0.872×1212×2300) @

0.2 % as per Cl. 305.19 of IRC: 6 -2010

=

2

29370 mm

=

5575.2 mm2

\

SAFE

<

2

30546 mm

\

SAFE

<

30546 mm2

\

SAFE

<

1212 mm

Check for Shear Max. shear stress from table 12A of IRC: 21 - 2000 for corresponding grade of concrete Effective depth of section at a distance equal to effective depth from pier face te

Shear stress 100 Ast / bd

tcmax =1058-88

= =

2.5 MPa 970 mm

=2476.0×10^3/(2300×970)

=

1.11 MPa

=100×30546/(2300×970)

=

2.5 SAFE

1.369 %

Permissible shear stress in concrete (from table 12B of IRC: 21 -2000)

tc

=

Shear force for which the reinforcement is required

Vs

=

Asw reqd for shear

Asw

=

687 mm2

Minimum shear reinforcement (as per CL. 304.7.1.5 of IRC: 21-2000)

=0.4×2300×200/(0.87×415)

=

509.6 mm2

Hence provide 10 legged 10 mm Dia. bars @ 200 mm c/c

< \

0.46 MPa 1449.8 KN

SAFE

##

Design of Pier Cap As per Cl. 305.5.3of IRC:21-2000 total depth A

= = =

500 B C

500 + minimum of 500 + 800 1300 mm.

800

&

4000 3

800 D Pier Centre Line Depth of pier cap CG from top of pier cap = [4000×500×500/2+4000×800/2×(500+800/3)]/(4000×500+4000×800/2) = 480 mm

Elevation 900

Horizontal distance of Pier cap CG from pier face = 4000/3×(1300+2×500)/(1300+500) = 1704 mm

4000

Concrete unit weight 4500 3500

1500

24 kN/m2

=

Self weight (SW) of pier cap = 4000×(500+1300)/2×2300/10^9×24 = 198.7 kN 2300

Increase SW by

-1

10 % to include weight of bearing pedestal etc.

0

BR1

Plan

BR3BR2

Shear due to self weight, Vsw = 198.7×(1+10/100) = 218.57 kN

4500 1500

3500

Bending Moment at pier face due to SW, Msw = 218.57×1.704 = 372.4 kNm Bearing Mark

BL1

BL2 3.6 3.6

Lever arm from face of pier along transverse direction W (kN) A B

DL SIDL

C

LL (For bending moment in pier cap) LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

D

E

(including 0% increase) (including 0% increase)

4.5/(6+22.25)×100= Impact LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

H (kN)

M

180 13.509

648.0 48.6

195.81 -5.05 141.0

704.9 -18.2 507.8

0 0 0

0.0 0.0 0.0

16.0 % 31.3 -0.8 22.6 0 0 0

BL3

2.6 2.6 T (kNm) 0 0

0 0 0

= mW (For elestomeric bearing only LL is considered) Bearing Friction 0 Friction co-efficient, m = horizontal force due to change in tempreture = 0.00 kn 0.00 ecc. = 0.35 m torsional moment developed in per cap = 0 kn-m DL 0×180×(0.350+0.480)= SIDL 0×13.509×(0.350+0.480)= LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 0 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 0 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 0 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 0 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 0 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 0

W H (kN) (kN) 214 31.348

82.5 1.7 173.4 0 0 0

4.5/(6+22.25)×100= 112.8 -2.9 | 81.2 0 0 0

0 0 0 0 0 0 0 0

M 556.4 81.5

0 0 0

0.0 0.0 0.0

0 0 0

0 0 0

4.5/(6+22.25)×100= 34.3 0.7 72.1 0 0 0

0.00

0×214×(0.350+0.480)= 0×31.348×(0.350+0.480)= 0 0 0 0 0 0

T (kNm) 0 0

214.5 4.3 450.9

16.0 % 13.2 0.3 27.7

0

BR1

0.6 0.6

0 0 0

W H (kN) (kN) 240 41.457

0 0 0 0 0 0 0 0

M

T (kNm)

144.0 24.9

46.416 -12.2 164.6

27.8 -7.3 98.8

0 0 0

0.0 0.0 0.0

16.0 % 7.4 -2 26.3 0 0 0

0

BR2

3.6 3.6

0 0 0

4.5 -1.2 15.8 0 0 0

0.00

0 0

0 0 0

W (kN) 180 13.509

0 0 0 0 0 0

0 0 0

H (kN)

