EMTP RV

Share Embed Donate


Short Description

fyi...

Description

An introduction to EMTP-RV

August 2012

The simulation of power systems has never been so easy!

Power system simulation tools Short circuit calculation : CYME 5.0 (CYMFAULT), ETAP Calculations based on sequence data Suitable for high scale networks Frequency range : 50/60 Hz

DC

Load-flow calculation : CYME 5.0 (CYMFLOW), ETAP, PSLF, … Calculation on 3-phase networks Mainly on balanced networks Frequency range : 50/60 Hz

50/60 Hz Transient Stability programs : Eurostag, PSS/E, DigSilent Suitable for high scale networks Simplified modeling of HVDC and FACTS components Frequency range : 0.1Hz – 1kHz

kHz, MHz EMTP type programs : EMTP-RV, ATP, PSCAD, SimPowerSystems Not suitable for high scale networks Detailed modeling of equipments Frequency range : 0.1 Hz – MHz All software can handle transient study related to electromechanical time constants but EMTP-RV can handle electromagnetics time constant which are significantly smaller (faster transients).

EMTP-RV, the Restructured Version • Written from scratch using mostly Fortran-95 in Microsoft Visual Studio environment. • Include all the EMTP96 functionalities and much more: – 3-phase unbalanced load-flow – Scriptable user interface – New models : machines, nonlinear elements… – No topological restrictions • New numerical analysis methods : – Newton-raphson solution method for nonlinear models – New three-phase load-flow – Simultaneous switching options for power electronics applications – Open architecture coding that allows users customization (ex : connection with user defined DLL)

EMTP-RV benefits: • Robust simulation engine • Easy-to-use, drag and drop interface • Unmatched ease of use • Superior modeling flexibility • Customizable to your needs • Competitive pricing

Customizable to your needs • Superior modeling flexibility – Can’t find exactly what you’re looking for in the device library? Simply add your own user-defined device. – Scripting techniques provide the ability to externally program device data forms and generate the required Netlists. A symbol editor is used to modify and customize device drawings. Scripting techniques are also used for parametric studies. – EMTPWorks also lets the user define any number of subcircuits to create hierarchical designs.a

The software package EMTP-RV Package includes: • EMTP-RV : computational engine • With EMTP-RV, complex problems become simple to work out.

A powerful and super-fast computational engine that provides significantly improved solution methods for nonlinear models, control systems, and user-defined models. The engine features a plug-in model interface, allowing users to add their own models.

• EMTPWorks : Graphical User Interface EMTPWorks, the user-friendly and intuitive Graphical User Interface, provides top-level access to EMTP-RV simulation methods and models. EMTPWorks sends design data into EMTP-RV, starts EMTP-RV and retrieves simulation results. An advanced, yet easy-to-use graphical user interface that maximizes the capabilities of the underlying EMTPRV engine. EMTPWorks offers drag-and-drop convenience that lets users quickly design, modify and simulate electric power systems. A drawing canvas and the ability to externally program device data allows users to fully customize simulations to their needs. EMTPWorks can be used for small systems or very large-scale systems.

• ScopeView: the Output Processor for Data display and analysis ScopeView displays simulation waveforms in a variety of formats. With EMTPWorks, users can dramatically reduce the time required to setup a study in EMTP-RV.

Key features • EMTP-RV Key features - The reference in transients simulation - Solution for large networks - Provide detailed modeling of the network component including control, linear and non-linear elements - Open architecture coding that allows users customization and implementation of sophisticated model - New steady-state solution with harmonics - New three-phase load-flow - Automatic initialization from steady-state solution - New capability for solving detailed semiconductor models - Simultaneous switching options for power electronics applications

The GUI key features EMTPWorks Key features •

Object-oriented design fully compatible with Microsoft Windows



Powerful and intuitive interface for creating sophisticated Electrical networks



Drag and drop device selection approach with simple connectivity methods



Both devices and signals are objects with attributes. A drawing canvas is given the ability to create objects and customized attributes



Single-phase/three-phase or mixed diagrams are supported



Advanced features for creating and maintaining very large to extremely large networks



Large number of subnetwork creation options including automatic subnetwork creation and pin positioning. Unlimited subnetwork nesting level



Options for creating advanced subnetwork masks



Multipage design methods



Library maintenance and device updating methods

EMTPWorks: EMTP-RV user interface

EMTPWorks: EMTP-RV user interface Object-oriented design fully compatible with Microsoft Windows Single-phase/three-phase or mixed diagrams are supported Large collection of scripts for modifying and/or updating almost anything appearing on the GUI

5

PLOT

x 10

Substation_A/[email protected]@1

4

Substation_A/[email protected]@1 Substation_A/[email protected]@1

3

2

y

1

0

-1

-2

-3

-4 6

6.01

6.02

6.03

6.04

6.05 time (s)

6.06

6.07

6.08

6.09

6.1

ScopeView ScopeView is a data acquisition and signal processing software adapted very well for visualisation and analysis of EMTP-RV results. It may be used to simultaneously load, view and process data from applications such as EMTP-RV, MATLAB and Comtrade format files.

Multi-source data importation

Cursor region information

ScopeView

Function editor of ScopeView

Typical mathematical post-processing

A versatile program EMTP-RV is suited to a wide variety of power system studies, whether they relate to project design and engineering, or to solving problems and unexplained failures. EMTP-RV offers a wide variety of modeling capabilities encompassing electromagnetic and electromechanical oscillations ranging in duration from microseconds to seconds.

A powerful power system simulation software EMTP-RV’s benefits are: Unmatched ease of use Superior modeling flexibility Customizable to your needs Dynamic development road-map Prompt and effective technical support Reactive sales teams

A powerful power system simulation software EMTP-RV’s strengths:

EMTP-RV version 2.4 new features: •

New and advanced HVDC models, including MMC-HVDC



New wind generator models, including average-value model



New control system diagram DLL capability



New Simulink/Real-time Workshop interface DLL

EMTP-RV version 2.4 improvements: Workshop interface DLL Improvements in synchronous machine model including a new black start option Improvements in the asynchronous machine model Capability to solve multiple frequency load-flow Improved documentation and various other improvements New application examples

Power system studies EMTP-RV is suited to a wide variety of power system studies including and not limited to: • Power system design

• Complete network analysis

• Power system stability & load modeling

• Ferroresonance

• Control system design

• Steady-sate analysis of unbalanced system

• Motor starting

• Distribution networks and distributed generation

• Power electronics and FACTS

• Power system dynamic and load modeling

• HVDC networks

• Subsynchronous resonance and shaft stresses

• Lighting surges

• Power system protection issues

• Switching surges

• General control system design

• Temporary overvoltages

• Power quality issues

• Insulation coordination

• Capacitor bank switching • And much more!

