An introduction to EMTP-RV
August 2012
The simulation of power systems has never been so easy!
Power system simulation tools Short circuit calculation : CYME 5.0 (CYMFAULT), ETAP Calculations based on sequence data Suitable for high scale networks Frequency range : 50/60 Hz
DC
Load-flow calculation : CYME 5.0 (CYMFLOW), ETAP, PSLF, … Calculation on 3-phase networks Mainly on balanced networks Frequency range : 50/60 Hz
50/60 Hz Transient Stability programs : Eurostag, PSS/E, DigSilent Suitable for high scale networks Simplified modeling of HVDC and FACTS components Frequency range : 0.1Hz – 1kHz
kHz, MHz EMTP type programs : EMTP-RV, ATP, PSCAD, SimPowerSystems Not suitable for high scale networks Detailed modeling of equipments Frequency range : 0.1 Hz – MHz All software can handle transient study related to electromechanical time constants but EMTP-RV can handle electromagnetics time constant which are significantly smaller (faster transients).
EMTP-RV, the Restructured Version • Written from scratch using mostly Fortran-95 in Microsoft Visual Studio environment. • Include all the EMTP96 functionalities and much more: – 3-phase unbalanced load-flow – Scriptable user interface – New models : machines, nonlinear elements… – No topological restrictions • New numerical analysis methods : – Newton-raphson solution method for nonlinear models – New three-phase load-flow – Simultaneous switching options for power electronics applications – Open architecture coding that allows users customization (ex : connection with user defined DLL)
EMTP-RV benefits: • Robust simulation engine • Easy-to-use, drag and drop interface • Unmatched ease of use • Superior modeling flexibility • Customizable to your needs • Competitive pricing
Customizable to your needs • Superior modeling flexibility – Can’t find exactly what you’re looking for in the device library? Simply add your own user-defined device. – Scripting techniques provide the ability to externally program device data forms and generate the required Netlists. A symbol editor is used to modify and customize device drawings. Scripting techniques are also used for parametric studies. – EMTPWorks also lets the user define any number of subcircuits to create hierarchical designs.a
The software package EMTP-RV Package includes: • EMTP-RV : computational engine • With EMTP-RV, complex problems become simple to work out.
A powerful and super-fast computational engine that provides significantly improved solution methods for nonlinear models, control systems, and user-defined models. The engine features a plug-in model interface, allowing users to add their own models.
• EMTPWorks : Graphical User Interface EMTPWorks, the user-friendly and intuitive Graphical User Interface, provides top-level access to EMTP-RV simulation methods and models. EMTPWorks sends design data into EMTP-RV, starts EMTP-RV and retrieves simulation results. An advanced, yet easy-to-use graphical user interface that maximizes the capabilities of the underlying EMTPRV engine. EMTPWorks offers drag-and-drop convenience that lets users quickly design, modify and simulate electric power systems. A drawing canvas and the ability to externally program device data allows users to fully customize simulations to their needs. EMTPWorks can be used for small systems or very large-scale systems.
• ScopeView: the Output Processor for Data display and analysis ScopeView displays simulation waveforms in a variety of formats. With EMTPWorks, users can dramatically reduce the time required to setup a study in EMTP-RV.
Key features • EMTP-RV Key features - The reference in transients simulation - Solution for large networks - Provide detailed modeling of the network component including control, linear and non-linear elements - Open architecture coding that allows users customization and implementation of sophisticated model - New steady-state solution with harmonics - New three-phase load-flow - Automatic initialization from steady-state solution - New capability for solving detailed semiconductor models - Simultaneous switching options for power electronics applications
The GUI key features EMTPWorks Key features •
Object-oriented design fully compatible with Microsoft Windows
•
Powerful and intuitive interface for creating sophisticated Electrical networks
•
Drag and drop device selection approach with simple connectivity methods
•
Both devices and signals are objects with attributes. A drawing canvas is given the ability to create objects and customized attributes
•
Single-phase/three-phase or mixed diagrams are supported
•
Advanced features for creating and maintaining very large to extremely large networks
•
Large number of subnetwork creation options including automatic subnetwork creation and pin positioning. Unlimited subnetwork nesting level
•
Options for creating advanced subnetwork masks
•
Multipage design methods
•
Library maintenance and device updating methods
EMTPWorks: EMTP-RV user interface
EMTPWorks: EMTP-RV user interface Object-oriented design fully compatible with Microsoft Windows Single-phase/three-phase or mixed diagrams are supported Large collection of scripts for modifying and/or updating almost anything appearing on the GUI
5
PLOT
x 10
Substation_A/m1a@vn@1
4
Substation_A/m1b@vn@1 Substation_A/m1c@vn@1
3
2
y
1
0
-1
-2
-3
-4 6
6.01
6.02
6.03
6.04
6.05 time (s)
6.06
6.07
6.08
6.09
6.1
ScopeView ScopeView is a data acquisition and signal processing software adapted very well for visualisation and analysis of EMTP-RV results. It may be used to simultaneously load, view and process data from applications such as EMTP-RV, MATLAB and Comtrade format files.
Multi-source data importation
Cursor region information
ScopeView
Function editor of ScopeView
Typical mathematical post-processing
A versatile program EMTP-RV is suited to a wide variety of power system studies, whether they relate to project design and engineering, or to solving problems and unexplained failures. EMTP-RV offers a wide variety of modeling capabilities encompassing electromagnetic and electromechanical oscillations ranging in duration from microseconds to seconds.
A powerful power system simulation software EMTP-RV’s benefits are: Unmatched ease of use Superior modeling flexibility Customizable to your needs Dynamic development road-map Prompt and effective technical support Reactive sales teams
A powerful power system simulation software EMTP-RV’s strengths:
EMTP-RV version 2.4 new features: •
New and advanced HVDC models, including MMC-HVDC
•
New wind generator models, including average-value model
•
New control system diagram DLL capability
•
New Simulink/Real-time Workshop interface DLL
EMTP-RV version 2.4 improvements: Workshop interface DLL Improvements in synchronous machine model including a new black start option Improvements in the asynchronous machine model Capability to solve multiple frequency load-flow Improved documentation and various other improvements New application examples
Power system studies EMTP-RV is suited to a wide variety of power system studies including and not limited to: • Power system design
• Complete network analysis
• Power system stability & load modeling
• Ferroresonance
• Control system design
• Steady-sate analysis of unbalanced system
• Motor starting
• Distribution networks and distributed generation
• Power electronics and FACTS
• Power system dynamic and load modeling
• HVDC networks
• Subsynchronous resonance and shaft stresses
• Lighting surges
• Power system protection issues
• Switching surges
• General control system design
• Temporary overvoltages
• Power quality issues
• Insulation coordination
• Capacitor bank switching • And much more!
A versatile program Complete system studies: •Load-flow solution and initialization of synchronous machines •Temporary overvoltages to network islanding •Ferroresonance and harmonic resonance •Selection and usage of arresters •Fault transients •Statistical analysis of overvoltages •Electromechanical transients
Applications • Power system design • Power systems protection issues • Network analysis: network separation, power quality, geomagnetic storms, interaction between compensation and control components, wind generation • Detailed simulation and analysis of large scale (unlimited size) electrical systems • Simulation and analysis of power system transients: lightning, switching, temporary conditions • General purpose circuit analysis: wideband, from load-flow to steadystate to time-domain (Steady-state analysis of unbalanced systems) • Synchronous machines: SSR, auto-excitation, control • Transmission line systems: insulation coordination, switching, design, wideband line and cable models
Applications • Power Electronics and FACTS (HVDC, SVC, VSC, TCSC, etc.) • Multiterminal HVDC systems • Series compensation: MOV energy absorption, short-circuit conditions, network interaction • Transmission line systems: insulation coordination, switching, design, wideband line and cable models • Switchgear: TRV, shunt compensation, current chopping, delayedcurrent zero conditions, arc interaction • Protection: power oscillations, saturation problems, surge arrester influences • Temporary overvoltages • Capacitor bank switching • Series and shunt resonances • Detailed transient stability analysis • Unbalanced distribution networks
Simulation options Load-flow Steady-state Time-domain Frequency scan
Simulation options • Load-Flow solution – The electrical network equations are solved using complex phasors. – The active (source) devices are only the Load-Flow devices (LF-devices). A load device is used to enter PQ load constraint equations. – Only single (fundamental) frequency solutions are achievable in this version. The solution frequency is specified by ‘Default Power Frequency’ and used in passive network lumped model calculations. – The same network used for transient simulations can be used in loadflow analysis. The EMTP Load-Flow solution can work with multiphase and unbalanced networks. – The control system devices are disconnected and not solved. – This simulation option stops and creates a solution file (Load-Flow solution data file). The solution file can be loaded for automatically initializing anyone of the following solution methods.
Simulation options • Steady-state solution – The electrical network equations are solved using complex numbers. This option can be used in the stand-alone mode or for initializing the timedomain solution. – A harmonic steady-state solution can be achieved. – The control system devices are disconnected and not solved. – Some nonlinear devices are linearized or disconnected. All devices have a specific steady-state model. – The steady-state solution is performed if at least one power source device has a start time (activation time) lower than 0.
Simulation options • Time-domain solution – The electrical network and control system equations are solved using a numerical integration technique. – All nonlinear devices are solved simultaneously with network equations. A Newton method is used when nonlinear devices exist. – The solution can optionally start from the steady-state solution for initializing the network variables and achieving quick steady-state conditions in time-domain waveforms. – The steady-state conditions provide the solution for the time-point t=0. The user can also optionally manually initialize state-variables.
Simulation options • Frequency scan solution – This option is separate from the two previous options. All source frequencies are varied using the given frequency range and the network steady-state solution is found at each frequency.
Build-in libraries and Standard models
available in EMTP-RV
Built-in librairies EQUIPMENT
FEATURES
advanced.clf
Provides a set of advanced power electronic devices
Pseudo Devices.clf
Provides special devices, such as page connectors. The port devices are normally created using the menu “Option>Subcircuit>New Port Connector”, they are available in this library for advanced users.
RLC branches.clf
Provides a set of RLC type power devices. .
Work.clf
This is an empty library accessible to users
control.clf
The list of primitive control devices.
control devices of TACS.clf
This control library is provided for transition from EMTP-V3. It imitates EMTP-V3 TACS functions.
control functions.clf
Various control system functions.
control of machies.clf
Exciter devices for power system machines.
flip flops.clf
A set of flip-flop functions for control systems.
hvdc.clf
Collection of dc bridge control functions. Documentation is available in the subcircuit.
lines.clf
Transmission lines and cables.
machines.clf
Rotating machines.
meters.clf
Various measurement functions, including sensors for interfacing control device signals with power device signals.
meters periodic.clf
Meters for periodic functions.
nonlinear.clf
Various nonlinear electrical devices.
options.clf
EMTP Simulation options, plot functions and other data management functions.
phasors.clf
Control functions for manipulating phasors.
sources.clf
Power sources.
switches.clf
Switching devices.
symbols.clf
These are only useful drawing symbols, no pins.
transformations.clf
Mathematical transformations used in control systems.
transformers.clf
Power system transformers.
Standard models Library
RLC branches
Control
Control of Machines Flip flops Lines
Models R, L, C branches PI circuits Loads State space block Gain, constant Integral, derivative Limiter, Sum Selector Delay State-space block PLL… IEEE excitation systems Governor / turbine Flip-flop D, J-K, S-R,T CP (distributed parameters) FD (=CP + frequency dependence) FDQ (=FD for cables) WB (phase domain) Corona
Standard models Library
Machines
Meters Meters periodic
Nonlinear
Sources
3 1
08/06/2014
Models Induction Machine (single cage, double cage, wound rotor) Synchronous Machine Permanent Magnet Synchronous Machine DC machine 2-phase machine Current, voltage, power meters RMS meters and sequence meters Non linear resistance Non linear inductance Hysteresis reactor ZnO arrester SiC arrester AC, DC voltage sources AC, DC current sources Lightning inpulse current source Current and voltage controlled sources Load-flow bus
Standard models
Library
Switches
Transformations
Transformateurs
Advanced
Models Ideal switch Diode Thyristor Air gap 3-phase sequence 3-phase dq0 Based on single phase units : DD, YY, DY, YD, YYD… Topological models : TOPMAG Impedance based : BCTRAN, TRELEG Frequency dependent admittance matrix : FDBFIT Variable load SVC STATCOM
Built-in librairy of examples
Easily find what you’re looking for by browsing or using a simple index.