M

556.4 81.5

0 0

0.6 0.6 W (kN) 240 41.457

190.63 1.92 -91.32

495.6 5.0 -237.4

81.10 0.20 -198.57

252.90 5.70 136.11

657.5 14.8 353.9

95.68 4.27 125.01

648.0 48.6

T (kNm) 0 0

W (kN) 214 31.348

294.4 -11.5 -17.6

1059.8 -41.4 -63.3

73.94 -4.83 -118.97

422.6 -18.7 165.4

1521.3 -67.4 595.5

316.93 -14.0 124.06

16.0 % 47.1 -1.8 -2.8

169.6 -6.6 -10.1

11.8 -0.8 -19

67.6 -3 26.5

243.4 -10.8 95.3

50.7 -2.2 19.8

0

0 0 0 0 0

BR3

2.6 2.6

0.00

0×180.0×(0.350+0.480)= 0×13.5×(0.350+0.480)=

H (kN)

16.0 % 30.5 0.3 -14.6 40.5 0.9 21.8

0

M

T (kNm)

79.3 0.8 -38

13 0 -31.8

105.2 2.4 56.6

15.3 0.7 20

0.00

0×214.0×(0.350+0.480)= 0×31.3×(0.350+0.480)=

0 0 0

0 0 0

0.0 0.0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

M

T (kNm)

144.0 24.9

0 0

92.73 13.05 -38.77

55.6 7.8 -23.3

34.74 18.96 -152.53

127.57 20.93 166.67

76.5 12.6 100.0

95.68 15.70 125.01

16.0 % 14.8 2.1 -6.2

8.9 1.3 -3.7

5.6 3 -24.4

20.4 3.3 26.7

12.2 2 16

15.3 2.5 20

0

0.0 0.0 0 0 0

H (kN)

0.00

0×240.0×(0.350+0.480)= 0×41.5×(0.350+0.480)= 0 0 0 0 0 0

0

0.0 0.0 0 0 0 0 0 0

F

F

Braking Force LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

= Wv2/127R Centrifugal Force Design Speed, v = Radius of curvature, R = LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3

Total Reaction at each bearing for load combination LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

20.00 25.00 13.85

0.0 0.0 0.0

16.6 20.8 11.5

20.0 25.0 13.9

0.0 0.0 0.0

16.6 20.8 11.5

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

16.62 19.39 14.00

0.0 0.0 0.0

13.8 16.1 11.6

16.6 19.4 14.0

0.0 0.0 0.0

13.8 16.1 11.6

100 kmph 1000000 m 0 =195.813×100^2/127/1000000 0 =-5.047×100^2/127/1000000 0 =141.0435×100^2/127/1000000

1000000 m 0 =82.5×100^2/127/1000000 0 =1.651×100^2/127/1000000 0 =173.4355×100^2/127/1000000

= DL+SIDL+LL+Impact+Bearing Friction+Braking Force+Centrifugal Force 420.6 1514.4 16.6 341.0 886.7 187.7 675.6 20.8 242.7 642.9 357.2 1285.6 11.50 128.9 1160.9 193.5 193.5 193.5

696.6 696.6 696.6

13.8 16.1 11.6

245.3 245.3 245.3

637.9 637.9 637.9

335.3 267.4 273.8

201.2 185.3 283.4

16.6 20.8 11.50

535.0 180.2 173.1

1926.0 648.7 623.2

114.1 15.12 -126.48

466.48 247.569 139.43

1212.85 643.70 362.48

110.70 20.95 -218.9

388.99 296.608 236.49

233.41 178.00 141.91

56.94 42.71 -165.4

13.8 16.1 11.6

281.5 281.5 281.5

168.9 188.3 168.9

13.8 16.1 11.6

683.7 171.8 385.4

2461.3 618.5 1387.4

381.4 -0.1 155.5

538.75 251.95 403.26

1400.64 655.12 1048.39

127.6 5.0 156.5

429.42 305.69 474.83

257.61 183.43 284.88

124.8 18.2 156.6

From CL 304.7.1.1.2 of IRC: 21 - 2000 tan b Effective depth

(due to reactions from all above bearings) M 420.622×3.6+341.048×2.6+535.002×3.6+466.479×2.6 = 5974.4 kNm 187.662×3.6+242.6715×2.6+180.222×3.6+247.569×2.6 = 2937.4 kNm 357.1525×3.6+128.945125×2.6+173.1215×3.6+139.43×2.6 = 2912.9 kNm 193.509×3.6+245.348×2.6+683.679×3.6+538.747×2.6 = 193.509×3.6+245.348×2.6+171.797×3.6+251.946×2.6 = 193.509×3.6+245.348×2.6+385.419×3.6+403.258×2.6 =

5623.1 kNm 2960.4 kNm 4224.3 kNm

V = W - Md tanb / d 0.2 =800/4000 1.222 m

Bending Moment at a distance equal to effective depth from pier face LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