A versatile program Complete system studies: •Load-flow solution and initialization of synchronous machines •Temporary overvoltages to network islanding •Ferroresonance and harmonic resonance •Selection and usage of arresters •Fault transients •Statistical analysis of overvoltages •Electromechanical transients

Applications • Power system design • Power systems protection issues • Network analysis: network separation, power quality, geomagnetic storms, interaction between compensation and control components, wind generation • Detailed simulation and analysis of large scale (unlimited size) electrical systems • Simulation and analysis of power system transients: lightning, switching, temporary conditions • General purpose circuit analysis: wideband, from load-flow to steadystate to time-domain (Steady-state analysis of unbalanced systems) • Synchronous machines: SSR, auto-excitation, control • Transmission line systems: insulation coordination, switching, design, wideband line and cable models

Applications • Power Electronics and FACTS (HVDC, SVC, VSC, TCSC, etc.) • Multiterminal HVDC systems • Series compensation: MOV energy absorption, short-circuit conditions, network interaction • Transmission line systems: insulation coordination, switching, design, wideband line and cable models • Switchgear: TRV, shunt compensation, current chopping, delayedcurrent zero conditions, arc interaction • Protection: power oscillations, saturation problems, surge arrester influences • Temporary overvoltages • Capacitor bank switching • Series and shunt resonances • Detailed transient stability analysis • Unbalanced distribution networks

Simulation options Load-flow Steady-state Time-domain Frequency scan

Simulation options • Load-Flow solution – The electrical network equations are solved using complex phasors. – The active (source) devices are only the Load-Flow devices (LF-devices). A load device is used to enter PQ load constraint equations. – Only single (fundamental) frequency solutions are achievable in this version. The solution frequency is specified by ‘Default Power Frequency’ and used in passive network lumped model calculations. – The same network used for transient simulations can be used in loadflow analysis. The EMTP Load-Flow solution can work with multiphase and unbalanced networks. – The control system devices are disconnected and not solved. – This simulation option stops and creates a solution file (Load-Flow solution data file). The solution file can be loaded for automatically initializing anyone of the following solution methods.

Simulation options • Steady-state solution – The electrical network equations are solved using complex numbers. This option can be used in the stand-alone mode or for initializing the timedomain solution. – A harmonic steady-state solution can be achieved. – The control system devices are disconnected and not solved. – Some nonlinear devices are linearized or disconnected. All devices have a specific steady-state model. – The steady-state solution is performed if at least one power source device has a start time (activation time) lower than 0.

Simulation options • Time-domain solution – The electrical network and control system equations are solved using a numerical integration technique. – All nonlinear devices are solved simultaneously with network equations. A Newton method is used when nonlinear devices exist. – The solution can optionally start from the steady-state solution for initializing the network variables and achieving quick steady-state conditions in time-domain waveforms. – The steady-state conditions provide the solution for the time-point t=0. The user can also optionally manually initialize state-variables.

Simulation options • Frequency scan solution – This option is separate from the two previous options. All source frequencies are varied using the given frequency range and the network steady-state solution is found at each frequency.

Build-in libraries and Standard models

available in EMTP-RV

Built-in librairies EQUIPMENT

FEATURES

advanced.clf

Provides a set of advanced power electronic devices

Pseudo Devices.clf

Provides special devices, such as page connectors. The port devices are normally created using the menu “Option>Subcircuit>New Port Connector”, they are available in this library for advanced users.

RLC branches.clf

Provides a set of RLC type power devices. .

Work.clf

This is an empty library accessible to users

control.clf

The list of primitive control devices.

control devices of TACS.clf

This control library is provided for transition from EMTP-V3. It imitates EMTP-V3 TACS functions.

control functions.clf

Various control system functions.

control of machies.clf

Exciter devices for power system machines.

flip flops.clf

A set of flip-flop functions for control systems.

hvdc.clf

Collection of dc bridge control functions. Documentation is available in the subcircuit.

lines.clf

Transmission lines and cables.

machines.clf

Rotating machines.

meters.clf

Various measurement functions, including sensors for interfacing control device signals with power device signals.

meters periodic.clf

Meters for periodic functions.

nonlinear.clf

Various nonlinear electrical devices.

options.clf

EMTP Simulation options, plot functions and other data management functions.

phasors.clf

Control functions for manipulating phasors.

sources.clf

Power sources.

switches.clf

Switching devices.

symbols.clf

These are only useful drawing symbols, no pins.

transformations.clf

Mathematical transformations used in control systems.

transformers.clf

Power system transformers.

Standard models Library

RLC branches

Control

Control of Machines Flip flops Lines

Models R, L, C branches PI circuits Loads State space block Gain, constant Integral, derivative Limiter, Sum Selector Delay State-space block PLL… IEEE excitation systems Governor / turbine Flip-flop D, J-K, S-R,T CP (distributed parameters) FD (=CP + frequency dependence) FDQ (=FD for cables) WB (phase domain) Corona

Standard models Library

Machines

Meters Meters periodic

Nonlinear

Sources

3 1

08/06/2014

Models Induction Machine (single cage, double cage, wound rotor) Synchronous Machine Permanent Magnet Synchronous Machine DC machine 2-phase machine Current, voltage, power meters RMS meters and sequence meters Non linear resistance Non linear inductance Hysteresis reactor ZnO arrester SiC arrester AC, DC voltage sources AC, DC current sources Lightning inpulse current source Current and voltage controlled sources Load-flow bus

Standard models

Library

Switches

Transformations

Transformateurs

Advanced

Models Ideal switch Diode Thyristor Air gap 3-phase sequence 3-phase dq0 Based on single phase units : DD, YY, DY, YD, YYD… Topological models : TOPMAG Impedance based : BCTRAN, TRELEG Frequency dependent admittance matrix : FDBFIT Variable load SVC STATCOM

Built-in librairy of examples

Easily find what you’re looking for by browsing or using a simple index.

Typical designs Modeling Electrical Systems with EMTP-RV

A

B

C

D

E

F

G

H

I

J

K

L

Insulation Coordination of a 765 kV GIS 1

- Backflashover Case - Impulse Footing Resistance of the stricken Tower may be represented by Ri = f(I) - Usage of ZnO model based on IEEE SPD WG - Frequency-Dependant Line modeling

200 kA 3/100 us Lightning Stroke

2

I/O FILES

MPLOT

foudre_30km_ex2.lin

foudre_300m_ex1.lin

2 LINE DATA LIGHTNING_STROKE

Network

LINE DATA

model in: foudre_30km_ex2_rv.pun

765 kV Line Tower_top + VM ?v

Air-Insulated Substation

Gas-Insulated Substation

model in: foudre_300m_ex1_rv.pun

Air-Insulated Substation

?v + VM Trans_c ?v

SOURCE_NETWORK BUS_NET

735kV /_0

a b

+

+

+

+

+

+ +

c

300 m

bushing

?v

+

300 m

b +

3

?v a

CB_a + ?v CB_b VM + ?v CB_c VM +

VM

c

+ VM Trans_a

+ + +

c

+

30 km

VM

1M

+

+

cond_c VM + ?v

a b

+ VM Trans_b

Open Circuit-Breaker

?v/?v/?v

+

3

1

Simulation options

+

1M

1M

+ ?i

C3

+

48

+ L12

4nF

52

+

+

+

+

+ +

+

+ +

?i

52 m

+

+

+

L3

48 m

C2

4

?i + L11

+ ?i

+ C1

L10

?i +

25 m

?i

+

L1

TOWER3 Part=TOWER_model1ohm

+

TOWER2 Part=TOWER_model15_f

+

To eliminate undesirable reflexions

TOWER1 Part=TOWER_model15_1

L2

4

+

5

5

0.1nF

Gas-filled CVT 588 kV Zno Bushing

A

B

C

D

E

F

G

H

4nF

4nF

+

0.1nF

0.1nF

Inductive VT

I

Gas-filled Bushing J

Power 588 kV Zno Transformer K

L

A

B

C

D

E

1

Field Recording (10-08-1986)

F

G

H

Validation of the Secondary Arc M odel with IREQ Laboratory Tests

EMTP-RV Simulation (05-22-2005)

2

1

2 R2 + ?i

SW1 + 100ms /200ms /0

+

C2

+

0.7,13Ohm

C3

1.60uF

Secondary arc

300 RL1 +

+

3 1.05uF

0.2

AC1

+

66.4k VRMS /_0

+

+

-

0.2

R3

DEV1

3

Sec _ARC_a R1

4

4

Primary Arc: 5 kA eff Secondary Arc: 40 A Wind Speed: 9.7 km/h Secondary Arc Duration: 1.04 sec. 315 kV insulator string, l=2.3 m

5

5

I/O FILES

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

1

1

Switching of A 420 kV Three-Phase Shunt-Reactor

I/O FILES

State of the art simulation introducing: - A realistic model of a three-phase shunt reactor taking into account the asymetrical couplings of the magnetic circuit; - A realistic circuit-breaker model based on the well-known Cassie - Mayr modified arc equations.

2

3

2

3

4

4 +

+ 0. 5

1. 6nF

+

0. 5

+

1uH

1uH

b

in

in

ou t

0. 05nF

+

+

b

+

CB_ARC_a

+

CB_ARC_a

C9

1. 15nF

+

6

20 m

DEV4

Simplifie d Arc M ode l ba s e d on M a y r' s & Cas s ies e qua tions

ou t

0. 375nF

+

DEV3

Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ies e qua tions

+

25uH

10

5

m+1V M ?v

1. 6nF

+

b

0. 5

+

+

1uH

1uH

DEV5

in

4nF

DEV6

Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ies e qua tions c

a

1. 6nF

+

+

6

+ C11

Simplifie d Arc M ode l ba s e d on M a y r' s & Cas s ies e qua tions

ou t

in

ou t

1. 15nF

c

CB_ARC_a

+

CB_ARC_a

c

Line CVT

+

C13

+

4nF

405kVRM SLL / _- 30

0. 5

+

+

200nF

+

+

+

+

AC1

0. 75nF

+ 30m H

1uH

200k

65 m

+

+ 0. 8

+

1uH

0. 75nF

+

+

0. 5

+

+

3000

+

+

+ 1. 6nF

+

+

a

CB_ARC_a C8

0. 5

0. 75nF

+

Line

1. 6nF

b

R12

0. 75nF

0. 05nF +

350

R10

ou t

+

CB_ARC_a

in

0. 375nF

Simplifie d Arc M ode l ba s e d on M a y r' s & Cas s ies e qua tions

ou t

5

BUS24

DEV2

Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ies e qua tions in

c

a

200k

DEV1

BUS23

+

+

a

1. 6nF

+

0. 05nF

C10

7

7

Network

Substation

420 kV Busbar

CT

Double-break 420 kV SF6 C.-B.

420 kV Busbar

CVT

Three-phase 420 kV Shunt-Reactor

8

8

Three-Phase 420 kV 100 MVARS Shunt Reactor F= 0.548 Wb, N=1409 turns, L1=5.617 H For mu (50 Hz) = 0.06 H/m: Xac=Xca= 9 Ohms Xba=Xbc=7 Ohms Xab=14 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xcc=1741 Ohms

9 g = 12 mm

2900 mm

x x= 710 mm

1 0

9

For mu (700 Hz) = 0.01 H/m:

2x

1 0

Xac=Xca= 54 Ohms Xba=Xbc=42 Ohms Xab=84 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xcc=1741 Ohms

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

M W,M X,PF

SM ?m +

AVR&Gov (pu)

1 3 .8 k V 2 0 0 M VA

CP

+

1

3

80

IN

80 CP2

R3

SM

?i

Np, Nq Kp, Kq

?m

Ou t

1

DEV4

SM 9

1 3 .8 /2 3 0

AVR_ Go v _ 9

5 /5 .1 /0 5 /5 .1 /0 1 E1 5 /1 e 1 5 /0

BUS1

162 M W

+

CP2

290

50 +

+

CP

+

2

60 Hz only

1

v 193.1

m _ Su b s _ B_ 2 3 0 k V + VM

SVC_1 CP2

3

2

1

1 P

40%

3 5 0 0 /2 3 0 /5 0

1

R1 ?i

7

Q P +

P_ L o a d

Q

+

2000uF p3

pF=88%

s c ope Q_ L o a d s c ope

+

+

0 .0 5 u F

1600 M W 240 M X

96uF

+/- 400 M vars STATCOM i n Substation B

SM 4

6

+

2 3 0 /2 6 .4 0 .0 1 3 0 .2 2 Oh m

P

Se r_ C_ 2

+

SM

200 M W

+

2 1 +

+

1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0

3

+

1

220 km

+

+

s c ope

P_ Ex c h

96uF

Ou t2

?

In 2

2

140 km

+

3

Ou t1

Q_ Ex c h s c ope

p2

?v 15uF

+

1

?m

0 .3 u F

VM

Su b s ta ti o n _ C

Su b s ta ti o n _ B

Ou t2

140 km

2 SM 3

In 1

Ou t1

Su b s ta ti o n _ A

In 2

?m

IN AVR&Gov (pu)

+

Se r_ C_ 1 In 1

SM 2

AVR_ Go v _ 4

+

+

1

-1 /1 E1 5 /0

SM

Ou t

5 0 0 /2 3 0 /5 0 2

220 km

+

7

40%

3

SM IN AVR&Gov (pu)

280 km

1

?m

AVR&Gov (pu)

m _Load_230k V

Q

2

+

Ou t

2 x 240 M W s c ope Pt

5 0 0 /1 3 .8 /1 3 .8

SM 1

IN

Ou t

1 3 .8 /2 3 0

p1

?m

AVR_ Go v _ 2 AVR_ Go v _ 3

2

3 ?m

s c ope Qt

SM IN AVR&Gov (pu)

5

5 0 0 /2 3 0 /5 0

5 0 0 /2 3 0 /5 0

1 3 .8 k V 4 0 0 M VA

Ou t

6

L

+

76 M W

1300 M W AVR_ Go v _ 1

C

110

48uF

+

SM 8

Np, Nq Kp, Kq

60 Hz only

+/- 150 M X SVC

2

SM Ou t

900 M W

? v /? v /? v

48uF

AVR_ Go v _ 8

4

+

1 Z Ds it

Va ,Vb ,Vc

1 3 .8 k V 1 2 5 M VA 1

Z Ds it

DEV5

MW,MX,PF

Kp, Kq

Np, Nq

60 Hz only

Va,Vb,Vc

SW6 + -1/1E15/0

M W,M X,PF

CP

6 9 /2 2 5

DEV2

AVR&Gov (pu) IN

R5 ?i

2

180 M W

4

5

2

230k V 1 2 0 0 0 M VA

+

Np, Nq

SM 1 0

8250 M W

1 4 4 .8 +

240 M W

Kp, Kq

60

9000 M W

Z Ds it

M W,M X,PF

60 Hz only

MW,MX,PF CP

Out

AVR&Gov (pu)

?m 2 +

45 M W

DEV3

+

9 6 .5

Va ,Vb ,Vc

Yg Yg _ n p 5

1

1 2

CP

1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0

Z Ds it

2

BUS5

+

Q p7

s c ope P_ Va r_ s p e e d

1

DEV1

Va,Vb,Vc

?

2 3 0 /2 6 .4

C1 2 2

0 .2 5 u F

IN

Out

AVR_Gov _5

av r_gov ernor_pu

AVR&Gov (pu) IN

?m

60 Hz only

Va ,Vb ,Vc

BUS7

+ C8

Q_ Va r_ s p e e d s c ope

3 69/0.69

132 M W

BUS9

0.13 2.2Ohm

0 .1 ,0 .5 Oh m

v

1

AVR_ Go v _ 1 0

1

+

Sq Ca g e _ 4

3 x 1M W Doubly-fed with PWM controller (Variable speed)

Out

AVR&Gov (pu)

IN

?m 1 2

2

2 3 0 /7 1 0 .2 5 u F

1

6 9 /3 .3

M

Z Ds it

Q

p6

+ 2 ASM S

1 3 .8 /2 3 0

Yg Yg _ n p 4 P

RL 1

0 .2 ,1 Oh m

6 9 /3 .3

L

Large Gen.-Load Center

1 3 .8 k V 2 0 0 M VA

+

+

+

1 3 .8 /2 3 0

Qt_ Wi n d Ge n s c ope

R4 +

0 .0 4 ,0 .2 Oh m

1

ASM S

K

Np, Nq Kp, Kq

1 3 .8 /2 3 0

Pt_ wi n d Ge n s c ope

50 2

SM 5

VM

1

6 9 /3 .3

SM 6

J

? v /? v /? v

0 .1 ,0 .5 Oh m

+

2

1 3 .8 k V 5 5 0 M VA

+ -1/1E15/0

2

520 M W

SM 7

I

CP2

+

+

ASM S

77 M W WIND IM GENERATION (Constant speed)

m _ 6 9 k V_ wi n d

1

6 9 /3 .3

1 3 .8 k V 5 0 M VA

1

2 ASM S

P

4 x (10 X 2 MW) induc. machine pf 0.85

Q_ Sta t_ 3 0 s c ope

SM

P Q

p4

40 M W

Sq Ca g e _ 1

H AVR_Gov _6

+/- 30 MVARS STATCOM

1

G

SM

F

Out

E

DEV6

AVR_Gov _7

D

AVR&Gov (pu)

C

IN

B

SM

A

8 1

1

8 2 5 .5 /1 2

+

Va ,Vb ,Vc

L a rg e _ i n d

15%

Va ,Vb ,Vc

Np, Nq Kp, Kq

M W,M X,PF

60 Hz only

Sm a l l _ i n d

30%

Fl u o _ l i g h t

20%

Va ,Vb ,Vc

Np, Nq Kp, Kq

S

ASM

S

ASM

+

6 .6 k V 7 7 0 .M VA ?m

3700uF

?m

9

M W,M X,PF

2

2 12k V 3 8 5 .M VA

Si m u l a ti o n o p ti o n s 1 4 1 0 .u F

M W,M X,PF

2 5 .5 /6 .6

60 Hz only In c a n _ l i g h t

10%

Np, Nq Kp, Kq

2 .2 6 3 +

I/O FIL ES

60 Hz only Co l o r_ Tv

5%

9

R2

20%

1560 M W Res.-Com.-Ind. Load A

B

C

D

E

F

G

H

I

J

K

L

M

A

B

C

D

E

-

Windmill Power Generation In a weak Power System

1

12 x 2 M VA Doubly-fed with PWM controller (Variable Speed)

2

Realistic Realistic Realistic Realistic Dynamic

F

Wind Data; DFIG Modeling; Network & Load Models Harmonic Distorsions & Performances

20 MW

1

2

WIND2 P_Gr2

v

scope Q_Gr_2 scope

Delay !h

P

11 MW

Np,Nq Kp,Kq

LL-g 6 cycles fault

Va,Vb,Vc

VLOADg1

SW1

1

+

P_netw

scope Q_netw scope

MW,MX,PF

Q_Gr1

+

p2

+

69/13.8

Weak Local 69 kV Network (150 MVA)

+

40nF m1

1

Y gD_2

+ VM

2 69/6.6

5nF

Q

scope

P

DFIG_1

5nF C4

C3

MPLOT

?v

1

Y gD_1

4

?m

2

8 MW

SM

MW,MX,PF

in

S

ASM1

+

ASM

out

SM1

AVR

AVR_SM1

5

0.1 1Ohm

13.8kV 10MVA

170uF

6.6kV 5000hp

?m

6.5 MW

Va,Vb,Vc VLOAD2

5

Np,Nq Kp,Kq

50/60 Hz

Small Industrial load I/O FILES

A

3

v

Y gD_3

+

+

40nF

1uF

WIND1

scope

P_Gr1

69/0.69

+ 30

p1

1

+

8 MW

Y gD_4

?i

32Ohm

69kV /_0

4

69/0.69

1

100 Q

+

+

+ 4

+

2

5/5.1/0 5/5.1/0 1E15/1E15/0

+

+ P

5 x 2 M VA Doubly-fed with PWM controller (Variable Speed)

p3

DFIG_2

Z Dist

0.4k

Q

+

3

50/60 Hz

2

15 MW

B

C

D

E

F

A

B

C

D

E

F

G

H

Insulation Coordination of a 150 kV GIS 1

1

+

0.1nF

T25 +

0.1nF

T15

BB1 +

+

CP

+

CP

1.1

+

CP

1.1

1.1

+

CP

+

CP

1.1

CP

1.1

1.1

BB2

+

+

Q1

+

Q2

+

+

CB

Q1

Q2

2

m6 +VM ?v

+

CP

2.3

+ +

+

CP

CB

1.75

CP

1.75

CP

1.75

+

CB

CB

L1

+

+

+

+

1.6

1.6

CP

1.6

CP

1.6

CP

+

+

CP

17.4

+

+

+

+

CP

m3 +VM ?v

3000

CP

10.6

CP

ZnO +

?i

MCOV=112 kV

+ +

T5

3850

CP

3850

+

30

3

+

T5

2nF

TRANS2

2nF

TRANS3 4

m5 +VM ?v

CABLE1

CABLE3

CABLE2

GW

CP

R1 + 150 +

5 170kVRMSLL /_180

m4 +VM ?v

+ ZnO1

AC1

L3

300

CP

3uH

+

300

reference ZnO +

g1

MCOV=112 kV

m 1 . 1

2.9335cm

m 1 . 1

m 1 . 1

5

2.6225cm

?i

R4 + 450

+

+

?vi>S

R3 + 450

280000

GW

280000

ZnO +

?i +

+ CP

ZnO3

TRANS1

2nF

T1

0.1nF

+

m2 +VM ?v

MCOV=112 kV

Tower 4

L2 3uH

+ CP

ZnO2

m1 +VM ?v

T1

+

3uH

11.1

R2

T1

0.1nF +

+

T5

DEV6

T1

+

+

+

20

1.6

T1

CP

1.6

0.1nF

T1

+

3

T1

CP

Backflashover at 300 m from the substation on the 4th connected 150 kV line

1.6

CP

CP

+

+

+

+

+

CP

1.75

CP

Q2

CP

1.1

Q2

CB

1.75

+ CP

1.75

+ CP

1.75

CB

CB

Q1

+

CP

1.1

+

Q1

+

Q2

2

+

CP

1.1 +

Q1

+

Q2

+

CP

1.1

+

+

CP

1.1

+

Q1

+

+

Q2

+

+

CP

1.1

+

+

Q1

1.254cm

three 150 kV lines

0.25m 0.50m

6 A

B

C

D

E

6 F

G

H

A

B

C

D

E

F

G

H

I

J

K

L

M

N

TRV STUDY AT A 345 kV SUBSTATION

1

1 P=-491.5MW Q=37.4MVAR Vsine_z:VwZ3

LF LF3 Phase:0 0.99/_-1.0

UNIT 1 806.5 MVA

+

P=676MW V=23.712kVRMSLL s184a Vsine_z:VwZ6

LV

0.02975Ohm

HV

25nF

+

450'

DEV3

25nF

+ 30

CCPD

+

R5-7

(3)

Phase:0

50nF

CCPD

0.1nF

f=8.77 kHz

25nF

2

+ +

7.5nF

R6-7

+

+

+ R24

3

0.02975Ohm

25nF

55'

+

7.5nF

3

150' + +

+

+

33'

110'

+

33' CB_2DISC

33' CB_2DISC

150'

(4) R1-5

+

0.02975Ohm

61

55'

1.00/_3.5

1.00/_3.5

150'

0.02975Ohm

LF LF6

22.8 kV Delta 345/1.732 kV Yn s184

VwZ3

279171.940927 /_-5 279171.940927 /_-125 279171.940927 /_115 PQbus:LF3

0.1nF

+

+

150'

29.75 +

+

+

+ 0.00119

29.75 +

+

+

+ VwZ6

2500

29.75 +

+

+

900

+

29.75 +

+

2

R8 +

FD

788

+

20136 /_-12 20136 /_-132 20136 /_108 PVbus:LF6

+

View Steady -State

R1-11

R6-11

4

4

+

+

33'

33'

CB_2DISC

+

+

+

33'

33'

33'

CB_2DISC

CB_2DISC

110' +

+

R2A-12

R2A-5

R6-12

0.1nF

113 5

+

+

5

+

C15

75'

+

450'

+ 2nF

150'

300' +

+

Start & Standby Xformers

90'

+

33'

75'

+

0.1nF +

+

+

33'

33'

+

+

33'

33'

33' +

33'

+

CB_2DISC

Start & Standby Xformers

+

90'

6

1 +

+

23.9 kV Delta 346.4/1.732 kV Yn

0.1nF

0.3nF +

+

7

+

33' CB_2DISC

VM

CB_2DISC

R2G-5

?v m1

?v m2

VM

+

33'

R2G-6 1.03/_0.8

CP

FD

(2) +

+ + 345/161/15

Slack: 343.27kVRMSLL/_0 Vsine_z:VwZ5

+ VwZ4 R10 +

0.1uF 450 + R6

345/161 kV Autotransformer

9

+

VwZ5

1.3e+5 /_-12 1.3e+5 /_-132 1.3e+5 /_108 PQbus:LF4

30

2.5nF

LF5 Phase:0 +

+ R5

LF4 Phase:0 27.39MW 11.01MVAR

+

+ LF

2.8e+5 /_-7 2.8e+5 /_-127 2.8e+5 /_113 Slack:LF5

50nF

+

30

LF

1.01/_0.3

3

R9 + 1020

P=-204.9MW Q=-29MVAR Vsine_z:VwZ4

2 1

0.99/_0.0

Three-Phase-to Ground Fault Location

8

1.nF

1.nF

+

8

9

0.1uF 1.nF

+

33'

(1)

+

+

150' +

17.85

25nF

CP

25nF

2.5nF

+

25nF

7

345/161 kV Autotransformer

327.5/161/13.8

7.5nF

Inductiv e VT 110'

25nF

55'

LF

VM

+

+

+

+

?v m3

+

19707 /_-12 19707 /_-132 19707 /_108 PVbus:LF2

+

450'

3

+

2

HV

1.nF

+

300' LV

+

s155

0.0281Ohm

+

+

+

0.0281Ohm

+

+

0.0281Ohm

+

+

0.0281Ohm

+

0.001124

CCPD

15.81

+

DEV19

+

+

+ VwZ2

R17

90'

0.1nF

LF2 Phase:0

2500

55'

110'

+

450' C13

+

+

2nF

28.1

220'

+

LF

28.1

CB_2DISC

+

28.1

CB_2DISC

+

220'

28.1

+

+

UNIT 2 1110 M VA

P=850MW V=23.712kVRMSLL s155a Vsine_z:VwZ2

6

+

50nF

1 0

A

B

C

D

E

F

G

H

I

J

K

L

M

N

1 0

A

B

C

D

E

F

G

H

I

Wind

1

200 MW Wind Farm Integration Study

1 DYg_10 2 1 0.69/34.5

+ RL

PI9

DEV2 Wind

v

DYg_7 2 1

2

2

PI8

Wind

RL

+/- 80 MVars SVC

+

0.69/34.5

DYg_8 2 1 SVC_1 Unique top

50/60 Hz

0.69/34.5

Np,Nq Kp,Kq

1x PI7

2 1

138 kV Network

3

Wind

VLOAD1 +

Va,Vb,Vc

3x

RL

3

DYg_1 2 1

MW,MX,PF

0.69/34.5

+

50.00

CP

m1 +VM ?v

1 SW1 + -1|1.1|0

3 138/34.5/13.8 ?

SW2 + 1.6|1.7|0

SW4 + 1.6|1.7|0

Wind

+

CP

PI1

SW3 + -1|1.1|0

50.00

PI4

C2

4

DYg_2 2 1

+ RL

DEV1 v

+

Wind RL

0.69/34.5

PI2

+

Wind

DYg_4 1 2

RL

SW5 + 1|1E15|0 1|1E15|0 1e15|1E15|0

PI10

4

+

+

+

+ 140kVRMSLL /_0

RL1

RL

2 AC1

DYg_3 2 1

0.69/34.5 DEV3

+

PI3

Wind RL

DYg_5 1 2

DYg_9 2 1

RL

0.69/34.5

PI5

+

0.69/34.5

Wind

5

0.69/34.5

PI6

RL

5

Wind

+

v

6

6 DYg_6 1 2

0.69/34.5

A

B

C

D

E

F

G

H

I

A

B

C

D

E

F

Ferroresonance Study

1

P scope

Q

RL2 + 0.0001,0.0001Ohm

LV

+

+

HV 1.15nF

V1

+

Tr0

Y I

66

303.11kVRMS /_0

2

1.227nF

132.79 +

+ 0.054,2.68Ohm

+

Y

I ?i

Hyst2 ?vipf

+

m2 ?v

0.1uF

Tr0_2 303.12kV +

+

VM +

+

+ AC1

p1

-1|50ms|5

RL1 + 0.721,54.06Ohm

m1 +A ?i

+ 0.5,10Ohm

i

jacobson_siemens_170mva_3.dat model in: jacobson_siemens_170mva_2.hys P

+

2

i

+

200

 

 

+

3.4nF +

hfit1

Ydyn

Q scope

5nF

1

4.025nF

Tertiary

+

V2 4.025nF

Dynamic Resistance Controller Modeling Eddy losses

scope

V1

p2 v(t)

+

loss1 1

+ -

V2

scope scp9 Gain1

scp3

sum1

3

Int1

Fm2 1

Ftb1

ABS

297.2

p3 v(t)

Ydyn

scope

3

scp10

Fm1 1

RECIP

110000

Modeled Hysteresis Characteristic at 1.0 &1.4 pu

4

4

Obtained HV Hysteresis Characteristic at 1.0 & 1.4pu (including Cap & Eddy losses) 5

5

6

6

Simulated Saturation Characteristic (Air reactance of 45.8%)

[email protected] pu = 300 kOhms Air reactance=44.3%@ 170 M VA

Vm2 rms in pu of 303.11 kV 1.2 1.3 1.4

Im1 (rms) in pu of 170 MVA 0.021 0.180 0.406

7

7 A

B

C

D

E

F

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

1

1

Switching of A 420 kV Three-Phase Shunt-Reactor

I/O FILES

State of the art simulation introducing: - A realistic model of a three-phase shunt reactor taking into account the asymetrical couplings of the magnetic circuit; - A realistic circuit-breaker model based on the well-known Cassie - Mayr modified arc equations;

2

3

2

3

4

4 +

+ 0 .5

1 .6 n F

+

0 .5

+

1u H

1 uH

+

DEV3

b

10

0 .3 75n F

20 m

DEV4

Sim plified Ar c Model based on Mayr 's & Cassies equations

+

25 uH

+

30 m H

1 uH

in

Sim plified Ar c Model based on Mayr 's & Cassies equations out

in

+

out

b

+

C9

1 .1 5 n F

+

0 .0 5 n F

?v

CB_ ARC_ a

+

CB_ ARC_ a

5

m1 + VM

+

0 .3 75 nF

65 m

+

+ 0 .8

+

+ 1u H

+

+

+

+

1u H

1 uH

DEV5

4nF

DEV6

Sim plified Ar c Model based on Mayr 's & Cassies equations c

a b c

Line CVT

in

C1 1

Sim plified Ar c Model based on Mayr 's & Cassies equations out

in

0 .0 5 n F

6

1 .1 5 n F

out

c

CB_ ARC_ a

+

CB_ ARC_ a

+

+ +

C1 3

0 .5

1 .6 n F

0 .5

+

4 nF

4 0 5 k VRM SL L /_ -3 0

+

+ 1 .6 n F

+

2 00n F

+

+

AC1

+

6

0 .7 5n F

+

+ 0 .5

0.75 nF

+

+

+ 1 .6 n F

20 0k

+

Line

3 00 0

a

CB_ ARC_ a C8

0 .5

1 .6 n F

+

R1 2

+

0 .0 5 n F +

35 0

R1 0 +

out

+

CB_ ARC_ a

5

BUS2 4

in

2 00 k

out

0 .75n F

in

Sim plified Ar c Model based on Mayr 's & Cassies equations

b

a

DEV2

Sim plified Ar c Model based on Mayr 's & Cassies equations

0.7 5nF

DEV1 BUS2 3

c

+

+

+

a

1 .6 n F

C1 0

7

7

Network

Substation

420 kV Busbar

CT

Double-break 420 kV SF6 C.-B.

420 kV Busbar

CVT

Three-phase 420 kV Shunt-Reactor

8

8

Three-Phase 420 kV 100 MVARS Shunt Reactor F= 0.548 Wb, N=1409 turns, L1=5.617 H For mu (50 Hz) = 0.06 H/m: Xac=Xc a= 9 Ohms Xba=Xbc =7 Ohms Xab=14 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xc c=1741 Ohms

9 g = 12 mm

2900 mm

9

For mu (700 Hz) = 0.01 H/m:

1 0

x x= 710 mm

1 0

2x

Xac =Xca= 54 Ohms Xba=Xbc =42 Ohms Xab=84 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xc c =1741 Ohms

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

A

B

C

D

1

x 10

6

F

G

H

1

Validation of the Air gap leader Model with CIGRE equation

PLOT [email protected]@1 breakdown time

0

E

-0.5

The applied surge varies between -3 and -5M V

y

-1

m2 -1.5

2

VM +

2

?v

3

4 t (ms)