Typical designs Modeling Electrical Systems with EMTP-RV
A
B
C
D
E
F
G
H
I
J
K
L
Insulation Coordination of a 765 kV GIS 1
- Backflashover Case - Impulse Footing Resistance of the stricken Tower may be represented by Ri = f(I) - Usage of ZnO model based on IEEE SPD WG - Frequency-Dependant Line modeling
200 kA 3/100 us Lightning Stroke
2
I/O FILES
MPLOT
foudre_30km_ex2.lin
foudre_300m_ex1.lin
2 LINE DATA LIGHTNING_STROKE
Network
LINE DATA
model in: foudre_30km_ex2_rv.pun
765 kV Line Tower_top + VM ?v
Air-Insulated Substation
Gas-Insulated Substation
model in: foudre_300m_ex1_rv.pun
Air-Insulated Substation
?v + VM Trans_c ?v
SOURCE_NETWORK BUS_NET
735kV /_0
a b
+
+
+
+
+
+ +
c
300 m
bushing
?v
+
300 m
b +
3
?v a
CB_a + ?v CB_b VM + ?v CB_c VM +
VM
c
+ VM Trans_a
+ + +
c
+
30 km
VM
1M
+
+
cond_c VM + ?v
a b
+ VM Trans_b
Open Circuit-Breaker
?v/?v/?v
+
3
1
Simulation options
+
1M
1M
+ ?i
C3
+
48
+ L12
4nF
52
+
+
+
+
+ +
+
+ +
?i
52 m
+
+
+
L3
48 m
C2
4
?i + L11
+ ?i
+ C1
L10
?i +
25 m
?i
+
L1
TOWER3 Part=TOWER_model1ohm
+
TOWER2 Part=TOWER_model15_f
+
To eliminate undesirable reflexions
TOWER1 Part=TOWER_model15_1
L2
4
+
5
5
0.1nF
Gas-filled CVT 588 kV Zno Bushing
A
B
C
D
E
F
G
H
4nF
4nF
+
0.1nF
0.1nF
Inductive VT
I
Gas-filled Bushing J
Power 588 kV Zno Transformer K
L
A
B
C
D
E
1
Field Recording (10-08-1986)
F
G
H
Validation of the Secondary Arc M odel with IREQ Laboratory Tests
EMTP-RV Simulation (05-22-2005)
2
1
2 R2 + ?i
SW1 + 100ms /200ms /0
+
C2
+
0.7,13Ohm
C3
1.60uF
Secondary arc
300 RL1 +
+
3 1.05uF
0.2
AC1
+
66.4k VRMS /_0
+
+
-
0.2
R3
DEV1
3
Sec _ARC_a R1
4
4
Primary Arc: 5 kA eff Secondary Arc: 40 A Wind Speed: 9.7 km/h Secondary Arc Duration: 1.04 sec. 315 kV insulator string, l=2.3 m
5
5
I/O FILES
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
1
1
Switching of A 420 kV Three-Phase Shunt-Reactor
I/O FILES
State of the art simulation introducing: - A realistic model of a three-phase shunt reactor taking into account the asymetrical couplings of the magnetic circuit; - A realistic circuit-breaker model based on the well-known Cassie - Mayr modified arc equations.
2
3
2
3
4
4 +
+ 0. 5
1. 6nF
+
0. 5
+
1uH
1uH
b
in
in
ou t
0. 05nF
+
+
b
+
CB_ARC_a
+
CB_ARC_a
C9
1. 15nF
+
6
20 m
DEV4
Simplifie d Arc M ode l ba s e d on M a y r' s & Cas s ies e qua tions
ou t
0. 375nF
+
DEV3
Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ies e qua tions
+
25uH
10
5
m+1V M ?v
1. 6nF
+
b
0. 5
+
+
1uH
1uH
DEV5
in
4nF
DEV6
Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ies e qua tions c
a
1. 6nF
+
+
6
+ C11
Simplifie d Arc M ode l ba s e d on M a y r' s & Cas s ies e qua tions
ou t
in
ou t
1. 15nF
c
CB_ARC_a
+
CB_ARC_a
c
Line CVT
+
C13
+
4nF
405kVRM SLL / _- 30
0. 5
+
+
200nF
+
+
+
+
AC1
0. 75nF
+ 30m H
1uH
200k
65 m
+
+ 0. 8
+
1uH
0. 75nF
+
+
0. 5
+
+
3000
+
+
+ 1. 6nF
+
+
a
CB_ARC_a C8
0. 5
0. 75nF
+
Line
1. 6nF
b
R12
0. 75nF
0. 05nF +
350
R10
ou t
+
CB_ARC_a
in
0. 375nF
Simplifie d Arc M ode l ba s e d on M a y r' s & Cas s ies e qua tions
ou t
5
BUS24
DEV2
Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ies e qua tions in
c
a
200k
DEV1
BUS23
+
+
a
1. 6nF
+
0. 05nF
C10
7
7
Network
Substation
420 kV Busbar
CT
Double-break 420 kV SF6 C.-B.
420 kV Busbar
CVT
Three-phase 420 kV Shunt-Reactor
8
8
Three-Phase 420 kV 100 MVARS Shunt Reactor F= 0.548 Wb, N=1409 turns, L1=5.617 H For mu (50 Hz) = 0.06 H/m: Xac=Xca= 9 Ohms Xba=Xbc=7 Ohms Xab=14 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xcc=1741 Ohms
9 g = 12 mm
2900 mm
x x= 710 mm
1 0
9
For mu (700 Hz) = 0.01 H/m:
2x
1 0
Xac=Xca= 54 Ohms Xba=Xbc=42 Ohms Xab=84 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xcc=1741 Ohms
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
M W,M X,PF
SM ?m +
AVR&Gov (pu)
1 3 .8 k V 2 0 0 M VA
CP
+
1
3
80
IN
80 CP2
R3
SM
?i
Np, Nq Kp, Kq
?m
Ou t
1
DEV4
SM 9
1 3 .8 /2 3 0
AVR_ Go v _ 9
5 /5 .1 /0 5 /5 .1 /0 1 E1 5 /1 e 1 5 /0
BUS1
162 M W
+
CP2
290
50 +
+
CP
+
2
60 Hz only
1
v 193.1
m _ Su b s _ B_ 2 3 0 k V + VM
SVC_1 CP2
3
2
1
1 P
40%
3 5 0 0 /2 3 0 /5 0
1
R1 ?i
7
Q P +
P_ L o a d
Q
+
2000uF p3
pF=88%
s c ope Q_ L o a d s c ope
+
+
0 .0 5 u F
1600 M W 240 M X
96uF
+/- 400 M vars STATCOM i n Substation B
SM 4
6
+
2 3 0 /2 6 .4 0 .0 1 3 0 .2 2 Oh m
P
Se r_ C_ 2
+
SM
200 M W
+
2 1 +
+
1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0
3
+
1
220 km
+
+
s c ope
P_ Ex c h
96uF
Ou t2
?
In 2
2
140 km
+
3
Ou t1
Q_ Ex c h s c ope
p2
?v 15uF
+
1
?m
0 .3 u F
VM
Su b s ta ti o n _ C
Su b s ta ti o n _ B
Ou t2
140 km
2 SM 3
In 1
Ou t1
Su b s ta ti o n _ A
In 2
?m
IN AVR&Gov (pu)
+
Se r_ C_ 1 In 1
SM 2
AVR_ Go v _ 4
+
+
1
-1 /1 E1 5 /0
SM
Ou t
5 0 0 /2 3 0 /5 0 2
220 km
+
7
40%
3
SM IN AVR&Gov (pu)
280 km
1
?m
AVR&Gov (pu)
m _Load_230k V
Q
2
+
Ou t
2 x 240 M W s c ope Pt
5 0 0 /1 3 .8 /1 3 .8
SM 1
IN
Ou t
1 3 .8 /2 3 0
p1
?m
AVR_ Go v _ 2 AVR_ Go v _ 3
2
3 ?m
s c ope Qt
SM IN AVR&Gov (pu)
5
5 0 0 /2 3 0 /5 0
5 0 0 /2 3 0 /5 0
1 3 .8 k V 4 0 0 M VA
Ou t
6
L
+
76 M W
1300 M W AVR_ Go v _ 1
C
110
48uF
+
SM 8
Np, Nq Kp, Kq
60 Hz only
+/- 150 M X SVC
2
SM Ou t
900 M W
? v /? v /? v
48uF
AVR_ Go v _ 8
4
+
1 Z Ds it
Va ,Vb ,Vc
1 3 .8 k V 1 2 5 M VA 1
Z Ds it
DEV5
MW,MX,PF
Kp, Kq
Np, Nq
60 Hz only
Va,Vb,Vc
SW6 + -1/1E15/0
M W,M X,PF
CP
6 9 /2 2 5
DEV2
AVR&Gov (pu) IN
R5 ?i
2
180 M W
4
5
2
230k V 1 2 0 0 0 M VA
+
Np, Nq
SM 1 0
8250 M W
1 4 4 .8 +
240 M W
Kp, Kq
60
9000 M W
Z Ds it
M W,M X,PF
60 Hz only
MW,MX,PF CP
Out
AVR&Gov (pu)
?m 2 +
45 M W
DEV3
+
9 6 .5
Va ,Vb ,Vc
Yg Yg _ n p 5
1
1 2
CP
1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0
Z Ds it
2
BUS5
+
Q p7
s c ope P_ Va r_ s p e e d
1
DEV1
Va,Vb,Vc
?
2 3 0 /2 6 .4
C1 2 2
0 .2 5 u F
IN
Out
AVR_Gov _5
av r_gov ernor_pu
AVR&Gov (pu) IN
?m
60 Hz only
Va ,Vb ,Vc
BUS7
+ C8
Q_ Va r_ s p e e d s c ope
3 69/0.69
132 M W
BUS9
0.13 2.2Ohm
0 .1 ,0 .5 Oh m
v
1
AVR_ Go v _ 1 0
1
+
Sq Ca g e _ 4
3 x 1M W Doubly-fed with PWM controller (Variable speed)
Out
AVR&Gov (pu)
IN
?m 1 2
2
2 3 0 /7 1 0 .2 5 u F
1
6 9 /3 .3
M
Z Ds it
Q
p6
+ 2 ASM S
1 3 .8 /2 3 0
Yg Yg _ n p 4 P
RL 1
0 .2 ,1 Oh m
6 9 /3 .3
L
Large Gen.-Load Center
1 3 .8 k V 2 0 0 M VA
+
+
+
1 3 .8 /2 3 0
Qt_ Wi n d Ge n s c ope
R4 +
0 .0 4 ,0 .2 Oh m
1
ASM S
K
Np, Nq Kp, Kq
1 3 .8 /2 3 0
Pt_ wi n d Ge n s c ope
50 2
SM 5
VM
1
6 9 /3 .3
SM 6
J
? v /? v /? v
0 .1 ,0 .5 Oh m
+
2
1 3 .8 k V 5 5 0 M VA
+ -1/1E15/0
2
520 M W
SM 7
I
CP2
+
+
ASM S
77 M W WIND IM GENERATION (Constant speed)
m _ 6 9 k V_ wi n d
1
6 9 /3 .3
1 3 .8 k V 5 0 M VA
1
2 ASM S
P
4 x (10 X 2 MW) induc. machine pf 0.85
Q_ Sta t_ 3 0 s c ope
SM
P Q
p4
40 M W
Sq Ca g e _ 1
H AVR_Gov _6
+/- 30 MVARS STATCOM
1
G
SM
F
Out
E
DEV6
AVR_Gov _7
D
AVR&Gov (pu)
C
IN
B
SM
A
8 1
1
8 2 5 .5 /1 2
+
Va ,Vb ,Vc
L a rg e _ i n d
15%
Va ,Vb ,Vc
Np, Nq Kp, Kq
M W,M X,PF
60 Hz only
Sm a l l _ i n d
30%
Fl u o _ l i g h t
20%
Va ,Vb ,Vc
Np, Nq Kp, Kq
S
ASM
S
ASM
+
6 .6 k V 7 7 0 .M VA ?m
3700uF
?m
9
M W,M X,PF
2
2 12k V 3 8 5 .M VA
Si m u l a ti o n o p ti o n s 1 4 1 0 .u F
M W,M X,PF
2 5 .5 /6 .6
60 Hz only In c a n _ l i g h t
10%
Np, Nq Kp, Kq
2 .2 6 3 +
I/O FIL ES
60 Hz only Co l o r_ Tv
5%
9
R2
20%
1560 M W Res.-Com.-Ind. Load A
B
C
D
E
F
G
H
I
J
K
L
M
A
B
C
D
E
-
Windmill Power Generation In a weak Power System
1
12 x 2 M VA Doubly-fed with PWM controller (Variable Speed)
2
Realistic Realistic Realistic Realistic Dynamic
F
Wind Data; DFIG Modeling; Network & Load Models Harmonic Distorsions & Performances
20 MW
1
2
WIND2 P_Gr2
v
scope Q_Gr_2 scope
Delay !h
P
11 MW
Np,Nq Kp,Kq
LL-g 6 cycles fault
Va,Vb,Vc
VLOADg1
SW1
1
+
P_netw
scope Q_netw scope
MW,MX,PF
Q_Gr1
+
p2
+
69/13.8
Weak Local 69 kV Network (150 MVA)
+
40nF m1
1
Y gD_2
+ VM
2 69/6.6
5nF
Q
scope
P
DFIG_1
5nF C4
C3
MPLOT
?v
1
Y gD_1
4
?m
2
8 MW
SM
MW,MX,PF
in
S
ASM1
+
ASM
out
SM1
AVR
AVR_SM1
5
0.1 1Ohm
13.8kV 10MVA
170uF
6.6kV 5000hp
?m
6.5 MW
Va,Vb,Vc VLOAD2
5
Np,Nq Kp,Kq
50/60 Hz
Small Industrial load I/O FILES
A
3
v
Y gD_3
+
+
40nF
1uF
WIND1
scope
P_Gr1
69/0.69
+ 30
p1
1
+
8 MW
Y gD_4
?i
32Ohm
69kV /_0
4
69/0.69
1
100 Q
+
+
+ 4
+
2
5/5.1/0 5/5.1/0 1E15/1E15/0
+
+ P
5 x 2 M VA Doubly-fed with PWM controller (Variable Speed)
p3
DFIG_2
Z Dist
0.4k
Q
+
3
50/60 Hz
2
15 MW
B
C
D
E
F
A
B
C
D
E
F
G
H
Insulation Coordination of a 150 kV GIS 1
1
+
0.1nF
T25 +
0.1nF
T15
BB1 +
+
CP
+
CP
1.1
+
CP
1.1
1.1
+
CP
+
CP
1.1
CP
1.1
1.1
BB2
+
+
Q1
+
Q2
+
+
CB
Q1
Q2
2
m6 +VM ?v
+
CP
2.3
+ +
+
CP
CB
1.75
CP
1.75
CP
1.75
+
CB
CB
L1
+
+
+
+
1.6
1.6
CP
1.6
CP
1.6
CP
+
+
CP
17.4
+
+
+
+
CP
m3 +VM ?v
3000
CP
10.6
CP
ZnO +
?i
MCOV=112 kV
+ +
T5
3850
CP
3850
+
30
3
+
T5
2nF
TRANS2
2nF
TRANS3 4
m5 +VM ?v
CABLE1
CABLE3
CABLE2
GW
CP
R1 + 150 +
5 170kVRMSLL /_180
m4 +VM ?v
+ ZnO1
AC1
L3
300
CP
3uH
+
300
reference ZnO +
g1
MCOV=112 kV
m 1 . 1
2.9335cm
m 1 . 1
m 1 . 1
5
2.6225cm
?i
R4 + 450
+
+
?vi>S
R3 + 450
280000
GW
280000
ZnO +
?i +
+ CP
ZnO3
TRANS1
2nF
T1
0.1nF
+
m2 +VM ?v
MCOV=112 kV
Tower 4
L2 3uH
+ CP
ZnO2
m1 +VM ?v
T1
+
3uH
11.1
R2
T1
0.1nF +
+
T5
DEV6
T1
+
+
+
20
1.6
T1
CP
1.6
0.1nF
T1
+
3
T1
CP
Backflashover at 300 m from the substation on the 4th connected 150 kV line
1.6
CP
CP
+
+
+
+
+
CP
1.75
CP
Q2
CP
1.1
Q2
CB
1.75
+ CP
1.75
+ CP
1.75
CB
CB
Q1
+
CP
1.1
+
Q1
+
Q2
2
+
CP
1.1 +
Q1
+
Q2
+
CP
1.1
+
+
CP
1.1
+
Q1
+
+
Q2
+
+
CP
1.1
+
+
Q1
1.254cm
three 150 kV lines
0.25m 0.50m
6 A
B
C
D
E
6 F
G
H
A
B
C
D
E
F
G
H
I
J
K
L
M
N
TRV STUDY AT A 345 kV SUBSTATION
1
1 P=-491.5MW Q=37.4MVAR Vsine_z:VwZ3
LF LF3 Phase:0 0.99/_-1.0
UNIT 1 806.5 MVA
+
P=676MW V=23.712kVRMSLL s184a Vsine_z:VwZ6
LV
0.02975Ohm
HV
25nF
+
450'
DEV3
25nF
+ 30
CCPD
+
R5-7
(3)
Phase:0
50nF
CCPD
0.1nF
f=8.77 kHz
25nF
2
+ +
7.5nF
R6-7
+
+
+ R24
3
0.02975Ohm
25nF
55'
+
7.5nF
3
150' + +
+
+
33'
110'
+
33' CB_2DISC
33' CB_2DISC
150'
(4) R1-5
+
0.02975Ohm
61
55'
1.00/_3.5
1.00/_3.5
150'
0.02975Ohm
LF LF6
22.8 kV Delta 345/1.732 kV Yn s184
VwZ3
279171.940927 /_-5 279171.940927 /_-125 279171.940927 /_115 PQbus:LF3
0.1nF
+
+
150'
29.75 +
+
+
+ 0.00119
29.75 +
+
+
+ VwZ6
2500
29.75 +
+
+
900
+
29.75 +
+
2
R8 +
FD
788
+
20136 /_-12 20136 /_-132 20136 /_108 PVbus:LF6
+
View Steady -State
R1-11
R6-11
4
4
+
+
33'
33'
CB_2DISC
+
+
+
33'
33'
33'
CB_2DISC
CB_2DISC
110' +
+
R2A-12
R2A-5
R6-12
0.1nF
113 5
+
+
5
+
C15
75'
+
450'
+ 2nF
150'
300' +
+
Start & Standby Xformers
90'
+
33'
75'
+
0.1nF +
+
+
33'
33'
+
+
33'
33'
33' +
33'
+
CB_2DISC
Start & Standby Xformers
+
90'
6
1 +
+
23.9 kV Delta 346.4/1.732 kV Yn
0.1nF
0.3nF +
+
7
+
33' CB_2DISC
VM
CB_2DISC
R2G-5
?v m1
?v m2
VM
+
33'
R2G-6 1.03/_0.8
CP
FD
(2) +
+ + 345/161/15
Slack: 343.27kVRMSLL/_0 Vsine_z:VwZ5
+ VwZ4 R10 +
0.1uF 450 + R6
345/161 kV Autotransformer
9
+
VwZ5
1.3e+5 /_-12 1.3e+5 /_-132 1.3e+5 /_108 PQbus:LF4
30
2.5nF
LF5 Phase:0 +
+ R5
LF4 Phase:0 27.39MW 11.01MVAR
+
+ LF
2.8e+5 /_-7 2.8e+5 /_-127 2.8e+5 /_113 Slack:LF5
50nF
+
30
LF
1.01/_0.3
3
R9 + 1020
P=-204.9MW Q=-29MVAR Vsine_z:VwZ4
2 1
0.99/_0.0
Three-Phase-to Ground Fault Location
8
1.nF
1.nF
+
8
9
0.1uF 1.nF
+
33'
(1)
+
+
150' +
17.85
25nF
CP
25nF
2.5nF
+
25nF
7
345/161 kV Autotransformer
327.5/161/13.8
7.5nF
Inductiv e VT 110'
25nF
55'
LF
VM
+
+
+
+
?v m3
+
19707 /_-12 19707 /_-132 19707 /_108 PVbus:LF2
+
450'
3
+
2
HV
1.nF
+
300' LV
+
s155
0.0281Ohm
+
+
+
0.0281Ohm
+
+
0.0281Ohm
+
+
0.0281Ohm
+
0.001124
CCPD
15.81
+
DEV19
+
+
+ VwZ2
R17
90'
0.1nF
LF2 Phase:0
2500
55'
110'
+
450' C13
+
+
2nF
28.1
220'
+
LF
28.1
CB_2DISC
+
28.1
CB_2DISC
+
220'
28.1
+
+
UNIT 2 1110 M VA
P=850MW V=23.712kVRMSLL s155a Vsine_z:VwZ2
6
+
50nF
1 0
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1 0
A
B
C
D
E
F
G
H
I
Wind
1
200 MW Wind Farm Integration Study
1 DYg_10 2 1 0.69/34.5
+ RL
PI9
DEV2 Wind
v
DYg_7 2 1
2
2
PI8
Wind
RL
+/- 80 MVars SVC
+
0.69/34.5
DYg_8 2 1 SVC_1 Unique top
50/60 Hz
0.69/34.5
Np,Nq Kp,Kq
1x PI7
2 1
138 kV Network
3
Wind
VLOAD1 +
Va,Vb,Vc
3x
RL
3
DYg_1 2 1
MW,MX,PF
0.69/34.5
+
50.00
CP
m1 +VM ?v
1 SW1 + -1|1.1|0
3 138/34.5/13.8 ?
SW2 + 1.6|1.7|0
SW4 + 1.6|1.7|0
Wind
+
CP
PI1
SW3 + -1|1.1|0
50.00
PI4
C2
4
DYg_2 2 1
+ RL
DEV1 v
+
Wind RL
0.69/34.5
PI2
+
Wind
DYg_4 1 2
RL
SW5 + 1|1E15|0 1|1E15|0 1e15|1E15|0
PI10
4
+
+
+
+ 140kVRMSLL /_0
RL1
RL
2 AC1
DYg_3 2 1
0.69/34.5 DEV3
+
PI3
Wind RL
DYg_5 1 2
DYg_9 2 1
RL
0.69/34.5
PI5
+
0.69/34.5
Wind
5
0.69/34.5
PI6
RL
5
Wind
+
v
6
6 DYg_6 1 2
0.69/34.5
A
B
C
D
E
F
G
H
I
A
B
C
D
E
F
Ferroresonance Study
1
P scope
Q
RL2 + 0.0001,0.0001Ohm
LV
+
+
HV 1.15nF
V1
+
Tr0
Y I
66
303.11kVRMS /_0
2
1.227nF
132.79 +
+ 0.054,2.68Ohm
+
Y
I ?i
Hyst2 ?vipf
+
m2 ?v
0.1uF
Tr0_2 303.12kV +
+
VM +
+
+ AC1
p1
-1|50ms|5
RL1 + 0.721,54.06Ohm
m1 +A ?i
+ 0.5,10Ohm
i
jacobson_siemens_170mva_3.dat model in: jacobson_siemens_170mva_2.hys P
+
2
i
+
200
+
3.4nF +
hfit1
Ydyn
Q scope
5nF
1
4.025nF
Tertiary
+
V2 4.025nF
Dynamic Resistance Controller Modeling Eddy losses
scope
V1
p2 v(t)
+
loss1 1
+ -
V2
scope scp9 Gain1
scp3
sum1
3
Int1
Fm2 1
Ftb1
ABS
297.2
p3 v(t)
Ydyn
scope
3
scp10
Fm1 1
RECIP
110000
Modeled Hysteresis Characteristic at 1.0 &1.4 pu
4
4
Obtained HV Hysteresis Characteristic at 1.0 & 1.4pu (including Cap & Eddy losses) 5
5
6
6
Simulated Saturation Characteristic (Air reactance of 45.8%)
[email protected] pu = 300 kOhms Air reactance=44.3%@ 170 M VA
Vm2 rms in pu of 303.11 kV 1.2 1.3 1.4
Im1 (rms) in pu of 170 MVA 0.021 0.180 0.406
7
7 A
B
C
D
E
F
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
1
1
Switching of A 420 kV Three-Phase Shunt-Reactor
I/O FILES
State of the art simulation introducing: - A realistic model of a three-phase shunt reactor taking into account the asymetrical couplings of the magnetic circuit; - A realistic circuit-breaker model based on the well-known Cassie - Mayr modified arc equations;
2
3
2
3
4
4 +
+ 0 .5
1 .6 n F
+
0 .5
+
1u H
1 uH
+
DEV3
b
10
0 .3 75n F
20 m
DEV4
Sim plified Ar c Model based on Mayr 's & Cassies equations
+
25 uH
+
30 m H
1 uH
in
Sim plified Ar c Model based on Mayr 's & Cassies equations out
in
+
out
b
+
C9
1 .1 5 n F
+
0 .0 5 n F
?v
CB_ ARC_ a
+
CB_ ARC_ a
5
m1 + VM
+
0 .3 75 nF
65 m
+
+ 0 .8
+
+ 1u H
+
+
+
+
1u H
1 uH
DEV5
4nF
DEV6
Sim plified Ar c Model based on Mayr 's & Cassies equations c
a b c
Line CVT
in
C1 1
Sim plified Ar c Model based on Mayr 's & Cassies equations out
in
0 .0 5 n F
6
1 .1 5 n F
out
c
CB_ ARC_ a
+
CB_ ARC_ a
+
+ +
C1 3
0 .5
1 .6 n F
0 .5
+
4 nF
4 0 5 k VRM SL L /_ -3 0
+
+ 1 .6 n F
+
2 00n F
+
+
AC1
+
6
0 .7 5n F
+
+ 0 .5
0.75 nF
+
+
+ 1 .6 n F
20 0k
+
Line
3 00 0
a
CB_ ARC_ a C8
0 .5
1 .6 n F
+
R1 2
+
0 .0 5 n F +
35 0
R1 0 +
out
+
CB_ ARC_ a
5
BUS2 4
in
2 00 k
out
0 .75n F
in
Sim plified Ar c Model based on Mayr 's & Cassies equations
b
a
DEV2
Sim plified Ar c Model based on Mayr 's & Cassies equations
0.7 5nF
DEV1 BUS2 3
c
+
+
+
a
1 .6 n F
C1 0
7
7
Network
Substation
420 kV Busbar
CT
Double-break 420 kV SF6 C.-B.
420 kV Busbar
CVT
Three-phase 420 kV Shunt-Reactor
8
8
Three-Phase 420 kV 100 MVARS Shunt Reactor F= 0.548 Wb, N=1409 turns, L1=5.617 H For mu (50 Hz) = 0.06 H/m: Xac=Xc a= 9 Ohms Xba=Xbc =7 Ohms Xab=14 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xc c=1741 Ohms
9 g = 12 mm
2900 mm
9
For mu (700 Hz) = 0.01 H/m:
1 0
x x= 710 mm
1 0
2x
Xac =Xca= 54 Ohms Xba=Xbc =42 Ohms Xab=84 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xc c =1741 Ohms
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
A
B
C
D
1
x 10
6
F
G
H
1
Validation of the Air gap leader Model with CIGRE equation
PLOT Vleader_3MV@vn@1 breakdown time
0
E
-0.5
The applied surge varies between -3 and -5M V
y
-1
m2 -1.5
2
VM +
2
?v
3
4 t (ms)
5
6
R + AG
7 x 10
+
2
Leader
1
+
The leader length varies between 3 and 6m
-2.5
100
-2
-3
Vsurge ?v -3060kV/-14000/-4166666
breakdown time definition 3
3 0
x 10
6
PLOT Vleader@vn@1 Vsurge2@vb@1
Length (m)
-0.5
Voltage(MV)
-1
3 4 5
y
-1.5
-2
Model 1.69 0.95 0.69
4 Equation 2.568 1.2516 0.7867
Model 2.9 1.58 1.1
5 Equation 5.4155 2.1491 1.2516
6 Model Equation Model 4.8 2.15 3.6902 3.1 1.3 1.9316 1.8
breakdown time comparison in us
-2.5
4
3 Equation 1.2516 0.6944 0.4622
4
-3
-3.5
-4
0
0.01
0.02
0.03
0.04
0.05 t (ms)
0.06
0.07
0.08
0.09
0.1
A typical leader breakdown voltage compared to the applied surge voltage
Ref: 1- Shindo, Takatoshi; Suzuki, Toshio (CRIEPI) " New Calculation Method of Breakdown Voltage-Time Characteristics of Long Air Gaps", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 6, June 1985, pp 1556-1563.
5
2- DARVENIZA(M.); POPOLANSKY (F.); WHITEHEAD (E.R.) "Lightning protection of UHV transmission lines", CIGRE report 1975-41.
I/O FILES
A
B
C
5
D
E
F
G
H
f max=f o+df
sum2 + -
C2
Io_lim
fo
1 -0.15
Current Controller w ith VDCL
PI Controller
0.35
Kp=0.35 Ki=0.35
f req limits set here
C3
c 1 id_rec_pu
Scaling of Id
DEV6
freq_order
PLL osc 1
vdcl_input
freq_order
Fault/Test Sequence Generator: Enter: amplitude and timing sequence
pulse_train
AC Filters
v_pri_rec_b v_pri_rec_c
C6
4.573uF RLC8
2
+
3
L3 82.6
f(s)
MAX
Fm1
fs1
R4
3.846mH
This is necessary f or f ast initialisation
vd_rec
pulse_train deblock
vd_rec_pu
1
+
FR
DEV1
Frequency Measurement Circuit
+
RLC +
vac_rec
vac_rec
deblock
vd_out vd_out
Vdetector
AC-DC Voltage Measurement Circuit V.K.Sood
Fm8 RL1
rec_bus
4
R3 +
s158
+ 1
3 Ph f ault
230/205.45
a
vd_rec
cSW1
R6 + 1 1
+
b
cSW2 + cSW3
c
-
gates m1
id_rec
?v
+
YgD_2 1 2
RLC
1k,0,0.1uF
RLC4
Rectifier
+ 1
ACFault1
+
sg4
L4
Recov ery f rom a dc f ault will require FR to be coordinated
rec_delta_bus
6-pulse bridge 3-phase
R1 +
DC Fault
RLC2
DCf ilter
s123
+ VM
To Bipolar DC system
ACFault3 sg1
i(t)p2 1,0.2814,1uF
a
+
Inv erter 1,0.2814,1uF
-
gates
250mH
220kV
GND
230/205.45
cSW5
1 Ph f ault
350mH
RLC5 220kV
R8 +
+ 2.5
DCFault
A
B
C
D
E
F
G
RLC3
v (t)
RLC +
2.5
H
DC1
DC2
RLC6
350mH
D1 1000,0,0.1uF
+
+
R5 +
NOR
4
R7 +
5
3
RLC
Fm3
sg7
1 2 3 4 5 6
D2 1000,0,0.1uF
3
1 2 3 4 5 6
RLC1
+
0.1
+
3-phase rec_star_bus 2
VDCL
6-pulse bridge
2
0.050 1
1 2 3 4 5 6
F1
+
YY2 1
Delay
sg3
2 3 4 5 6
AC2 ?vi
dly1
F1 2 3 4 5 6
0.25,45mH
230kV /_60
BLOCK
rec_bus2
+
sg2
4
scp2 scope rec_delta_pulses
Fm9
RLC
Startup
rec_star_firing
1 2 3 4 5 6
RLC +
RLC +
0.63,27.83mH,3.009uF 0.63,19.52mH,3.009uF RLC7
Forced Retard Rectif ier
scp1 scope
2
rec_star_pulses
Bridge_star F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Bridge_delta
f_out V.K.Sood
sg6
T ests possible: 1. Step change in Io 2. Voltage Dependent Current Limit (VDCL) 3. Block/Deblock of firing pulses 4. DC Line fault with protection & recovery sequence 5. Three phase ac bus fault, with recovery sequence 6. Single phase ac bus fault, high impedance, no protection 7. Forced retard of rectifier firing pulses 8. Step change in oscillator frequency
1000,0,0.1uF
Step_Io
fa_in fb_in fc_in
v (t) v_pri_rec_a
p1
Purpose: Teaching/Training of personnel on HVDC systems
Firing_Generator
f_m easure
1
Prepared by: V.K.Sood,
[email protected] Date: May 2003
DEV5
vd_rec_pu
DEV4
Step changes in Io
sg8
-0.2 pu 300-500 ms 1.0 pu 300-500 ms 1.0 pu 300-500 ms 1.0 pu 300-350 ms 0.75 pu 325-375ms 0.75 pu 300-400ms 1.0 pu 300-400ms 1.0 pu 300-400ms 25 Hz 300-400ms
Step Io VDCL BLOCK DCFault Apply FR ACFault3 ACFault1 FR Step Frequency
V.K.Sood
sg5
3
1. 2. 3. 4.
pulse_train
freq_meas
freq_meas
Timing
+ RLC
2
Amplitude
5. 6. 7. 8.
0.35
1600
H
Model of HVDC Rectifier operating with weak ac system and bipolar 6-p dc system
Description lim1
f min=f o-df
PI
c
V.K.Sood id_rec
G
Suggested Test Sequences
0.15
DEV2 u out Kp Ki
error
+
-
Vd_static Vd_dynamic
F
+
Iref
1.0
+
s40
Imin
Imax
VDCL
Iref
c
E
DOUBLE CLICK HERE FOR MORE INFO
+
DEV3
1.2
D
Io_limit
cSW4
Imax
c C1
C sum3
+
0.3
1
B
Imin C5
+ R2
A
C4
c
5
A
B
C
D
E
1
Field Recording (10-08-1986)
F
G
H
Validation of the Secondary Arc Model with IREQ Laboratory Tests
EM TP-RV Simulation (05-22-2005)
2
1
2 R2 + 300 ?i RL1 + 0.7,13Ohm
C3
1.60uF
+
3
4
AC1
0.2
DEV1
3
Sec_ARC_a +
66.4kVRMS /_0
+
+
1.05uF
Secondary arc
+
C2
+
SW1 + 100ms/200ms/0
R3
0.2
R1
Primary Arc: 5 kA eff Secondary Arc: 40 A Wind Speed: 9.7 km/h Secondary Arc Duration: 1.04 sec. 315 kV insulator string, l=2.3 m
4
Ref.: Kizilcay M ., Bán G., Prikler L., Handl P.: "Interaction of the Secondary Arc with the Transmission System during Single-Phase Autoreclosure" IEEE Bologna PowerTech Conference, June 23-26, 2003 Bologna, Italy, Paper 471
5
I/O FILES
5
A
B
C
D
E
F
G
H
A
B
1
C
D
E
F
G
H
1
Example of Synchronous/Asynchronous Machine Modeling - Starting an 11000 hp motor at 1s with 5 induction machines already in steady-state - LL-g fault on the 120 kV bus with system islanding at 9 s - System recovery by the governor system of the large SM until 30 s - Case showing the good numerical stability of large number of machines in EMTP-RV - Ref. (Motor): G. J. Rogers, IEEE Trans. on Energy Conversion, Vol. EC2, No 4 Dec. 1987, pp. 622-628. - Using variable output rate after 15 s of simulation.
2
2
3
?v 13.8kV 500MVA
Tm
ASM1 YgYg_np2 2 1
?i
+ 120kV /_17
3
9/9.15/0 9/9.15/0 1E15/1E15/0
0.2uF
4
Equivalent 120 kV Network
+
S
0.1 1Ohm
25.5/6.6 1
+ 40uF C4
25.5/12
YgYg_np1
+
6.6kV 11000hp
?
SW_ASM1 1/1E15/0
?m
2
ASM
P
1 C3
YgD_1 Q
0.2uF
Network +
+ 1 120/26.4
1uF
Q_net
Q
+
+ 1
13.8/122
SM2
+
scope
T
Speed
4
AVR&Gov (pu)
P
?i
+
S
ASM1_control
SM IN
P_ASM1
scope
Q_ASM1
SW_Network +
+
AVR_Gov_SM2
Starting motor at 1 s
P_net -1/9.15/0
DYg_SM2 1 2
?m
SW_Fault
Out
+
Simulation options
I/O FILES
+
2
MPLOT
scope
Vnet VM
scope
Fault & System Islanding at 9 s
3
380uF C7
Induction motors in steady-state
?m
P
SM
SM_load
Q
Load1
420 MW Load
5
Pm
f(u)
1
SM_load_control 6.6kV 11000hp
Omega_1
6.6kV 11000hp
ASM2
S
?m
ASM3
ASM
S
ASM4
6.6kV 11000hp
?m
6.6kV 11000hp
ASM
S
ASM ?m
ASM5
ASM
ASM6
6.6kV 11000hp
?m
?m
ASM
S
240uF
S
+
5
12kV 40MVA
32 MW Synchronous Motor Load A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
1
1
Operation of Tap Changers During a Voltage Dip
2
2
loss1 1
loss2 1
V_230_pu scope
V_26kV_pu scope
21555 187771
3
3
+/- 10% of 230 kV in 6 taps of 1.667% Initial Tap at -2 Td0=10 s, Td inverse Deadband of 1%
+/- 15% of 26.4 kV in 8 taps of 1.875% Initial Tap at -2 Td0=15 s, Td inverse Deadband of 1.5%
OLTC_Control2
4
OLT C_Control1
Vmeas
Tap
Slack: 500kVRMSLL/_0 Vsine_z:VwZ1
Tap
Vmeas
4
rad mag V1
LF
LF1
YD_1
YgYgD_np1 2 VwZ1
+
1.02/_-3.4
1
2
1.01/_-44.9
PI
+ 508kVRMSLL /_2 508kVRMSLL /_-118 508kVRMSLL /_122 Slack:LF1
230/26.4 ?
Transmission Line
3
0.013 0.22Ohm
+
500/230/50
C1
MW,MX,PF
MW,MX,PF
+
SW1
0.1uF 5/50/0
1
PI1
rad mag V1
Z Dist
I/O FILES
Z Dist
+ 50
5
VLOADg2
Creating a 5% Voltage Dip Duration of 45 sec. A
B
VLOADg1
Va,Vb,Vc
R1
C
Va,Vb,Vc
Np,Nq Kp,Kq
5
Np,Nq Kp,Kq
50/60 Hz
50/60 Hz MPLOT
D
E
F
G
H
A
B
C
D
ZnO Arrester model based on IEEE Surge Protective Device Working Group
1
1 Simulation options
- L1 (uH) = 15 d/n; R1 (Ohm) = 65 d/n - L0 (uH) = 0.2 d/n; R0 (Ohm) = 100 d/n - C0 (pF) = 100 n/d
I/O FILES
d is the Height of the arrester and n is the number of parallel columns 2
2
Example of Modeling of an Ohio-Brass Zno Arrester for a 330 kV Network MCOV= 209 kV d=1.8 m, n=1
3
A0 & A1 Characteristics adjusted to get 516 kV for a 2 kA 45 us Switching Surge then L1 adjusted to get 604 kV for a 10 kA 8/20 us Lightning surge then checking for 10 kA 0.5 us front of wave 664.5 kV vs 665 kV from Ohio-Brass FANTASTIC!!
3
m1 + VM ?v L0
42uH
+
?i 0.0555nF
516000 C1
516000 ZnO2
10.7kA/-70000/-4755000
ZnO +
+ 117 R1
180 R0
+
?i
Isurge1
L1
+ 0.36uH
ZnO +
Isurge2
+
+
Isurge3
?i
4
0.5 us
8 us +
45 us
+
4 ZnO1
24.9kA/-55000/-175000 2.95kA/-5000/-46500 model in: A0_1_Char.pun
ZnO Data function
model in: A1_1_Char.pun
ZnO Data function A1_1_Char.dat
5
5
A
B
C
D
New example
New example
New example
New example
New example
Contacts Technical Support:
[email protected] Sales Team:
[email protected]
www.emtp.com
POWERSYS Corporate headquarters Les Jardins de l'Entreprise 13610 Le Puy-Sainte-Réparade FRANCE
POWERSYS German Office Verbindungsbüro Deutschland Walter-Kolb-Str. 9-11 60594 Francfurt/Main DEUTSCHLAND
POWERSYS Inc. 8401 Greenway Blvd. Suite 210. Middleton, WI 53562 USA
Sales Email:
[email protected] Support Email:
[email protected]
Email:
[email protected]
Sales Email:
[email protected] Support Email:
[email protected]
Tel: +33 (0)4 42 61 02 29 Fax: +33 (0)4 42 50 58 90
Tel. : +49 (0)69 / 96 21 76 - 34 Fax : +49 (0)69 / 96 21 76 – 20
Tel : +1 608 203 8808 Fax: +1 608 203 8811
CORPORATE WEB SITE: www.powersys-solutions.com
Cannot be diffused nor copied without the written authorization of POWERSYS