(due to reactions from BR1,BR2 + BL1 BL2 alone) Md =(535.0×(3.6-1.222)+466.48×(2.6-1.222)+420.6×(3.6-1.222)+341.0×(2.6-1.222)) 3385.2 kNm =(180.2×(3.6-1.222)+247.57×(2.6-1.222)+187.7×(3.6-1.222)+242.7×(2.6-1.222)) 1550.4 kNm =(173.1×(3.6-1.222)+139.43×(2.6-1.222)+357.2×(3.6-1.222)+128.9×(2.6-1.222)) 1630.8 kNm

Shear at a distance equal to effective depth from pier face LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

(due to reactions from BR1,BR2 + BL1 BL2 alone) V =(535.0+466.48+420.6+341.0-3385.2×0.2/1.222) 1209.1 kN =(180.2+247.57+187.7+242.7-1550.4×0.2/1.222) 604.4 kN =(173.1+139.43+357.2+128.9-1630.8×0.2/1.222) 531.7 kN

Torsion at a distance equal to effective depth from pier face LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

=(683.7×(3.6-1.222)+538.75×(2.6-1.222)+193.5×(3.6-1.222)+245.3×(2.6-1.222)) 3166.4 kNm =(171.8×(3.6-1.222)+251.95×(2.6-1.222)+193.5×(3.6-1.222)+245.3×(2.6-1.222)) 1554.0 kNm =(385.4×(3.6-1.222)+403.26×(2.6-1.222)+193.5×(3.6-1.222)+245.3×(2.6-1.222)) 2270.5 kNm

=(683.7+538.75+193.5+245.3-3166.4×0.2/1.222) =(171.8+251.95+193.5+245.3-1554.0×0.2/1.222) =(385.4+403.26+193.5+245.3-2270.5×0.2/1.222)

T

1143.0 kN 608.3 kN 855.9 kN

(due to reactions from BR1 BR2 alone) 191.6 kNm -5.4 kNm -368.3 kNm 481.4 kNm -27.4 kNm 288.7 kNm

From CL 304.7.2.4.2 of IRC: 21 - 2000 = T(1+D/b)/1.7 Mt LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

= Msw+M+Mt Me LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

191.63325×(1+1300/2300)/1.7= -5.4275×(1+1300/2300)/1.7= -368.338375×(1+1300/2300)/1.7= 481.40815×(1+1300/2300)/1.7= -27.3542×(1+1300/2300)/1.7= 288.7385×(1+1300/2300)/1.7=

176.4 kNm -5 kNm -339.1 kNm 443.2 kNm -25.2 kNm 265.8 kNm

372.4+5974.4+176.4= 372.4+2937.4+-5= 372.4+2912.9+-339.1=

6523.2 kNm 3304.8 kNm 2946.2 kNm

372.4+5623.1+443.2= 372.4+2960.4+-25.2= 372.4+4224.3+265.8=

6438.7 kNm 3307.6 kNm 4862.5 kNm

1.6×191.63325/2.3= 1.6×-5.4275/2.3= 1.6×-368.338375/2.3=

133.3 kN -3.8 kN -256.2 kN

From CL 304.7.2.3 of IRC: 21 - 2000 = 1.6 T/b Vt LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

= Vsw+V+Vt Ve LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

1.6×481.40815/2.3= 1.6×-27.3542/2.3= 1.6×288.7385/2.3=

334.9 kN -19.0 kN 200.9 kN

218.57+1209.100905+133.3= 218.57+604.379891+-3.8= 218.57+531.7403698+-256.2=

1561.0 kN 819.1 kN 494.1 kN

218.57+1143.044706+334.9= 218.57+608.2679542+-19= 218.57+855.9350062+200.9=

1696.5 kN 807.8 kN 1275.4 kN

1000000 m 0 =294.393×100^2/127/1000000 0 =-11.487×100^2/127/1000000 0 =-17.5875×100^2/127/1000000

16.6 20.8 11.50

Design forces Bending Moment at the face of the pier LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 (For torsional moment in pier cap) LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3

1000000 m 0 =46.416×100^2/127/1000000 0 =-12.229×100^2/127/1000000 0 =164.6×100^2/127/1000000

Design Parameters Grade of concrete Permissible stress in concrete, scbc

M45 15.0 MPa

Grade of steel Modular Ratio m

Permissible tensile stress in steel in flexure, sst

240 MPa

Permissible stress in steel in shear, ss

k j Q

= 10×15.0/(10×15.0+240) = 1-0.385/3 = 0.385×0.872×15.0/2

= = =

Clear Cover Dia. of spacer bars will be used if required

0.385 0.872 2.515 MPa

= =

Fe500 10 200

Total depth, D

1300

Total depth at a distance equal to effective depth from pier face, Dd = 1300-(1300-500)/4000×1222 Width, b