5

6

R + AG

7 x 10

+

2

Leader

1

+

The leader length varies between 3 and 6m

-2.5

100

-2

-3

Vsurge ?v -3060kV/-14000/-4166666

breakdown time definition 3

3 0

x 10

6

PLOT [email protected]@1 [email protected]@1

Length (m)

-0.5

Voltage(MV)

-1

3 4 5

y

-1.5

-2

Model 1.69 0.95 0.69

4 Equation 2.568 1.2516 0.7867

Model 2.9 1.58 1.1

5 Equation 5.4155 2.1491 1.2516

6 Model Equation Model 4.8 2.15 3.6902 3.1 1.3 1.9316 1.8

breakdown time comparison in us

-2.5

4

3 Equation 1.2516 0.6944 0.4622

4

-3

-3.5

-4

0

0.01

0.02

0.03

0.04

0.05 t (ms)

0.06

0.07

0.08

0.09

0.1

A typical leader breakdown voltage compared to the applied surge voltage

Ref: 1- Shindo, Takatoshi; Suzuki, Toshio (CRIEPI) " New Calculation Method of Breakdown Voltage-Time Characteristics of Long Air Gaps", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 6, June 1985, pp 1556-1563.

5

2- DARVENIZA(M.); POPOLANSKY (F.); WHITEHEAD (E.R.) "Lightning protection of UHV transmission lines", CIGRE report 1975-41.

I/O FILES

A

B

C

5

D

E

F

G

H

f max=f o+df

sum2 + -

C2

Io_lim

fo

1 -0.15

Current Controller w ith VDCL

PI Controller

0.35

Kp=0.35 Ki=0.35

f req limits set here

C3

c 1 id_rec_pu

Scaling of Id

DEV6

freq_order

PLL osc 1

vdcl_input

freq_order

Fault/Test Sequence Generator: Enter: amplitude and timing sequence

pulse_train

AC Filters

v_pri_rec_b v_pri_rec_c

C6

4.573uF RLC8

2

+

3

L3 82.6

f(s)

MAX

Fm1

fs1

R4

3.846mH

This is necessary f or f ast initialisation

vd_rec

pulse_train deblock

vd_rec_pu

1

+

FR

DEV1

Frequency Measurement Circuit

+

RLC +

vac_rec

vac_rec

deblock

vd_out vd_out

Vdetector

AC-DC Voltage Measurement Circuit V.K.Sood

Fm8 RL1

rec_bus

4

R3 +

s158

+ 1

3 Ph f ault

230/205.45

a

vd_rec

cSW1

R6 + 1 1

+

b

cSW2 + cSW3

c

-

gates m1

id_rec

?v

+

YgD_2 1 2

RLC

1k,0,0.1uF

RLC4

Rectifier

+ 1

ACFault1

+

sg4

L4

Recov ery f rom a dc f ault will require FR to be coordinated

rec_delta_bus

6-pulse bridge 3-phase

R1 +

DC Fault

RLC2

DCf ilter

s123

+ VM

To Bipolar DC system

ACFault3 sg1

i(t)p2 1,0.2814,1uF

a

+

Inv erter 1,0.2814,1uF

-

gates

250mH

220kV

GND

230/205.45

cSW5

1 Ph f ault

350mH

RLC5 220kV

R8 +

+ 2.5

DCFault

A

B

C

D

E

F

G

RLC3

v (t)

RLC +

2.5

H

DC1

DC2

RLC6

350mH

D1 1000,0,0.1uF

+

+

R5 +

NOR

4

R7 +

5

3

RLC

Fm3

sg7

1 2 3 4 5 6

D2 1000,0,0.1uF

3

1 2 3 4 5 6

RLC1

+

0.1

+

3-phase rec_star_bus 2

VDCL

6-pulse bridge

2

0.050 1

1 2 3 4 5 6

F1

+

YY2 1

Delay

sg3

2 3 4 5 6

AC2 ?vi

dly1

F1 2 3 4 5 6

0.25,45mH

230kV /_60

BLOCK

rec_bus2

+

sg2

4

scp2 scope rec_delta_pulses

Fm9

RLC

Startup

rec_star_firing

1 2 3 4 5 6

RLC +

RLC +

0.63,27.83mH,3.009uF 0.63,19.52mH,3.009uF RLC7

Forced Retard Rectif ier

scp1 scope

2

rec_star_pulses

Bridge_star F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Bridge_delta

f_out V.K.Sood

sg6

T ests possible: 1. Step change in Io 2. Voltage Dependent Current Limit (VDCL) 3. Block/Deblock of firing pulses 4. DC Line fault with protection & recovery sequence 5. Three phase ac bus fault, with recovery sequence 6. Single phase ac bus fault, high impedance, no protection 7. Forced retard of rectifier firing pulses 8. Step change in oscillator frequency

1000,0,0.1uF

Step_Io

fa_in fb_in fc_in

v (t) v_pri_rec_a

p1

Purpose: Teaching/Training of personnel on HVDC systems

Firing_Generator

f_m easure

1

Prepared by: V.K.Sood, [email protected] Date: May 2003

DEV5

vd_rec_pu

DEV4

Step changes in Io

sg8

-0.2 pu 300-500 ms 1.0 pu 300-500 ms 1.0 pu 300-500 ms 1.0 pu 300-350 ms 0.75 pu 325-375ms 0.75 pu 300-400ms 1.0 pu 300-400ms 1.0 pu 300-400ms 25 Hz 300-400ms

Step Io VDCL BLOCK DCFault Apply FR ACFault3 ACFault1 FR Step Frequency

V.K.Sood

sg5

3

1. 2. 3. 4.

pulse_train

freq_meas

freq_meas

Timing

+ RLC

2

Amplitude

5. 6. 7. 8.

0.35

1600

H

Model of HVDC Rectifier operating with weak ac system and bipolar 6-p dc system

Description lim1

f min=f o-df

PI

c

V.K.Sood id_rec

G

Suggested Test Sequences

0.15

DEV2 u out Kp Ki

error

+

-

Vd_static Vd_dynamic

F

+

Iref

1.0

+

s40

Imin

Imax

VDCL

Iref

c

E

DOUBLE CLICK HERE FOR MORE INFO

+

DEV3

1.2

D

Io_limit

cSW4

Imax

c C1

C sum3

+

0.3

1

B

Imin C5

+ R2

A

C4

c

5

A

B

C

D

E

1

Field Recording (10-08-1986)

F

G

H

Validation of the Secondary Arc Model with IREQ Laboratory Tests

EM TP-RV Simulation (05-22-2005)

2

1

2 R2 + 300 ?i RL1 + 0.7,13Ohm

C3

1.60uF

+

3

4

AC1

0.2

DEV1

3

Sec_ARC_a +

66.4kVRMS /_0

+

+

1.05uF

Secondary arc

+

C2

+

SW1 + 100ms/200ms/0

R3

0.2

R1

Primary Arc: 5 kA eff Secondary Arc: 40 A Wind Speed: 9.7 km/h Secondary Arc Duration: 1.04 sec. 315 kV insulator string, l=2.3 m

4

Ref.: Kizilcay M ., Bán G., Prikler L., Handl P.: "Interaction of the Secondary Arc with the Transmission System during Single-Phase Autoreclosure" IEEE Bologna PowerTech Conference, June 23-26, 2003 Bologna, Italy, Paper 471

5

I/O FILES

5

A

B

C

D

E

F

G

H

A

B

1

C

D

E

F

G

H

1

Example of Synchronous/Asynchronous Machine Modeling - Starting an 11000 hp motor at 1s with 5 induction machines already in steady-state - LL-g fault on the 120 kV bus with system islanding at 9 s - System recovery by the governor system of the large SM until 30 s - Case showing the good numerical stability of large number of machines in EMTP-RV - Ref. (Motor): G. J. Rogers, IEEE Trans. on Energy Conversion, Vol. EC2, No 4 Dec. 1987, pp. 622-628. - Using variable output rate after 15 s of simulation.

2

2

3

?v 13.8kV 500MVA

Tm

ASM1 YgYg_np2 2 1

?i

+ 120kV /_17

3

9/9.15/0 9/9.15/0 1E15/1E15/0

0.2uF

4

Equivalent 120 kV Network

+

S

0.1 1Ohm

25.5/6.6 1

+ 40uF C4

25.5/12

YgYg_np1

+

6.6kV 11000hp

?

SW_ASM1 1/1E15/0

?m

2

ASM

P

1 C3

YgD_1 Q

0.2uF

Network +

+ 1 120/26.4

1uF

Q_net

Q

+

+ 1

13.8/122

SM2

+

scope

T

Speed

4

AVR&Gov (pu)

P

?i

+

S

ASM1_control

SM IN

P_ASM1

scope

Q_ASM1

SW_Network +

+

AVR_Gov_SM2

Starting motor at 1 s

P_net -1/9.15/0

DYg_SM2 1 2

?m

SW_Fault

Out

+

Simulation options

I/O FILES

+

2

MPLOT

scope

Vnet VM

scope

Fault & System Islanding at 9 s

3

380uF C7

Induction motors in steady-state

?m

P

SM

SM_load

Q

Load1

420 MW Load

5

Pm

f(u)

1

SM_load_control 6.6kV 11000hp

Omega_1

6.6kV 11000hp

ASM2

S

?m

ASM3

ASM

S

ASM4

6.6kV 11000hp

?m

6.6kV 11000hp

ASM

S

ASM ?m

ASM5

ASM

ASM6

6.6kV 11000hp

?m

?m

ASM

S

240uF

S

+

5

12kV 40MVA

32 MW Synchronous Motor Load A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

1

1

Operation of Tap Changers During a Voltage Dip

2

2

loss1 1

loss2 1

V_230_pu scope

V_26kV_pu scope

21555 187771

3

3

+/- 10% of 230 kV in 6 taps of 1.667% Initial Tap at -2 Td0=10 s, Td inverse Deadband of 1%

+/- 15% of 26.4 kV in 8 taps of 1.875% Initial Tap at -2 Td0=15 s, Td inverse Deadband of 1.5%

OLTC_Control2

4

OLT C_Control1

Vmeas

Tap

Slack: 500kVRMSLL/_0 Vsine_z:VwZ1

Tap

Vmeas

4

rad mag V1

LF

LF1

YD_1

YgYgD_np1 2 VwZ1

+

1.02/_-3.4

1

2

1.01/_-44.9

PI

+ 508kVRMSLL /_2 508kVRMSLL /_-118 508kVRMSLL /_122 Slack:LF1

230/26.4 ?

Transmission Line

3

0.013 0.22Ohm

+

500/230/50

C1

MW,MX,PF

MW,MX,PF

+

SW1

0.1uF 5/50/0

1

PI1

rad mag V1

Z Dist

I/O FILES

Z Dist

+ 50

5

VLOADg2

Creating a 5% Voltage Dip Duration of 45 sec. A

B

VLOADg1

Va,Vb,Vc

R1

C

Va,Vb,Vc

Np,Nq Kp,Kq

5

Np,Nq Kp,Kq

50/60 Hz

50/60 Hz MPLOT

D

E

F

G

H

A

B

C

D

ZnO Arrester model based on IEEE Surge Protective Device Working Group

1

1 Simulation options

- L1 (uH) = 15 d/n; R1 (Ohm) = 65 d/n - L0 (uH) = 0.2 d/n; R0 (Ohm) = 100 d/n - C0 (pF) = 100 n/d

I/O FILES

d is the Height of the arrester and n is the number of parallel columns 2

2

Example of Modeling of an Ohio-Brass Zno Arrester for a 330 kV Network MCOV= 209 kV d=1.8 m, n=1

3

A0 & A1 Characteristics adjusted to get 516 kV for a 2 kA 45 us Switching Surge then L1 adjusted to get 604 kV for a 10 kA 8/20 us Lightning surge then checking for 10 kA 0.5 us front of wave 664.5 kV vs 665 kV from Ohio-Brass FANTASTIC!!

3

m1 + VM ?v L0

42uH

+

?i 0.0555nF

516000 C1

516000 ZnO2

10.7kA/-70000/-4755000

ZnO +

+ 117 R1

180 R0

+

?i

Isurge1

L1

+ 0.36uH

ZnO +

Isurge2

+

+

Isurge3

?i

4

0.5 us

8 us +

45 us

+

4 ZnO1

24.9kA/-55000/-175000 2.95kA/-5000/-46500 model in: A0_1_Char.pun

ZnO Data function

model in: A1_1_Char.pun

ZnO Data function A1_1_Char.dat

5

5

A

B

C

D

New example

New example

New example

New example

New example

Contacts Technical Support: [email protected] Sales Team: [email protected]

www.emtp.com

POWERSYS Corporate headquarters Les Jardins de l'Entreprise 13610 Le Puy-Sainte-Réparade FRANCE

POWERSYS German Office Verbindungsbüro Deutschland Walter-Kolb-Str. 9-11 60594 Francfurt/Main DEUTSCHLAND

POWERSYS Inc. 8401 Greenway Blvd. Suite 210. Middleton, WI 53562 USA

Sales Email: [email protected] Support Email: [email protected]

Email: [email protected]

Sales Email: [email protected] Support Email: [email protected]

Tel: +33 (0)4 42 61 02 29 Fax: +33 (0)4 42 50 58 90

Tel. : +49 (0)69 / 96 21 76 - 34 Fax : +49 (0)69 / 96 21 76 – 20

Tel : +1 608 203 8808 Fax: +1 608 203 8811

CORPORATE WEB SITE: www.powersys-solutions.com

Cannot be diffused nor copied without the written authorization of POWERSYS

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF