Solucionario parte 5 Matemáticas Avanzadas para Ingeniería - 2da Edición - Glyn James
September 25, 2017 | Author: Kimberly Clark | Category: N/A
Short Description
Download Solucionario parte 5 Matemáticas Avanzadas para Ingeniería - 2da Edición - Glyn James...
Description
5 The Fourier Transform Exercises 5.2.4 1
0
at −jωt
e e
F (jω) =
−∞
=
e−at e−jωt dt
0
2a + ω2
a2
2
∞
dt +
0
F (jω) =
−jωt
Ae
T
dt +
−T T
0
−Ae−jωt dt
2jA sin ωt dt
= 0
2jA (1 − cos ωT ) ω 4jA ωT sin2 = ω 2 ωT 2 2 = jωAT sinc 2
=
3
T At At −jωt +A e + A e−jωt dt − dt + F (jω) = T T −T 0 T At + A cos ωt dt − =2 T 0 ωT 2 = AT sinc 2
0
Exercise 2 is T × derivative of Exercise 3, so result 2 follows as (jω × T ) × result 3. Sketch is readily drawn.
c Pearson Education Limited 2004
268
Glyn James: Advanced Modern Engineering Mathematics, Third edition
4
2
2Ke−jωt dt = 8K sinc(2ω)
F (jω) = −2 1
Ke−jωt dt = 2K sinc(ω)
G(jω) = −1
H(jω) = F (jω) − G(jω) = 2K(4 sinc(2ω) − sinc(ω)) 5
−1
−jωt
F (jω) =
e
1
−jωt
dt +
−2
e
2
dt +
−1
1
−e−jωt dt
1 jω 2(e − e−jω ) − (e2jω − e−2jω ) = jω = 4 sinc(ω) − 2 sinc(2ω) 6 1 F (jω) = 2j 1 f¯(a) = 2j =
π a
π −a π a
π −a sin ω πa
(ejat − e−jat )e−jωt dt jat −jωt
e
e
1 dt = 2j
π a
π −a
ej(a−ω)t dt
j(a − ω)
F (jω) = f¯(a) + f¯(−a) =
7
F (jω) = 0
∞
2jω π sin ω ω 2 − a2 a
e−at . sin ω0 t.e−jωt dt
= f¯(ω0 ) − f¯(−ω0 ) ∞ 1 ¯ e(−a+j(ω0 −ω)t) dt where f (ω0 ) = 2j 0 1 1 1 1 = = 2j a − j(ω0 − ω) 2j (a + jω) − jω0 ω0 ∴ F (jω) = (a + jω)2 + ω02
c Pearson Education Limited 2004
Glyn James: Advanced Modern Engineering Mathematics, Third edition 8
1 Fc (x) = 4 define g(x, b) =
a
a
(ejt + e−jt )(ejxt + e−jxt ) dt
0
ej(b+x)t dt
0
1 [ej(b+x)a − 1] j(b + x) 1 Fc (x) = [g(x, 1) + g(x, −1) + g(−x, 1) + g(−x, −1)] 4 1 sin(1 + x)a sin(1 − x)a + = 2 1+x 1−x =
9
Consider F (x) =
a 0
1.ejxt dt
−j (cos ax + j sin ax − 1) x sin ax Fc (x) = Re F (x) = x 1 − cos ax Fs (x) = Im F (x) = x =
10
Consider F (x) =
∞ 0
=
e−at ejxt dt
a + jx a2 + x2
a + x2 x Fs (x) = Im F (x) = 2 a + x2 Fc (x) = Re F (x) =
a2
Exercises 5.3.6 11
Obvious
12
(jω)2 Y (jω) + 3jωY (jω) + Y (jω) = U (jω) 1 U (jω) (1 − ω 2 ) + 3jω 1 H(jω) = (1 − ω 2 ) + 3jω Y (jω) =
c Pearson Education Limited 2004
269
270
Glyn James: Advanced Modern Engineering Mathematics, Third edition
13 → sinc
ω 2
ω → e−iω3/2 + eiω3/2 sinc 2 2 = (sin(2ω) − sin(ω)) ω = 4 sinc(2ω) − 2 sinc(ω) 14 F (jω) =
T 2
T −2
cos(ω0 t)e−iωt dt
1 1 T T sin(ω0 − ω) + sin(ω0 + ω) ω0 − ω 2 ω0 + ω 2 T T sin(ω0 + ω) 2 T sin(ω0 − ω) 2 = + T 2 (ω0 − ω) 2 (ω0 + ω) T2
=
Evaluating at ω = ±ω0 ⇒ T T T sinc(ω0 − ω) + sinc(ω0 + ω) F (jω) = 2 2 2 15
F (jω) = 0
T
cos ω0 t.e−jωt dt
1 = [f¯(ω0 ) + f¯(−ω0 )] 2 where f¯(ω0 ) =
T
ej(ω0 −ω)t dt
0
c Pearson Education Limited 2004
ω = ±ω0
Glyn James: Advanced Modern Engineering Mathematics, Third edition 1 [ej(ω0 −ω)T − 1] j(ω0 − ω) 1 1 (ej(ω0 −ω)T − 1) F (jω) = 2 j(ω0 − ω) 1 −j(ω0 +ω)T (e − − 1) j(ω0 − ω) jω0 T /2 T −jωT /2 e sin(ω0 − ω) =e ω0 − ω 2 −jω0 T /2 T e sin(ω0 + ω) + ω0 + ω 2
ω = ω0
=
ω = ±ω0
Checking at ω = ±ω0 gives T −jωT /2 jω0 T /2 T T −jω0 T /2 e F (jω) = e sinc(ω0 − ω) + e sinc(ω0 + ω) 2 2 2 16
1
F (jω) =
sin 2t.e−jωt dt
−1
1 1 e−j(ω−2)t − e−j(ω+2)t dt = 2j −1 1 ¯ e−j(ω−a)t dt = 2 sinc(ω − a) f (a) = −1
1 1 F (jω) = f¯(a) − f¯(−a), a = 2 2j 2j = j[sinc(ω + 2) − sinc(ω − 2)]
Exercises 5.4.3 17 I
H(s) =
s2
H(jω) =
0
∞
h(t) = (e−t − e−2t )ξ(t)
(e−t − e−2t )e−jωt dt =
1 1 − 1 + jω 2 + jω
1 as required. 2− + 3jω √ √ √ s+2 3 3 H(s) = 2 t + 3 sin t ξ(t) h(t) = e−1/2t cos s +s+1 2 2 =
II
1 + 3s + 2
ω2
c Pearson Education Limited 2004
271
272
Glyn James: Advanced Modern Engineering Mathematics, Third edition ∞ e−(1/2tjω−jω0 )t dt Consider G(ω0 ) = 0
=
1 2
1 + j(ω − ω0 )
√ √ 3 3 1 1 (G(ω0 ) − G(−ω0 )), ω0 = H(jω) = G(ω0 ) + G(−ω0 ) + 2 2 2j 2 6 2 + 4jω + So H(jω) = 2 4 + 4jω − 4ω 4 + 4jω − 4ω 2 2 + jω = 1 − ω 2 + jω 18
P (jω) = 2AT sinc ωT
So F (jω) = (e−jωτ + eiωτ )P (jω) = 4AT cos ωτ sinc ωT
19
G(s ) =
(s )2 √ (s )2 + 2s + 1
G(jω) =
=
−ω 2 √ 1 − ω 2 + 2jω 1 ω2
1 √ − 1 + 2 ωj
Thus | G(jω) |→ 0 as ω → 0 and | G(jω) |→ 1 as ω → ∞ High-pass filter.
20
g(t) = e−a|t| −→ G(jω) = f (jt) =
a2
2a + ω2
1 G(jt) −→ πg(−ω) = πe−a|ω| 2 c Pearson Education Limited 2004
Glyn James: Advanced Modern Engineering Mathematics, Third edition 21
F{f (t) cos ω0 t} =
1 1 F (j(ω − ω0 )) + F (j(ω + ω0 )) 2 2
F (jω) = 2T sinc ωT ∴ F{PT (t) cos ω0 t} = T sinc(ω − ω0 )T + sinc(ω + ω0 )T
Exercises 5.5.3 22
1 2π
∞
−∞
πδ(ω − ω0 )e
jωt
1 dω + 2π
∞
−∞
πδ(ω + ω0 )ejωt dω
1 jω0 t + e−jω0 t ) (e 2 = cos ω0 t =
23
24
F{e±jω0 t } = 2πδ(ω ∓ ω0 ) 1 ∴ F{sin ω0 t} = {2πδ(ω − ω0 ) − 2πδ(ω + ω0 )} 2j = jπ[δ(ω + ω0 ) − δ(ω − ω0 )] ∞ 1 jπ[δ(ω + ω0 ) − δ(ω − ω0 )]ejωt dω 2π −∞ j = [e−jω0 t − e+jω0 t ] = sin ω0 t 2 G(jω) =
∞
g(t)e−jωt dt; G(jt) =
−∞
So
∞ −∞
g(ω)e−jωt dω
∞
f (t)G(jt) dt ∞ ∞ −jωt f (t) g(ω)e dω dt = −∞ −∞ ∞ ∞ −jωt g(ω) f (t)e dt dω = −∞ −∞ ∞ ∞ g(ω)F (jω)dω = g(t)F (jt) dt = −∞
−∞
−∞
c Pearson Education Limited 2004
273
274
Glyn James: Advanced Modern Engineering Mathematics, Third edition
25
Write result 24 as ∞
∞
f (ω)F{g(t)}dω = −∞ ∞
−∞ ∞
f (ω)F{G(jt)}dω =
so −∞
−∞
F{f (t)}g(ω)dω F{f (t)}G(jω)dω
g(t) → G(jω) Now G(jt) → 2πg(−ω) symmetry G(−jt) → 2πg(ω) ∞ ∞ Thus f (ω).2πg(ω)dω = F (jω)G(−jω)dω −∞ −∞ ∞ ∞ 1 or f (t)g(t) dt = F (jω)G(−jω)dω 2π −∞ −∞ 26
F{H(t) sin ω0 t} ∞ 1 1 du πj δ(ω − u + ω0 ) − δ(ω − u − ω0 ) πδ(u) + = 2π −∞ ju 1 1 j 1 = πδ(ω + ω0 ) − πδ(ω − ω0 ) + − 2 2 ω + ω0 ω − ω0 ω0 πj δ(ω + ω0 ) − δ(ω − ω0 ) − 2 = 2 ω − ω02
27 A an = T
d/2
e−nω0 t dt =
−d/2
f (t) =
F (ω) =
nω0 d Ad sinc , T 2
ω0 = 2π/T
∞ nω0 d nω0 t Ad e sinc , T n=−∞ 2
∞ 2πAd nω0 d δ(ω − nω0 ) sinc T n=−∞ 2
Exercises 5.6.6 28 T = 1,
N = 4,
∆ω = 2π/(4 × 1) =
c Pearson Education Limited 2004
π 2
Glyn James: Advanced Modern Engineering Mathematics, Third edition
G0 =
3
gn e− ×n×0×π/2 = 2
n=0
G1 =
3
gn e− ×n×1×π/2 = 0
n=0
G2 =
3
gn e− ×n×2×π/2 = 2
n=0
G3 =
3
gn e− ×n×3×π/2 = 0
n=0
G = {2, 0, 2, 0} 29 N = 4, W n = e− nπ/2
1 0 0 1 gn = 1 0 0 1 1 G00 G 1 G = 10 = 1 G01 0 G11
Bit reversal gives
1 0 1 2 0 10 0 = −1 0 1 0 0 −1 0 0 1 −1 0 0
0 0 1 1
0 2 2 00 2 = − 0 0 0 0
2 0 G= 2 0
30 Computer experiment.
31 Follows by direct substitution. c Pearson Education Limited 2004
275
276
Glyn James: Advanced Modern Engineering Mathematics, Third edition
Review exercises 5.9 1
FS (x) =
2
1
t sin xt dt + 0
2
sin xt dt = 1
sin x cos 2x − x2 x
πt π π + H(t − 2) f (t) = − H(−t − 2) + (H(t + 2) − H(t − 2)) 2 4 2 1 + πδ(ω) ω 1 −2jω F{H(t − 2)} = e + πδ(ω) jω 2jω −1 2jω −1 + πδ(−ω) = e + πδ(ω) F{H(−t − 2)} = e jω jω π π 2 −jωt π H(t − 2) F{f (t)} = F{− H(−t − 2)} + te dt + F 2 4 −2 2 F{H(t)} =
= 3
−πj sinc 2ω ω
ωT 2 F {cos ω0 t} = π [δ(ω + ω0 ) + δ(ω − ω0 )]
F {H(t + T /2) − H(t − T /2)} = T sinc
Using convolution π F {f (t)} = 2π
∞
T sinc −∞
T (ω − u) (δ(u + ω0 ) + δ(u − ω0 ))du 2
T T T sinc(ω − ω0 ) + sinc(ω + ω0 ) = 2 2 2 4
1 1 [πδ(ω − ω0 ) + πδ(ω + ω0 )] ∗ πδ(ω) + F {cos ω0 tH(t)} = 2π jω 1 = 2π
1 du {πδ(ω − u − ω0 ) + πδ(ω − u + ω0 )} πδ(u) + ju −∞
∞
c Pearson Education Limited 2004
Glyn James: Advanced Modern Engineering Mathematics, Third edition =
277
jω π [δ(ω − ω0 ) + δ(ω + ω0 )] + 2 2 ω0 − ω 2
5 F{f (t) cos ωc t cos ωc t} =
F (jω + jωc ) + F (jω − jωc ) ∗ π [δ(ω − ωc ) + δ(ω + ωc )] 2 1 ∞ = [F (j(u + ωc )) + F (j(u − ωc ))] × 4 −∞ [δ(ω − u − ωc ) + δ(ω − u + ωc )] du 1 1 = F (jω) + [F (jω + 2jωc ) + F (jω − 2jωc )] 2 4
Or write as 1 f (t) (1 + cos 2ωc t) 2 etc.
6 H(t + 1) − H(t − 1) ↔ 2 sinc ω By symmetry 2 sinc t ↔ 2π(H(−ω + 1) − H(−ω − 1)) = 2π(H(ω + 1) − H(ω − 1))
7(a) Simple poles at s = a and s = b . Residue at s = a is eat /(a − b) , at s = b it is ebt /(b − a) , thus
1 at e − ebt H(t) f (t) = a−b 7(b) Double pole at s = 2 , residue is d lim s→2 ds
es t (s − 2) (s − 2)2 2
= te2t
So f (t) = te2t H(t)
c Pearson Education Limited 2004
278
Glyn James: Advanced Modern Engineering Mathematics, Third edition
7(c) Simple pole at s = 1 , residue e−t , double pole at s = 0 , residue
d lim s→0 ds
es t s+1
= (t − 1)H(t)
Thus f (t) = (t − 1 + e−t )H(t) 8(a)
∞
y(t) = −∞
Thus − sin ω0 t =
∞
h(t − τ )u(τ ) dτ
h(t − τ ) cos ω0 τ dτ = f (t), say
−∞
If u(τ ) = cos ω0 (τ + π/4)
∞
y(t) = −∞
∞
= −∞
h(t − τ ) cos ω0 (τ + π/4) dτ
h(t − (τ − π/4)) cos ω0 τ dτ = f (t + π/4) = − sin ω0 (t + π/4)
8(b) Since sin ω0 t = cos ω0 (t − π/2ω0 )
∞
y(t) = −∞
∞
= −∞
∞
= −∞
h(t − τ ) sin ω0 t dτ
h(t − τ ) cos ω0 (τ − π/2ω0 ) dτ h(t − (τ + π/2ω0 )) cos ω0 τ dτ
= f (t − π/2ω0 ) = − sin(ω0 t − π/2) = cos ω0 t 8(c) ejω0 t = cos ω0 t + j sin ω0 t This is transformed from above to − sin ω0 t + j cos ω0 t = j ejω0 t c Pearson Education Limited 2004
Glyn James: Advanced Modern Engineering Mathematics, Third edition 8(d) Proceed as above using e−jω0 t = cos ω0 t − j sin ω0 t 9 F(sgn(t)) = F(f (t)) = F (jω) =
2 , obvious jω
Symmetry, F (jt) =
2 ↔ 2/πf (−ω) = 2πsgn(−ω) jt
That is
1 ↔ −πsgn(ω) jt
or −
10
1 1 g(t) = − ∗ f (t) = − πt π
so
1 πt
∞
−∞
1 g(x) = π
↔ jsgn(ω)
1 f (τ ) dτ = t−τ π
∞
−∞
∞
−∞
f (τ ) dτ = FHi (t) τ −t
f (t) dt = FHi (x) t−x
So from Exercise 9 FHi (jω) = jsgn(ω) × F (jω) so |FHi (jω)| = |jsgn(ω)| |F (jω)| = |F (jω)| and arg(FHi (jω)) = arg(F (jω)) + π/2, ω ≥ 0 Similarly arg(FHi (jω)) = arg(F (jω)) − π/2, ω < 0 11 First part, elementary algebra. 1 FHi (x) = π
∞
−∞
t (t2
+
a2 )(t
− x)
c Pearson Education Limited 2004
dt
279
280
Glyn James: Advanced Modern Engineering Mathematics, Third edition 1 1 = 2 π x + a2
∞
−∞
a2 t xt dt + − t2 + a2 t − x t2 + a2 a = 2 x + a2
12(a)
∞
f (t) dt = FHi (x) −∞ t − x 1 ∞ f (a + t) dt H{f (a + t)} = π −∞ t − x 1 ∞ f (t) = dt = FHi (a + x) π −∞ t − (a + x) 1 H{f (t)} = π
12(b)
1 ∞ f (at) dt H{f (at)} = π −∞ t − x 1 ∞ f (t) = dt = FHi (ax), a > 0 π −∞ t − ax
12(c)
1 ∞ f (−at) dt H{f (−at)} = π −∞ t − x 1 ∞ f (t) =− dt = −FHi (−ax), a > 0 π −∞ t + ax
12(d)
H 1 = π
df dt
1 = π
∞
−∞
f (t) dt t−x
∞ ∞ f (t) f (t) + dt 2 t − x −∞ −∞ (t − x)
Provided lim f (t)/t = 0 then |t|→∞
H
df dt
1 = π
∞
−∞
f (t) 1 d dt = 2 (t − x) π dx =
∞
−∞
d FHi (x) dx
c Pearson Education Limited 2004
f (t) dt t−x
Glyn James: Advanced Modern Engineering Mathematics, Third edition 12(e) x π
∞
−∞
1 f (t) dt + t−x π
∞
1 f (t) dt = π −∞
∞
−∞
tf (t) dt t−x
= H{tf (t)} 13
From Exercise 10 FHi (t) = −
1 ∗ f (t) πt
So from Exercise 9, F{FHi (t)} = jsgn (ω) × F( ω) so F(jω) = −jsgn (ω) × F{FHi (t)}
Thus
∞
f (t) = −∞
1 1 FHi (τ )dτ = − π(t − τ ) π
∞
−∞
1 FHi (x)dx (x − τ )
14 fa (t) = f (t) − jFHi (t) F{fa (t)} = F (jω) − j(jsgn (ω))F (jω) = F (jω) + sgn (ω)F (jω) =
2F (jω), ω > 0 0, ω 0 , then F (jω) = π[δ(ω − ω0 ) + δ(ω + ω0 )] so F{fˆ(t)} = 2πδ(ω − ω0 ) whence fˆ(t) = f (t) − jFHi (t) = ejω0 t = cos ω0 t + j sin ω0 t and so FHi (t) = − sin ω0 t When g(t) = sin ω0 t, ω0 > 0 G(jω) = jπ[δ(ω + ω0 ) − δ(ω − ω0 )] and thus gˆ(t) = −jejω0 t = −j(cos ω0 t + j sin ω0 t) so H{sin ω0 t} = cos ω0 t ¯ = 0, t < 0 , then when t < 0 16 If h(t) ¯ e (t) = 1 h(−t), ¯ ¯ o (t) = − 1 h(−t) ¯ h and h 2 2 ¯ e (t) ¯ o (t) = −h i.e. h When t > 0 then
¯ e (t) = 1 h(t), ¯ ¯ o (t) = 1 h(t) ¯ h and h 2 2 ¯ e (t) ¯ o (t) = h i.e. h
That is ¯ o (t) = sgn (t)h ¯ e (t) ∀t h c Pearson Education Limited 2004
Glyn James: Advanced Modern Engineering Mathematics, Third edition Thus ¯ =h ¯ e (t) + sgn (t)h ¯ e (t) h(t) When h(t) = sin t H(t)
1 sin t, t > 0 2 ¯ e (t) = h − 1 sin t, t < 0 2 and since
¯ e (t) = 1 sin t ∀t sgn (t) h 2
the result is comfirmed. Then taking the FT of the result, ! ¯ e (t) ¯ ¯ e (jω) + F sgn (t)h H(jω) =H
2 ¯ e (jω) ∗H jω ! ¯ e (jω) + jH H ¯ e (jω) =H
¯ e (jω) + 1 =H 2π
When ¯ H(jω) =
∞
e−at e−jwt dt =
−∞
then H
a 2 a + ω2
or H Finally
H
at 2 a + t2
a 2 a + t2
=−
H
a2
ω + ω2
a2
x + x2
=−
x 1 = −x 2 + 2 a +x π
So
a ω − 2 2 +ω a + ω2
a2
t 2 a + t2
∞
−∞
=
a2
a a2 dt = a2 + t2 a2 + x2
a + x2
17(a) FH (s) =
∞
e−at (cos 2πst + sin 2πst) dt =
0
c Pearson Education Limited 2004
a + 2πs + 4π 2 s2
a2
283
284
Glyn James: Advanced Modern Engineering Mathematics, Third edition
17(b)
FH (s) =
18
T
(cos 2πst + sin 2πst) dt = −T
∞
∞
f (t) cos 2πst dt O(s) =
E(s) = −∞
f (t) sin 2πst dt −∞
E(s) − O(s) =
1 sin 2πst πs
∞
f (t)e−j2πst dt = F (js)
−∞
From 17(a)
whence E(s) =
FH (s) =
1 + πs 2 + 2π 2 s2
1 , 2 + 2π 2 s2
O(s) =
F ( s) =
1 − jπs 2 + 2π 2 s2
so
πs 2 + 2π 2 s2
agreeing with the direct calculation F (js) =
∞
e−2t e−j2πst dt =
0
19 H{f (t − T )} =
∞
−∞
1 − jπs 2 + 2π 2 s2
f (t − T ) cas 2πst dt
∞
f (τ ) [cos 2πsτ (cos 2πsT + sin 2πsT )+
= −∞
sin 2πsτ (cos 2πsT − sin 2πsT )] dt = cos 2πsT FH (s) + sin 2πsT FH (−s) 20 The Hartley transform follows at once since FH (s) = {F (js)} − {F (js)} =
1 1 δ(s) + 2 sπ
From time shifting 1 1 1 1 + cos πs δ(s) + FH (s) = sin πs δ(−s) − 2 sπ 2 sπ
c Pearson Education Limited 2004
Glyn James: Advanced Modern Engineering Mathematics, Third edition
285
cos πs − sin πs 1 δ(s) + 2 πs
=
21
∞
H{δ(t)} =
δ(t) cas 2πst dt = 1 −∞
From Exercise 18 it follows that the inversion integral for the Hartley transform is
∞
f (t) = −∞
FH (s) cas 2πstds
and so the symmetry property is simply f (t) ↔ FH (s) =⇒ FH (t) ↔ f (s) Thus H{1} = δ(s)
At once H{δ(t − t0 )}
∞
−∞
δ(t − t0 ) cas 2πst dt = cas 2πst0
By symmetry H{cas 2πs0 t} = δ(s − s0 )
22
1 = 2
1 1 FH (s − s0 ) + FH (s + s0 ) 2 2 ∞
−∞
f (t) {cos 2π(s − s0 )t + sin 2π(s − s0 )t
+ cos 2π(s + s0 )t + sin 2π(s + s0 )t} dt ∞ = f (t) cos 2πs0 t [cos 2πst + sin 2πst] dt −∞
= H{f (t) cos 2πs0 t} From Exercise 21, setting f (t) = 1 H{cos 2πs0 t} =
1 (δ(s − s0 ) + δ(s + s0 )) 2
c Pearson Education Limited 2004
286
Glyn James: Advanced Modern Engineering Mathematics, Third edition
also H{sin 2πs0 t} = H{cas 2πs0 t} − H{cos 2πs0 t} 1 1 = δ(s − s0 ) − (δ(s − s0 ) + δ(s + s0 )) = (δ(s − s0 ) − δ(s + s0 )) 2 2 23
t
π 2
(1 + τ 2 )−1 dτ = tan−1 t +
−∞
Thus −1
F{tan
t} = F
=F
∞
−∞
t
2 −1
(1 + τ )
dτ
−∞
(1 + τ 2 )−1 H(t − τ )dτ
−F
−F
π
2 π
2
π 1 =F ∗ H(t) − F 1 + t2 2 1 π 1 =F + πδ(ω) − × 2πδ(ω) × 2 1+t ω 2 But from Exercise 1
F e−|t| =
and so by symmetry
F
whence −1
F tan and so
24
!
1 1 + t2
−|ω|
t = πe
×
2 1 + ω2
= πe−|ω|
π 1 + πδ(ω) − × 2πδ(ω) jω 2
! πe−|ω| F tan−1 t = jω
1 1 [1 + cos ω0 t] ↔ [2πδ(ω) + πδ(ω − ω0 ) + πδ(ω + ω0 )] 2 2
and H(t + T /2) − H(t − T /2) ↔ 2T sinc ω
so F {x(t)} =
∞
−∞
2T sinc (ω − u)
c Pearson Education Limited 2004
Glyn James: Advanced Modern Engineering Mathematics, Third edition 1 × πδ(u) + (δ(ω − ω0 ) + δ(u + ω0 )) du 2 1 1 = T sinc ω + sinc (ω − ω0 ) + sinc (ω + ω0 ) 2 2 25
287
3
1 2πνr H(ν) = f (r) cas 4 r=0 4 1 [f (0) + f (1) + f (2) + f (3)] 4 1 H(1) = [f (0) + f (1) − f (2) − f (3)] 4 1 H(0) = [f (0) − f (1) + f (2) − f (3)] 4 1 H(0) = [f (0) − f (1) − f (2) + f (3)] 4
H(0) =
so
1 1 1 T= 4 1 1
1 1 1 1 −1 −1 −1 1 −1 −1 −1 1
By elementary calculation T2 = 1/4T and if T−1 exists, T−1 = 4T . Since T−1 T = I , it does. Then
1 1 T−1 H = 1 1
1 1 1 H(0) f (0) 1 −1 −1 H(1) f (1) = −1 1 −1 H(2) f (2) −1 −1 1 H(3) f (3)
c Pearson Education Limited 2004
View more...
Comments