40 mm 32 mm

=

1056 2300

Maximum Bending Moment Maximum Shear

6523.2 1696.5

Provide f f f

Main reinforcement

32 32 0

, , ,

25 13 0

Nos. in Nos. in Nos. in

1 st layer 2 nd layer 3 nd layer

20096 mm2 steel at 10450 mm2 steel at 0 mm2 steel at

= = =

Total reinforcement provided

= f

Transverse reinforcement

12

8 lgd. stps. at

56 mm depth from top 120 mm depth from top 168 mm depth from top

2

30546 mm steel at

78 mm depth from top

904 mm2

200 mm. c/c.

=

Effective cover

= (20096×56+10450×120+0×168)/(20096+10450+0)

=

78 mm.

Effective depth provided

= 1300-78

=

1222 mm.

= [6523.2×10^6/(2.515×2300)]^0.5

=

1062.0 mm

=

25513 mm2

=

2

Check for Flexure Effective depth required Reinforcement required Minimum reinforcement

=6523.2×10^6/(240×0.872×1222×2300) @

0.2 % as per Cl. 305.19 of IRC: 6 -2010

5621.2 mm

<

1222 mm

\

SAFE

0.151

<

30546 mm2

\

SAFE

0.197

<

2

\

SAFE

4.434

30546 mm

Check for Shear Max. shear stress from table 12A of IRC: 21 - 2000 for corresponding grade of concrete Effective depth of section at a distance equal to effective depth from pier face te

Shear stress 100 Ast / bd

tcmax =1056-78

= =

=1696.5×10^3/(2300×978)

=

=100×30546/(2300×978)

=

2.5 MPa 978 mm 0.75 MPa

Permissible shear stress in concrete (from table 12B of IRC: 21 -2000)

tc

=

Shear force for which the reinforcement is required

Vs

=

Asw reqd for shear

Asw

=

311 mm2

Minimum shear reinforcement (as per CL. 304.7.1.5 of IRC: 21-2000)

=0.4×2300×200/(0.87×415)

=

509.6 mm2

Hence provide 8 legged 12 mm Dia. bars @ 200 mm c/c

< \

2.5 SAFE

2.333

SAFE

0.774

1.358 % 0.46 MPa 661.79 KN

Table 12B of IRC: 21- 2000

From Table 9 of IRC:21- 2000

tc for given Grade of Concrete

For Pile Cap with 6 Piles

For Pile Cap with 9 Piles

100Ast/bd

M20

M25

M30

M35

M40

0.15

0.18

0.19

0.20

0.20

0.20

0.25

0.22

0.23

0.23

0.23

0.23

0.50

0.30

0.31

0.31

0.31

0.32

0.75

0.35

0.36

0.37

0.37

0.38

1.00

0.39

0.40

0.41

0.42

0.42

1.25

0.42

0.44

0.45

0.45

0.46

1.50

0.45

0.46

0.48

0.49

0.49

1.75

0.47

0.49

0.50

0.52

0.52

2.00

0.49

0.51

0.53

0.54

0.55

2.25

0.51

0.53

0.55

56.00

0.57

2.50

0.51

0.55

0.57

0.58

0.60

2.75

0.51

0.56

0.58

0.60

0.62

3.00

0.51

0.57

0.60

0.62

0.63

0.15

0.18

0.19

0.2

0.2

0.2

0.25

0.22

0.23

0.23

0.23

0.23

0.150

0.180

0.190

0.200

0.200

0.200

0.15

0.18

0.19

0.2

0.2

0.2

0.25

0.22

0.23

0.23

0.23

0.23

0.150

0.180

0.190

0.200

0.200

0.200

0.15

0.18

0.19

0.2

0.2

0.2

0.25

0.22

0.23

0.23

0.23

0.23

0.234

0.214

0.224

0.225

0.225

0.225

0.15

0.18

0.19

0.2

0.2

0.2

0.25

0.22

0.23

0.23

0.23

0.23

0.239

0.215

0.225

0.227

0.227

0.227

Zone Factor

From Table 9 of IRC:21- 2000 Grade

Ec (GPa)

M15

26.0

M20

27.5

M25

29.0

M30

30.5

M35

31.5

M40

32.5

M45

33.5

M50

35.0

M55

36.0

M60

37.0

Zone Factor Soil Type

Sa/g x T Limit (sec)

Zone

Z

V

0.36

Rocky

1.00

0.40

IV

0.24

Medium

1.36

0.55

III

0.16

Soft

1.67

0.67

II

0.10

Maximum

2.50

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF