Calculus one and several variables 10E Salas solutions manual ch17

July 30, 2017 | Author: 高章琛 | Category: N/A
Share Embed Donate


Short Description

Calculus one and several variables 10E Salas solutions manual...

Description

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

866

December 7, 2006

SECTION 17.1

CHAPTER 17 SECTION 17.1 1.

3  3 

2i−1 3j+1 =

⎛

 3 

i=1 j=1



2i−1

i=1

3 

⎞ 3j+1 ⎠ = (1 + 2 + 4)(9 + 27 + 81) = 819

j=1

2. 2 + 22 + 3 + 32 + 4 + 42 + 5 + 52 = 68 3.

4  3 

(i2 + 3i)(j − 2) =

i=1 j=1

4.

5.

4 



⎡ 3  (i2 + 3i) ⎣ (j − 2)⎦ = (4 + 10 + 18 + 28)(−1 + 0 + 1) = 0

i=1

j=1

2 2 2 2 2 2 4 4 4 4 4 4 6 6 6 6 6 6 4 + + + + + + + + + + + + + + + + + = 19 . 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 35 m 

Δxi = Δx1 + Δx2 + · · · + Δxm = (x1 − x0 ) + (x2 − x1 ) + · · · + (xm − xm−1 )

i=1

= xm − x0 = a2 − a1

6. (y1 − y0 ) + (y2 − y1 ) + · · · + (yn − yn−1 ) = yn − y0 = b2 − b1

7.



m  n 

Δxi Δyj =

i=1 j=1

8.

9.

⎛

m 

Δxi

q n  

⎛ Δyj Δzk = ⎝

n  j=1

m 

m 

(xi + xi−1 )Δxi =

⎞ Δyj ⎠ = (a2 − a1 ) (b2 − b1 )

j=1

j=1 k=1

i=1



i=1

n 

⎞ Δyj ⎠

q 

 Δzk

= (b2 − b1 ) (c2 − c1 )

k=1 m 

(xi + xi−1 )(xi − xi−1 ) =

i=1

(xi 2 − x2i−1 )

i=1

= xm 2 − x0 2 = a2 2 − a1 2 10.

n  1 j=1

11.

2

m  n 

(xi + xi−1 )Δxi Δyj =

i=1 j=1

∧ (Exercise 9)

12.

1 3 1 (yj − yj−1 3 ) = (b2 3 − b1 3 ) 2 j=1 2 n

(yj 2 + yj yj−1 + yj−1 2 )Δyj =

m  n  i=1 j=1

m 

 (xi + xi−1 )Δxi

i=1

n 

 Δyj

j=1

  = a2 2 − a1 2 (b2 − b1 )

(yi + yj−1 )Δxi Δyj =

m  i=1

⎤ ⎡ n  Δxi ⎣ (yj 2 − yj−1 2 )⎦ = (a2 − a1 )(b2 2 − b1 2 ) j=1

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.2 13.

m  n 



m 

(2Δxi − 3Δyj ) = 2

i=1 j=1

 Δxi

867

 m  n   n    1 −3 1 Δyj

i=1

j=1

i=1

j=1

= 2n(a2 − a1 ) − 3m(b2 − b1 ) 14.

m  n 

(3Δxi − 2Δyj ) = 3

i=1 j=1

15.

m  n 

Δxi − 2

i=1 j=1

q m  n  

 Δxi Δyj Δzk =

i=1 j=1 k=1

m 

m  n 

Δyj = 3n(a2 − a1 ) − 2m(b2 − b1 ).

i=1 j=1

⎞ ⎛ n  q   Δxi ⎝ Δyj ⎠ Δzk

i=1

j=1

k=1

= (a2 − a1 )(b2 − b1 )(c2 − c1 ) 16.

q m  n  

(xi + xi−1 )Δxi Δyj Δzk =

i=1 j=1 k=1

m 

⎞ 

⎛ n q   2 2 (xi − xi−1 ) ⎝ Δyj ⎠ Δzk

i=1

j=1

k=1

= (a2 2 − a1 2 )(b2 − b1 )(c2 − c1 ) 17.

n  n  n 

δijk aijk = a111 + a222 + · · · + annn =

appp

p=1

i=1 j=1 k=1

18. Start with

n 

m  n 

aij .

Take all the aij

(there are only a finite number of them) and order them

i=1 j=1

in any order you chose. Call the first one b1 , the second b2 , and so on. Then m  r n   aij = bp where r = m × n. p=1

i=1 j=1

SECTION 17.2 1. Lf (P ) = 2 14 , 3. (a) Lf (P ) =

Uf (P ) = 5 34 n m  

2. Lf (P ) = 3,

(xi−1 + 2yj−1 ) Δxi Δ yj ,

Uf (P ) =

i=1 j=1

(b) Lf (P ) ≤

n m  

Uf (P ) = 5

(xi + 2yj ) Δxi Δyj

i=1 j=1

  m  n   yj−1 + yj xi−1 + xi +2 Δxi Δyj ≤ Uf (P ). 2 2 i=1 j=1

The middle expression can be written n n m  m      2  1  2 2 yj − yj−1 Δxi . xi − x2i−1 Δyj + 2 i=1 j=1 i=1 j=1

The first double sum reduces to m  n  1 i=1 j=1

2

xi − 2

x2i−1



1 Δyj = 2



m  

xi − 2

x2i−1





i=1

n  j=1

 Δyj

=

1 (4 − 0) (1 − 0) = 2. 2

In like manner the second double sum also reduces to 2. Thus, I = 4; the volume of the prism bounded above by the plane z = x + 2y and below by R.

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

868

December 7, 2006

SECTION 17.2

4. Lf (P ) = −7/16, 6. (a) Lf (p) =

5. Lf (P ) = −7/24,

Uf (P ) = 7/16

m  n 

(xi−1 − yj )Δxi Δyj ,

Uf (P ) =

i=1 j=1

(b) Lf (P ) ≤

m  n 

Uf (P ) = 7/24

(xi − yj−1 )Δxi Δyj

i=1 j=1

m  n   xi + xi−1



2

i=1 j=1

yj + yj−1 2

 Δxi Δyj ≤ Uf (P )

The middle expression can be written m  n  1 i=1 j=1

2

(xi 2 − xi−1 2 )Δyj −

m  n  1

2

i=1 j=1

(yj 2 − yj−1 2 )Δxi .

The first sum reduces to ⎞ ⎛ n m   1 1 1 (xi 2 − xi−1 2 ) ⎝ Δyj ⎠ = (1 − 0)(1 − 0) = . 2 i=1 2 2 j=1 In like manner the second sum also reduces to 12 . 7. (a) Lf (P ) =

m  n 

(4xi−1 yj−1 ) Δxi Δyj ,

Thus I = m  n 

Uf (P ) =

i=1 j=1

(b) Lf (P ) ≤

1 2



1 2

= 0.

(4xi yj ) Δxi Δyj

i=1 j=1

m  n 

(xi + xi−1 ) (yj + yj−1 ) Δx1 Δyj ≤ Uf (P ).

i=1 j=1

The middle expression can be written m  n  

xi − 2

x2i−1



yj − 2

2 yj−1



i=1 j=1

 =

m 

 xi − 2

x2i−1

i=1



n 

 yj − 2

2 yj−1

j=1

by (17.1.5)    = b 2 − 02 d 2 − 02 = b 2 d 2 . It follows that I = b2 d2 . 8. (a) Lf (P ) =

m  n 

3(xi−1 2 + yj−1 2 )Δxi Δyj ,

Uf (P ) =

i=1 j=1

m  n 

3(xi 2 + yj 2 )Δxi Δyj

i=1 j=1

m  n    2 (b) Lf (P ) ≤ (xi + xi xi−1 + xi−1 2 ) + (yj 2 + yj yj−1 + yj−1 2 ) Δxi Δyj ≤ Uf (P ) i=1 j=1

Since in general (A2 + AB + B 2 )(A − B) = A3 − B 3 , m  n 

(xi 3 − xi−1 3 )Δyj +

i=1 j=1

which reduces to m 

m  n 

the middle expression can be written

(yj 3 − yj−1 3 )Δxi ,

i=1 j=1

⎛ xi 3 − xi−1 3

i=1



n 

⎞ Δyj ⎠ +

j=1 3

3

m 

⎛ Δxi

i=1 2

2

This can be evaluated as b d + bd = bd(b + d ).



n 

⎞ yj 3 − yj−1 3 ⎠ .

j=1

It follows that I = bd(b2 + d2 ).

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.2 9. (a) Lf (P ) =

m  n 

  3 x2i−1 − yj 2 Δxi Δyj ,

Uf (P ) =

i=1 j=1

(b) Lf (P ) ≤

m 

n 

m  n 

869

  2 Δxi Δyj 3 xi 2 − yj−1

i=1 j=1



   2 xi 2 + xi xi−1 + x2i−1 − yj 2 + yj yj−1 + yj−1 Δxi Δyj ≤ Uf (P ).

i=1 j=1

  Since in general A2 + AB + B 2 (A − B) = A3 − B 3 , m  n  

m  n    3  3 xi 3 − x3i−1 Δyj − yj − yj−1 Δxi ,

i=1 j=1

which reduces to m 

the middle expression can be written

i=1 j=1

⎞  ⎞ ⎛ n ⎛ n m    3 ⎠ . xi 3 − x3i−1 ⎝ Δyj ⎠ − Δxi ⎝ yj 3 − yj−1

i=1

j=1

i=1



This can be evaluated as b3 d − bd3 = bd b2 − d

 2

j=1

. It follows that I = bd (b2 − d2 ).

10. On each subrectangle, the minimum and the maximum of f are equal, so f is constant on each subrectangle and therefore (since f is continuous) on the entire rectangle R. Then  f (x, y) dxdy = f (a, c)(b − a)(d − c). R

 11.

 dxdy =

Ω

b

φ(x) dx a

12. Suppose that there is a point (x0 , y0 ) on the boundary of Ω at which f is not zero. As (x, y) tends to (x0 , y0 ) through that part of R which is outside Ω, f (x, y), being zero, tends to zero. Since f (x0 , y0 ) is not zero, f (x, y) does not tend to f (x0 , y0 ). Thus the extended function f can not be continuous at (x0 , y0 ). 13. Suppose f (x0 , y0 ) = 0. Assume f (x0 , y0 ) > 0. Since f is continuous, there exists a disc Ω with radius  centered at (x0 , y0 ) such that f (x, y) > 0 on Ω . Let R be a rectangle contained in Ω . Then  f (x, y) dxdy > 0, which contradicts the hypothesis. R

 14.

(x + 2y) dx dy = 4;

area(R) = (2)(1) = 2,

so average value =

4 =2 2

R

 4xy dxdy = 22 32 = 36. Thus

15. By Exercise 7, Section 17.2, R

favg =

1 area (R)

 4xy dxdy =

1 (36) = 6 6

R

 (x2 + y 2 ) dxdy =

16. R

bd(b2 + d2 ) ; 3

area(R) = bd,

so average value =

b2 + d 2 3

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

870

December 7, 2006

SECTION 17.3

17. By Theorem 16.2.10, there exists a point (x1 , y1 ) ∈ Dr such that 

 dxdy = f (x1 , y1 )πr2

f (x, y) dxdy = f (x1 , y1 ) Dr

=⇒

f (x1 , y1 ) =

1 πr2

R

 f (x, y) dxdy Dr

As r → 0, (x1 , y1 ) → (x0 , y0 ) and f (x1 , y1 ) → f (x0 , y0 ) since f is continuous. The result follows. 18. 0 ≤ sin(x + y) ≤ 1 for all (x, y) ∈ R. Thus, 0 ≤



sin(x + y) dxdy ≤

R

19. z =



dxdy = 1

R

 4 − x2 − y 2 on Ω : x2 + y 2 ≤ 4, x ≥ 0, y ≥ 0;

 

4 − x2 − y 2 dxdy is the volume V of one

Ω

quarter of a hemisphere; V = 43 π.

 20. 8 − 4 x2 + y 2 on Ω is a cone with height h = 8 and radius r = 2;

V =

32π 3

x y z + + = 1; the solid is the tetrahedron bounded by the coordinate planes 3 2 6 x y z and the plane: + + = 1; V = 16 (3)(2)(6) = 6 3 2 6    2 ∼ ∼ 22. (a) Lf (P ) = 35.4603; Uf (P ) = 36.5403 (c) 3y − 2x dxdy = 36 21. z = 6 − 2x − 3y ⇒

R

SECTION 17.3  1 3  2 1. x dy dx = 0



0 3





1

x+y

e 

3x2 dx = 1

0

2. 0

1

0 1



3

dx dy = 0



3

1

2

3.

xy dy dx = 0



0 1



0



x

3

4.

1

x y dy dx = 0



0 1







x

xy 3 dy dx =

0 1





x3

x

x2 y 2 dy dx = 0



7.

1

3

0

1

dx =

9x dx = 0

0

1 4 y 4

x2

x

 dx = 0

0

9 2

1

1 1 5 x dx = 4 24

x3 1 dx = 3 18 

π/2

sin (x + y) dy dx = 0



x2 1 dx = 2 12



1



x

0 π/2

1 x y3 3

0

6. 0



0

5. 0

 3 (e1+y − ey ) dy = e1+y − ey 0 = e4 − e3 − e + 1

0

π/2

π/2

[− cos (x + y)]0

 dx = 0

π/2



 π  cos x − cos x + dx = 2 2

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.3 



π/2



π/2

8.



π/2

sin

cos(x + y) dx dy = 0



0



π/2

9.

π/2

(1 + xy) dy dx = 0

 10.

0





−1





1

y

11.

 (x + 3y ) dx dy =



1





 y

2 3/2 x 3



1 − y 2 dy = 0

y



y(ey

1

dy = 0

y2

(integrand is odd)

 2 2 2 y − y 7/2 dy = 3 27

2

y2 ey − − 1) dy = 2 2

2

0

0

6y 3



1

yex dx dy =

12. 0



1

xy dx dy = 0

y2

−1

1−y 2



  π/2  π/2  1 1 1 2 1 2 1 dx = π + π x dx = π 2 + π 4 y + xy 2 2 8 4 64 0 0 1

3

y2

0



0

 √1−y2

1

   π π/2 =0 + y − sin y dy = cos y − cos +y 2 2 0

0



π/2



1 = 0

1 (e − 2) 2

     2  4− 1 y2  2 2     1 2 1 2 2 2 13. dy 4 − y dx dy = 4−y 4− y − y 2 2 −2 21 y 2 −2 

2

=2



0



1



x2

14. I =



x3

0

1

(x4 + y 2 ) dy dx = 0

 512 16 − 8y 2 + y 4 dy = 15

 x2   1 6 4x y3 x9 x4 y + dx = − x7 − dx 3 x3 3 3 0



1 4x7 9 x8 x10 = = − − 21 8 30 0 280 15. 0

by symmetry (integrand odd in y, Ω symmetric about x-axis)





1

2y

−y 2 /2

16.

e 0





2

0



x/2



2ye

2

2

0

0

−1



−y 2 /2

dy = −2e

1



0

x5 +

x8 x6 − x4 − 2 2

x6 x9 x5 x7 = + − − 6 18 5 14



1 =2 1− √ e



0

x4



 dx + 0



 x4 x3  1 y2 y2 xy + xy + dx + dx 2 x3 2 x4 −1 0



x3

(x + y) dydx = 0



1

2   1 x2 1 x2 1 4 = xe dx = e e −1 2 4 4 0



x4

x3







ex dy dx =

(x + y) dy dx +

−1

=

−y 2 /2

0

0

0

1

dx dy =

0

17.

18.



1

 x4 +

0

x6 x8 − x5 − 2 2

x5 x7 x6 x9 + + − − 5 14 6 18 −1

1 =− 0



1 3

dx

871

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

872

December 7, 2006

SECTION 17.3

19.

20.



1





y 1/4

f (x, y) dx dy

21.

1



f (x, y) dydx x

22.



0



−1



1

−x

1





1

f (x, y) dy dx +

f (x, y) dy dx 0



1/2

√ 3

x

23.



y 1/3



1

f (x, y) dxdy + 1/2

1/2





y 1/3

f (x, y) dxdy y

1/2

24.



2





y

4



y

f (x, y) dx dy + 1

f (x, y) dx dy

1

2



y/2 8





4



−2



3

1 2 x+2

 dy dx =





4y−y 2

26.

3

dx dy = 0







y

27.

dx dy = 0

2y 3/2

0



−y

f (x, y) dx dy +

9 2

 1 y − 2y 3/2 dy = 160

1



+

9

3

f (x, y) dx dy

−1

1

 1 2 1 x + 2 − x dx = 9 2 4

(3y − y 2 ) dy =

1/4



3



y/2

0

y 1/4



4

−2

1/4x2

−3

f (x, y) dx dy 4

−1

4

+

25.



0

y 1/2

0

1

1



3



f (x, y) dx dy y

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.3 

3





5−x

28.

3

dy dx = 2

6/x

(5 − x − 6/x) dx =

2

5 2 + 6 ln 2 3 

29.

1





y2

sin 0

0



30.

1



y3 + 1 2

x2 dy dx = =



ln 2





32.

1



0



2





2/y

33.

dx dy = 1



y−1 1



34.

1

2



0

0



y





1−x

0

1



 y3 + 1 y sin dx dy = dy 2 0   3 1 2 y +1 = − cos 3 2 0   1 2 cos − cos 1 = 3 2 

1

−1

1

2

x2 (1 − x2 ) dx

4 15

e−x dy dx =



ln 2

e−x (2 − ex ) dx

0

 ln 2 = −2e−x − x 0 = 1 − ln 2

x3 x4 + y 2

 2 1 − (y − 1) dy = ln 4 − y 2

(x + y) dy dx = 0

2

ex

0





0

x2 −1

−1

31.

873

  1 (1 − x)2 dx = x(1 − x) + 2 3



1 √ ( 2 − 1)y dy 0 2 1 √ = ( 2 − 1) 4

dx dy =

1

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

874

T1: PBU December 7, 2006

SECTION 17.3 

2



3− 32 x

35. 0





0 1



   3  2− 2 y  3 4 4 4 − 2x − y dy dx = 4 − 2x − y dx dy = 4 3 3 0 0 

1

36.

1

(2x + 3y) dy dx = 0



0 2



0





1



2

39.

0 √

1−x2

√ − 1−x2 √



2−2y

x3 y dx dy =

0



2x−x2

(2x + 1) dy dx =

1



1

=

−1

=6

40.

1



√ 1− 1−x2

−1



1

√ 1+ 1−x2



41. 

0 1





√ − 1−x2

−1



1

1−x2



43.

 (1 − x) dy dx =

2

2

0



2





44.

(1 + xy) dx dy = 1



2y−1 a





a2 −x2

45. a



0

b(1−x/a)

0 1



47. 0



1

1





0

1 6

dx =

 11 2x3 − x4 − x6 dx = 70

2

3 55 (6 + 9y − 3y 2 − y 3 ) dy = 2 8 a

dy dx =

1



0 cos−1 y



(a2 − x2 ) dx =

2 3 a 3

 a   bc x 2 x y abc dy dx = 1− c 1− − dx = a b a 6 0 2

ey/x dx dy =

y

48. 0



x2

1

4 1 2x − x3 − x + 3 3

 a2

= 3π

   1 2 2 43 2 3/2 2 2 6 1 − x − x 1 − x − (1 − x ) dx = π. 2 3 16 −1



0

46. 



2

  (2 1 − x2 − 2x 1 − x2 ) dx = π

0

0



1

π



0

5−y

1 − y 2 dy = 6

1

(x + 3y ) dy dx = x2

1

−1



x



1−y 2

2

0 √

1

−1

(x + y ) dy dx = 0

42.

1

2

(2x + 1) dx dy 1−y 2

1−

1 (4 − y − x2 ) dy dx = 4

2

1−y 2

 1+√1−y2 x2 + x √ dy

2



1−x



1−

1



1+



−1





2 15

   1 π x2 1 − x2 + (1 − x2 )3/2 dx = 3 2 −1

 (x2 + y 2 ) dy dx = 2

√ − 2x−x2

0

3 5 (2x + ) dx = 2 2



2

x3 y dy dx =

0

−1



0 1− 12 x

37.

38.

QC: PBU/OVY

JWDD027-Salas-v1

x

 ey/x dy dx =

0

1



xey/x

0

 esin x dx dy = 0

π/2

 0

cos x



x

dx =

0

0

 esin x dy dx = 0

π/2

1

x(e − 1) dx =

1 (e − 1) 2

cos xesin x dx = e − 1

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.3 

1



1

49.



2 y4



1

y

x e dy dx = 0





y

50.

0

y2

e 0

51. favg





1



−1

4

2

yey dy =







1

−1

1

2

8x dx =

1

1−x2

2 π

0

0



ln 2

Ω=1





xy dy dx =

2 ln 2

1 dy = 3 0



1

4

y 3 ey dy =

0

1 (e − 1) 12

−1

x2 dx =

2 3

2 ln 2



1



1 1 dy dx = xy (ln 2)2

ln 2

x(1 − x2 ) dx =

0 2 ln 2

1 2π

1 ln 2 dx = 1 x

ln 2

(parallelogram) 

1





x+1

Average value =

x+y

e 0

 55.

y

(quarter circle of radius 1)

4 Average value = π 1 (ln 2)2

1 3 y4 x e 3

1 (e − 1) 2



1 x y dy dx = 8

0



0

2

52. area of Ω = 14 π

54. area of

0

0

1 = 8

53. favg =

1

dx dy =

0

1

x e dx dy =

x

1



2 y4

x−1



d



0



f (x)g(y) dxdy =

 1 e2x+1 − e2x−1 dx = (e3 − 2e + e−1 ). 2 

b

d



 =

a d

f (x)g(y) dx c

 g(y)

c



b

f (x) dx



b

f (x)g(y) dx dy = c

R

1

dy dx =

dy

a



a

 

b

dy =

f (x) dx



d

g(y) dy

a

c

56. Symmetry about the origin [ we want Ω to contain (−x, −y) whenever it contains (x, y)]. Ω = { (x, y) : 0 ≤ x ≤ y,

57. Note that Set

0 ≤ y ≤ 1}.



Ω = { (x, y) : 0 ≤ y ≤ x, 0 ≤ x ≤ 1}.   1 y f (x)f (y) dxdy = f (x)f (y) dx dy 0

Ω



0 1



x

=

f (y)f (x) dy dx 0

x and y are dummy variables



0

1



=



x

f (x)f (y) dy dx = 0

0

f (x)f (y) dxdy. Ω

Note that Ω and Ω don’t overlap and their union is the unit square R = { (x, y) : 0 ≤ x ≤ 1,

0 ≤ y ≤ 1}.

875

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

876

December 7, 2006

SECTION 17.3  If 0

1

f (x) dx = 0, then  1   0= f (x) dx 0



1

f (y) dy

 =

f (x)f (y) dxdy

0

R

by Exercise 55





=

f (x)f (y) dxdy + 

=2

f (x)f (y) dxdy

 and therefore

f (x)f (y) dxdy Ω

Ω

Ω

f (x)f (y) dxdy = 0. Ω



x



b

58. 0

a

∂f (t, y) dy dt = ∂x

 

b



a

x

0

b

=

∂f (t, y) dt dy ∂x

[f (x, y) − f (0, y)] dy

a



b

=



f (0, y) dy.

a



Thus



b



x

b

a

and d dx

 a

b

0



d f (x, y) dy = dx =

d dx

a



x



0





b

f (0, y) dy a

   b d ∂f f (0, y) dy (t, y) dy dt + ∂x dx a

b

a

x

a

∂f (t, y) dy dt + ∂x

f (x, y) dy =

b

f (x, y) dy −

  H(t) dt + 0 = H(x) =

0

b

∂f (x, y) dy. ∂x

a

59. Let M be the maximum value of | f (x, y) | on Ω. 



φ2 (x+h)

φ1 (x+h)



φ1 (x)

= φ1 (x+h)

  | F (x + h) − F (x) | = 

φ2 (x+h)

+ φ1 (x)

φ2 (x+h)



φ2 (x)

+

φ2 (x)

 f (x, y) dy −

φ1 (x+h)

  = 

φ1 (x)



φ1 (x)

  f (x, y) dy 

φ2 (x+h)

f (x, y) dy +

φ1 (x+h)

  ≤ 

φ2 (x)

φ1 (x)

φ1 (x+h)

φ2 (x)

    f (x, y) dy  + 

  f (x, y) dy 

φ2 (x+h)

φ2 (x)

  f (x, y) dy 

   ≤  φ1 (x) − φ1 (x + h)  M + | φ2 (x + h) − φ2 (x)  M. The expression on the right tends to 0 as h tends to 0 since φ1 and φ2 are continuous.

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.4  60. (a)



3

2





1 3

2



(b)

xy dy dx ∼ = 4.5720 x2 + y 2



2x + y dx dy ∼ = 2.8133

√ 1+ y−1

y 2 −2y+2

1



3−y

4

1

 1 dy dx =



(b)

√ 1+ x−1

62. (a) 0

7

3

x2 −2x+2

1 1



dy dx ∼ = −25.9893

2

61. (a) 

−xy

xe

−1



5

2





x/2

(b)

2y

0

877

1 dx dy =

1 3

 2x + y dy dx +

0

2

3



3−x



2x + y dy dx

0

∼ = 2.8133 SECTION 17.4  π/2  sin θ  1. r cos θ dr dθ = 0



0 π/4

0





cos 2θ

2.

π/4



0 π/2

0





3 sin θ

3.

2



0 2π/3

−π/3



π/2

r dr dθ = 0

 π/2 1 1 1 = sin2 θ cos θ dθ = sin3 θ 2 6 6 0

cos2 2θ π dθ = 2 16

r dr dθ = 0

4.

π/2

2

9 sin θ dθ = 9 0



 π/2 1 3 (1 − cos θ) sin θ dθ = 9 − cos θ + cos θ =6 3 0

π/2

3

0



2 cos θ

r sin θ dr dθ = 0

2π/3

2 cos2 θ sin θ dθ =

−π/3

5. (a) Γ : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1     cos r2 r drdθ =





0

Γ

Γ



 cos r2 r dr dθ = 2π

0

(b) Γ : 0 ≤ θ ≤ 2π, 1 ≤ r ≤ 2   2π    cos r2 r drdθ = 0

1

1 6

2



Γ



 cos r2 r dr dθ = 2π

1

Γ

r cos r2 dr = π sin 1

2

r cos r2 dr = π(sin 4 − sin 1)

1

0

1

r sin r dr = 2π(sin 1 − cos 1)

0

(b) Γ : 0 ≤ θ ≤ 2π, 1 ≤ r ≤ 2.   2π  2  (sin r)r dr dθ = (sin r)r dr dθ = 2π 0

1

0

6. (a) Γ : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1.   2π  1  (sin r)r dr dθ = (sin r)r dr dθ = 2π 0



1

2

r sin r dr = 2π[cos 1 − 2 cos 2 + sin 2 − sin 1]

1

7. (a) Γ : 0 ≤ θ ≤ π/2, 0 ≤ r ≤ 1   (r cos θ + r sin θ)r drdθ =

π/2

0



Γ

=



1

r2 (cos θ + sin θ) dr dθ

0



π/2

(cos θ + sin θ) dθ 0

1

 2

r dr 0

  2 1 = =2 3 3

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

878

December 7, 2006

SECTION 17.4 (b) Γ : 0 ≤ θ ≤ π/2, 1 ≤ r ≤ 2   (r cos θ + r sin θ)r drdθ =

π/2



0

r2 (cos θ + sin θ) dr dθ

1



Γ

2



π/2

= 0

8. Γ : 0 ≤ θ ≤

0≤r≤

π 3,

 

+

y2





π/2

−π/2









1−x2

1/2 sec θ

12. 0

π/3

= 0



1







π/3



1

sin 0



π/2



π/3

 x2

+

1

0

y2



e−r r dr dθ = 2π 2



1

0





2x−x2

15.

π/2

π/3

sec3 θ dθ

0

π/2

1

r2 dr dθ =

1 1 − sec2 θ 2 8

 dθ =

π 2



2

r2 dr =

0

4 π 3

√ 1 3 π− 6 8

r4 cos θ sin θ dr dθ

0





1

π/2

0

(sin 1 − cos 1) dθ =

0

π (sin 1 − cos 1) 2

1 2 re−r dr = π(1 − ) e 

0

0

2

0

sin(r) r dr dθ =

2 cos θ

8 r cos θ r dr dθ = 3

x dy dx = 0



π/2

dy dx =

0

2



0

0





7 1 19 1 cos θ sin θ dθ = + = 5 480 40 480

0

14. 

sec θ



sin θ dθ + 5(32) cos4 θ

13. 

1 2

r4 cos θ sin θ dr dθ +



π/3

r dr dθ =

π/3

1−x2



0

0



π/2

10.

0



dθ 1 = 3 cos3 θ 3

0

1 π 3

r2 dr dθ =

0

π/3

π/3

r · r dr dθ =

0

dy dx = 



1/ cos θ

 π/3 √ 1 1 1√ 1 1 = = 3 + ln(2 + 3) sec θ tan θ + ln | sec θ + tan θ| 3 2 2 3 6 0

11. 1/2



π/3

0

0



1

1

  7 14 = 3 3

=2

1

dx dy =

Γ

9.

 r2 dr

1 cos θ

 x2

2

(cos θ + sin θ) dθ

0



π/2

cos4 θ dθ =

0



8 3 1 π π · · · = 3 4 2 2 2

(See Exercise 62, Section 8.3) 16. The region is the inside of the circle (x − 1/2)2 + y 2 = 1/4, which has polar equation r = cos θ. So the integral becomes





π/2

−π/2



π/3



17. A =

3 sin 3θ

r dr dθ = 0

0

9 2

 0

π/3

cos θ

 r3 dr dθ =

0

sin2 3θ dθ =

9 4

 0

π/2

−π/2

π/3

1 3π cos4 θ dθ = 4 32

(1 − 6 cos θ) dθ =

3π 4

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.4 







2(1−cos θ)

18. A =



2(1 − cos θ)2 dθ = 6π

r dr dθ = 0

0

0

19. First we find the points of intersection: r = 4 cos θ = 2

=⇒

π θ=± . 3

=⇒

 A=

π/3



r dr dθ =

−π/3





1+2 cos θ

0









b

23.





3 cos θ

1+cos θ

π/4

−π/3



 π/3  1 3θ 2 2 =π 9 cos θ − (1 + cos θ) dθ = + sin 2θ − sin θ 2 2 −π/3

b 1 3 b r sin θ + r2 dθ 3 2 0 0   2π  1 1 = b3 sin θ + dθ = b3 π 3 2 0



1

24. V = 0 π/2

π/3

 r2 sin θ + br dr dθ =

0











1

(1 − r )r dr dθ = 2π 2

0



0

0

(r − r3 ) dr =

0

r 12 − 3r2 dr dθ = 8 2

2

25. 8



π/2

0



π/2

=8 0









26. V = 0







r 0



π/2

−π/2

π 2

  3/2 2 1  dθ 12 − 3r2 − 18 0 4√ 16 √ 3 dθ = 3π 3 3 √

5 − r2 r dr dθ = 2π

5

r

 6

5 − r2 dr =

0

30 1/6 (5) π 7

  3/2 1 1 − 4 − r2 dθ 3 0 0   2π  √ 8 √ 2 = − 3 dθ = (8 − 3 3 )π 3 3 0 

4 − r2 dr dθ =

0

 28. V =



 6

0 1

27.

5

 0

√ 4π +2 3 3

0

r dr dθ =

−π/3

−π/3

(2 + 4 cos 2θ) dθ =

cos 2θ dθ = 4

0

π/3

π/3

1 (1 + 2 cos θ)2 dθ = 3π 2

r dr dθ = 8







√ 2 cos 2θ



π/4

0

0

(8 cos2 θ − 2) dθ =

0

21. A = 4





π/3

r dr dθ = 0

22. A =

1 2

−π/3

2







4 cos θ

20. A =



cos θ =

cos θ



 (1 − r2 )r dr dθ =

π/2

−π/2



cos2 θ cos4 θ − 2 4

 dθ =

5π 32

879

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

880

SECTION 17.5 

29.

December 7, 2006



π/2

−π/2



2 cos θ

2r2 cos θ dr dθ =



π/2

2 3 r cos θ 3

−π/2

0

 =

π/2

2 cos θ dθ 0

16 32 cos4 θ dθ = 3 3

−π/2



π/2

cos4 θ dθ =

0



32 3



3 π 16

 = 2π

Ex. 46, Sect. 8.3  30.

31.



π/2

−π/2

b a





2a cos θ

r2 dr dθ =



a sin θ

r 0



a2

0







r

32. (a) V = 2 0

(b)





 a sin θ  1 2 2 3/2 − a −r dθ 3 0 0  π   1 1 = a2 b 1 − cos3 θ dθ = πa2 b 3 3 0 

b dr dθ = a

π

 R2



s2

s ds dθ = 4π

0

r

S



R2 − S 2 dS =

0

 4π  3 R − (R2 − r2 )3/2 . 3

4 3 4 πR − V = π(R2 − r2 )3/2 3 3 

π/4



2

ex

0

1 2

0



+y 2





dxdy = 0

Ω

4



π/4

r dr dθ = 2 0





2 cos 2θ

33. A = 2

34.

r2

32 3 8a3 cos3 θdθ = a 3 9

−π/2

0

π

π/2

π/4

(2 cos 2θ)2 dθ = 2

(1 + cos 4θ) dθ = 0

  2 rer dr dθ = π e16 − e4

2

SECTION 17.5  1 1 2 1. M = x2 dy dx = 3 −1 0  xM M =

1

−1

 yM M = 

 

1





x3 dy dx = 0

=⇒



1

1

−1

1 1 2 x dx = 2 3





2

x y dy dx = 0 x

2. M =

1

(x + y) dy dx = 0

0



xM = 0

0

−1

1

1





x

xM M =

1

 5/2

x(x + y) dy dx = 0



1

x

0



yM M =



0



x

y(x + y) dy dx = 0

0

0

1



1/3 1 = 2/3 2

x 13 dx = 2 20

x3/2 +

0

1

yM =

=⇒

x2 + 2

x2 x3/2 + 2 3

 dx =

190 19 =⇒ xM = 42 273

dx =

3 6 =⇒ yM = 10 13



π 2

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.5 

1



1



π



sin x

 1 1 1 3. M = xy dy dx = (x − x5 ) dx = 2 6 0 x2 0  1  1 1 4 1 2 2/21 xM M = =⇒ xM = = x2 y dy dx = (x2 − x6 ) dx = 2 21 1/6 7 2 0 x 0  1 1  1 1 1 1/8 3 yM M = xy 2 dy dx = (x − x7 ) dx = =⇒ yM = = 3 8 1/6 4 2 0 x 0 

π

sin2 x π dx = 2 4 0 0 0  π  sin x  π 2 sin x π π2 xM M = xy dy dx = x dx = =⇒ xM = 2 8 2 0 0 0  π  sin x  π 3 sin x 16 4 yM M = y 2 dy dx = dx = =⇒ yM = 3 9 9π 0 0 0

4. M =

y dy dx =



8



x1/3

5. M = 0

0



y 2 dy dx =



1 3

8

x dx = 0

32 3

 1 8 2 512 xM M = xy dy dx = x dx = 3 9 0 0 0  8  x1/3  1 8 4/3 96 yM M = y 3 dy dx = x dx = 4 0 7 0 0 



a

8





x1/3

2



a2 −x2

=⇒ =⇒

xM = yM =

16 512/9 = 32/3 3

96/7 9 = 32/3 7

a

x 2 a4 (a − x2 ) dx = 8 0 0 0 2  a  √a2 −x2  a 2 x 2 a5 8 xM M = x2 y dy dx = (a − x2 ) dx = =⇒ xM = a 2 15 15 0 0 0  a  √a2 −x2  a x 2 a5 8 2 yM M = xy dy dx = (a − x2 )3/2 dx = =⇒ yM = a 3 15 15 0 0 0

6. M =

xy dy dx =



1



3x

7. M =

xy dy dx = 0

2x



1



3x

xM M = 

0 1



2x 3x

yM M = 0

2x

5 2



1

x3 dx =

0

5 x y dy dx = 2



1

2

xy 2 dy dx =

x4 dx =

0

19 3



1

0

5 8 1 =⇒ 2

x4 dx =

19 15

xM = =⇒

1/2 4 = 5/8 5

yM =

152 19/15 = 5/8 75

  1 3 3 x(3 − x) + (3 − x)2 dx = 5 2 2 2 0 0 0   2  3− 3 x  2 2 7 x 3 2 3 7 2 xM M = x (3 − x) + (3 − x) dx = =⇒ xM = x(x + y) dy dx = 2 2 2 2 10 0 0 0   2  3− 3 x  2 2 (3 − 32 x)3 6 3 x yM M = y(x + y) dy dx = (3 − x)2 + dx = 6 =⇒ yM = 2 2 3 5 0 0 0 

8. M =

2



3− 32 x



(x + y) dy dx =

2

881

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

882

December 7, 2006

SECTION 17.5 





1+cos θ

9. M = 0

0







1 r dr dθ = 3

1+cos θ

xM M = 0





2

0

(1 + 3 cos θ + 3 cos2 θ + cos3 θ) dθ =

0

1 r cos θ dr dθ = 4





3

1 = 4



5π 3

(1 + cos θ)4 cos θ dθ

0 2π

  cos θ + 4 cos2 θ + 6 cos3 θ + 4 cos4 θ + cos5 θ dθ

0

7π = 4 7π/4 21 = . 5π/3 20

Therefore, xM = 





1+cos θ

yM M = 0

0



1 r sin θ dr dθ = 4



3

0

2π  1 1 5 (1 + cos θ) sin θ dθ = =0 (1 + cos θ) 4 5 0 4

Therefore, yM = 0. 



10. M =

5π/6





2 sin θ

y dx dy =

5π/6

r sin θ r dr dθ = π/6

Ω

1

π/6



8 1 sin4 θ − sin θ 3 3



√ 3 3 + 8π dθ = 12

xM = 0

by symmetry  5π/6  2 sin θ  yM M = r2 sin2 θ r dr dθ = π/6

1

Therefore, yM

5π/6



1 4 sin θ − sin2 θ 4



6

π/6

√ 11 3 + 12π dθ = 16

√ 33 3 + 36π = √ 12 3 + 32π

11. Ω : −L/2 ≤ x ≤ L/2, −W/2 ≤ y ≤ W/2    M 2 4M W/2 L/2 2 1 Ix = y dx dy = y dxdy = MW 2 LW LW 0 12 0 Ω

∧ symmetry 

M 2 1 x dxdy = ML2 , LW 12

Iy = Ω



 Iz =

   M  2 1 x + y 2 dxdy = M L2 + W 2 LW 12

Ω



√  L 3 Ky = Iy /M = 6

W 3 , 6 √ √  3 L2 + W 2 Kz = Iz /M = 6

Kx =

Ix /M =



L 12. λ(x, y) = k x + 2  Ix =

−W/2

 =

W/2

W3 12



 M= 

L/2



L k x+ 2 −L/2



M W

 =

W/2

−W/2





L/2

L k x+ 2 −L/2 

 y 2 dx dy =

1 MW2 12

W/2

−W/2

 dx dy =  

y 2 dy

L/2

kW L2 2 

L k x+ 2 −L/2



 dx

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.5  Iy =

L/2



L/2



L k x+ 2 −L/2

−W/2

 Iz =



W/2



W/2

L k x+ 2 −L/2

−W/2





L k x+ 2

13. M =

 x2 dx dy =

kL4 W 1 = M L2 24 12

 (x2 + y 2 ) dx dy = Ix + Iy =





1 1 1 kL dxdy = kL( area of Ω) = kL2 W 2 2 2

dxdy =

Ω

1 M (L2 + W 2 ). 12

Ω

∧ symmetry       L 1 kx2 + Lx dxdy x k x+ dxdy = 2 2

 xM M = Ω



 kx2 dxdy = 4k

=

0

Ω

Ω



W/2

L/2

x2 dx dy =

0





symmetry =

1

1 6

2 2 kL W

 yM M =



L=

1 kWL3 12

symmetry 1 6

ML;

xM =

   L y k x+ dxdy = 0; 2

1 6

L

yM = 0

Ω

∧ by symmetry 





λ(x, y)[x2 + y 2 ] dx dy =

14. Iz = Ω

Ω

15. Ix = Ω

4M = πR2

4M 2 4M y dxdy = 2 πR πR2 

Iy = 14 MR2 ,

π/2



Ω

π/2



0

  2

sin θ dθ 0

λ(x, y)y 2 dx dy = Ix + Iy .

M Kz 2 = M Kx 2 + M Ky 2

Since Iz = Ix + Iy , we have 

λ(x, y)x2 dx dy +

R

Kz 2 = Kx 2 + Ky 2 .

r3 sin2 θ dr dθ

0 R

 3

r dr 0

therefore

  1 4M  π  1 4 = R = MR2 2 πR 4 4 4

Iz = 12 MR2

Kx = Ky = 12 R, 16. Iz = IM + d2 M.

√ Kz = R/ 2 Rotation doesn’t change d,

doesn’t change M , and doesn’t change IM .

883

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

884

December 7, 2006

SECTION 17.5

17. IM , the moment of inertia about the vertical line through the center of mass, is   M  2 x + y 2 dxdy πR2 Ω

where Ω is the disc of radius R centered at the origin. Therefore  2π  R M 1 IM = r3 dr dθ = MR2 . πR2 0 2 0 1 2

MR2 + d2 M where d is the distance from the center of the disc to the origin. Solving  √ this equation for d, we have d = I0 − 12 MR2 M. We need I0 =



b



f (x)

18. Ix = a



0

b



f (x)

Iy =

λ λy dy dx = 3



b

2



b

2

λx dy dx = λ a

[f (x)]3 dx

a

0

x2 f (x) dx.

a

19. Ω : 0 ≤ x ≤ a, 0 ≤ y ≤ b    b√ 2 2 4M 2 4M a a a −x 2 1 Ix = y dy dx = M b2 y dxdy = πab πab 0 0 4 Ω

 Iy =



4M 2 4M x dxdy = πab πab

a



0

Ω

b a



a2 −x2

x2 dy dx =

0

1 M a2 4

  Iz = 14 M a2 + b2 

1







x

20. Ix =

1

2



(x + y)y dy dx = 0



0 1



0 √



x

Iy =

1

2



0 1



0 1

21. Ix = x2

0



1



1

Iy = 1

1

Iz = 8



0

1

8

 0

x3 + 2

(x − x9 ) dx =

0



1

√ 3

x

(x3 − x7 ) dx =

 y 2 · y 2 dy dx =

x

 y 2 · x2 dy dx = 0

dx =

5 28

dx =

25 ; 72



Iz = Ix + Iy .

1 16

13 80

8

x5/3 96 dx = 5 5

8

x3 1024 dx = ; 3 3

0 √ 3



1 10

0

0

Iy = 0

1 2



7/2

xy(x2 + y 2 ) dy dx = Ix + Iy =

22. Ix = 

1 4

x2

0



x3 y dy dx =

x2

0



xy 3 dy dx =

 x

(x + y)x dy dx = 0

x2 x5/2 + 3 4

Iz = Ix + Iy

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.5 





1+cos θ

23. Ix = 

0

2π 

0 1+cos θ

Iy = 

0 2π



0

1+cos θ

(1 + cos θ)5 sin2 θ dθ =

0



1 5

r4 cos2 θ dr dθ =



(1 + cos θ)5 cos2 θ dθ =

0

33π 40 93π 40

63π 20

r4 dr dθ = Ix + Iy =

0

x1 M1 + x2 M2 , M 1 + M2

24. xM =



2

0

Iz =



1 r sin θ dr dθ = 5 4

y 1 M1 + y 2 M 2 M1 + M 2   A = π r22 − r12

yM =

25. Ω : r12 ≤ x2 + y 2 ≤ r22 ,

(a) Place the diameter on the x-axis.     M 2 M 2π r2  2 2  1  Ix = r sin θ r dr dθ = M r22 + r12 y dxdy = A A 0 4 r1 Ω     (b) 14 M r22 + r12 + M r12 = 14 M r22 + 5r12 (parallel axis theorem)     (c) 14 M r22 + r12 + M r22 = 14 M 5r22 + r12 26. Set r1 = r2 = r in the proceeding problem. Then the required moments of inertia are 1 2 2Mr

(a)

(b)

3 2 2Mr .

  27. Ω : r12 ≤ x2 + y 2 ≤ r22 , A = π r22 − r12     M 2 1 M 2π r2 3 2 I= r dr dθ = M (r22 + r12 ) x + y dxdy = A A 0 2 r1 Ω

28. Let l be the x-axis and let the plane of the plate be the xy-plane. Then   2 I − IM = λ(x, y)y dx dy − λ(x, y)(y − yM )2 dx dy Ω

Ω



2 λ(x, y)[2yM y − yM ] dx dy

= Ω



 yλ(x, y) dx dy −

= 2yM

2 yM

λ(x, y) dx dy

Ω

=  29. M =

2 2yM M

Ω



2 yM M

    k R − x2 + y 2 dxdy = k 0

Ω

π



= R



0

2 yM M

by symmetry       yM M = y k R − x2 + y 2 dxdy = k

yM = R/π

= d M.

 1 Rr − r2 dr dθ = kπR3 6

xM = 0

Ω

2

0

π

 0

R



 1 Rr2 − r3 sin θ dr dθ = kR4 6

885

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

886

December 7, 2006

SECTION 17.5  k(R −

30. Ix =



 x2

+

y 2 )y 2

π



0

Ω

π



R

Iy = k 0

R

dx dy = k

(R − r) r2 sin2 θ r dr dθ =

0

3M R2 kπR5 = . 40 20

kπR5 3M R2 = 40 20

(R − r)r2 cos2 θr dr dθ =

0

3M R2 . 10

Iz = Ix + Iy =

31. Place P at the origin.   M= k x2 + y 2 dxdy Ω



π



2R sin θ

=k 0

r2 dr dθ =

0

32 3 kR 9

xM = 0 by symmetry      yM M = y k x2 + y 2 dxdy = k 0

Ω

π



2R sin θ

r3 sin θ dr dθ =

0

64 4 kR 15

yM = 6R/5 Answer: the center of mass lies on the diameter through P at a distance 6R/5 from P . 32. Putting the right angle at the origin, we have λ(x, y) = k(x2 + y 2 ).  b  h− h x b 1 M= k(x2 + y 2 ) dy dx = kbh(b2 + h2 ) 12 0 0  b  h− h x b kb2 h(3b2 + h2 ) b(3b2 + h2 ) xM M = kx(x2 + y 2 ) dy dx = =⇒ xM = 60 5(b2 + h2 ) 0 0 

b



yM M = 0

h− h bx

ky(x2 + y 2 ) dy dx =

0

kbh2 (b2 + 3h2 ) h(b2 + 3h2 ) =⇒ yM = 60 5(b2 + h2 )

33. Suppose Ω, a basic region of area A, is broken up into n basic regions Ω1 , · · · , Ωn with areas A1 , · · · , An . Then



xA =

x dxdy = Ω

n  i=1

⎛ ⎝

 Ωi

⎞ x dxdy ⎠ =

n 

xi Ai = x1 A1 + · · · + xn An .

i=1

The second formula can be derived in a similar manner.  2 1 4 34. (a) M = (x + y) dy dx = 3 0 x/2  2 1 7 7 xM M = x(x + y) dy dx = ; xM = 6 8 0 x/2  2 1 3 yM M = y(x + y) dy dx = 1; yM = 4 0 x/2  2 1  2 1 4 4 (b) Ix = y 2 (x + y) dy dx = x2 (x + y) dy dx = Iy = 5 3 0 x/2 0 x/2

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.6

887

SECTION 17.6 1. They are equal; they both give the volume of T . 2. (a) Lf (P ) =

q n  m  

xi−1 yj−1 zk−1 Δxi Δyj Δzk ,

Uf (P ) =

i=1 j=1 k=1

 (b) xi−1 yj−1 zk−1 ≤

xi yj zk Δxi Δyj Δzk

i=1 j=1 k=1

xi + xi−1 2



xi−1 yj−1 zk−1 Δxi Δyj Δzk ≤

yj + yj−1 2



zk + zk−1 2

 ≤ xi yj zk

   1 2 xi − xi−1 2 yj 2 − yj−1 2 zk 2 − zk−1 2 ≤ xi yj zk Δxi Δyj Δzk 8

   1  2 xi − xi−1 2 yj 2 − yj−1 2 zk 2 − zk−1 2 ≤ Uf (P ). 8 i=1 j=1 m

Lf (P ) ≤

q n  m  

q

n

k=1

The middle term can be written ⎞ ⎛ n  m q   1  2 1 1 xi − xi−1 2 ⎝ yj 2 − yj−1 2 ⎠ zk 2 − zk−1 2 = (1)(1)(1) = . 8 i=1 8 8 j=1 k=1

Therefore

I=

 3.

1 . 8  dx dy dz = α (volume of Π) = α(a2 − a1 )(b2 − b1 )(c2 − c1 )

α dx dy dz = α Π

Π

 4. Since the volume is 1, the average value is

xyz dx dy dz =

1 . 8

Ω

5. Let P1 = {x0 , · · · , xm },

P2 = {y0 , · · · , yn },

P3 = {z0 , · · · , zq } be partitions of [ 0, a ], [ 0, b ], [ 0, c ]

respectively and let P = P1 × P2 × P3 . Note that    xi + xi−1 yj + yj−1 xi−1 yj−1 ≤ ≤ xi yj 2 2 and therefore xi−1 yj−1 Δxi Δyj Δzk ≤

1 4



xi 2 − x2i−1



 2 yj 2 − yj−1 Δzk ≤ xi yj Δxi Δyj Δzk .

It follows that Lf (P ) ≤

q m n   1  2 2 xi − x2i−1 yj 2 − yj−1 Δzk ≤ Uf (P ). 4 i=1 j=1 k=1

The middle term can be written ⎞ ⎛ n   m q   1  2 1 2 2 2 xi − xi−1 ⎝ yj − yj−1 ⎠ Δzk = a2 b2 c. 4 i=1 4 j=1 k=1

6. Ix = Ixy + Ixz ,

Iy = Ixy + Iyz ,

Iz = Ixz + Iyz

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

888

December 7, 2006

SECTION 17.6

7. x1 = a,

y 1 = b,

z 1 = c;

x0 = A,

x1 V1 + xV = x0 V0

y 0 = B,

z0 = C

=⇒

a2 bc + (ABC − abc) x = A2 BC

=⇒

x=

A2 BC − a2 bc ABC − abc

similarly y= 8. Encase T in a box Π.

AB 2 C − ab2 c , ABC − abc

z=

ABC 2 − abc2 ABC − abc

A partition P of Π breaks up II into little boxes Πijk .

Since f is

nonnegative on Π, all the mijk are nonnegative. Therefore  0 ≤ Lf (P ) ≤ f (x, y, z) dx dy dz. T

 9. M =

Kz dxdydz Π

Let P1 = {x0 , · · · , xm }, P = P1 × P2 × P3 .

P2 = {y0 , · · · , yn },

P3 = {z0 , · · · , zq } be partitions of [ 0, a ] and let

Note that zk−1 ≤

1 2

(zk + zk−1 ) ≤ zk

and therefore   2 Kzk−1 Δxi Δyj Δzk ≤ 12 K Δxi Δyj zk 2 − zk−1 ≤ Kzk Δxi Δyj Δzk . It follows that Lf (P ) ≤

q m n   1  2 Δxi Δyj zk 2 − zk−1 ≤ Uf (P ). K 2 i=1 j=1 k=1

The middle term can be written ⎞ ⎛ n   m q    1 1 1 2 2 Δxi ⎝ Δyj ⎠ zk − zk−1 = K(a) (a) (a2 ) = Ka4 . K 2 2 2 i=1 j=1 k=1

M = 12 Ka4 where K is the constant of proportionality for the density function.  10. xM M =

Kzx dx dy dz =

Ka5 1 =⇒ xM = a 4 2

Kzy dx dy dz =

Ka5 1 =⇒ yM = a 4 2

Kz 2 dx dy dz =

Ka5 2 =⇒ zM = a. 3 3

Π

 yM M = Π

 zM M = Π

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.7  11.

  Kz x2 + y 2 dxdydz

Iz = Π



 Kx2 z dxdydz +

= !

Π

"#

Ky 2 z dxdydz . !

$

Π

"#

I1

$

I2

We will calculate I1 using the partitions we used in doing Exercise 9. Note that  2   xi + xi xi−1 + x2i−1 zk + zk−1 x2i−1 zk−1 ≤ ≤ xi 2 zk 3 2 and therefore     2 ≤ Kxi 2 zk 2 Δxi Δyj Δzk . Kx2i−1 zk−1 Δxi Δyj Δzk ≤ 16 K xi 3 − x3i−1 Δyj zk 2 − zk−1 It follows that Lf (P ) ≤

q m n    1  3 2 xi − x3i−1 Δyj zk 2 − zk−1 ≤ Uf (P ). K 6 i=1 j=1 k=1

The middle term can be written ⎞ ⎛ n   m q    1 1 1 3 2 3 2 ⎠ ⎝ K xi − xi−1 Δyj zk − zk−1 = Ka3 (a)(a2 ) = Ka6 . 6 6 6 i=1 j=1 k=1   Similarly I2 = 16 Ka6 and therefore Iz = 13 Ka6 = 23 12 Ka4 a2 = 23 M a2 . ∧ by Exercise 9   2  12. (a) Lf (P ) ∼ 3y − 2x dxdy = 57 (c) = 56.4803 Uf (P ) ∼ = 57.5603 R

SECTION 17.7  a b c  1. dx dy dz = 0



0



1

0 x

a





0



y

1

0

0



0



1



2y



3.

bc dz = abc 0

x

y dz dy dx = 0

a

c dy dz =

0

2.



b



1

y 2 dy dx =

0

0



x

1



2y

(x + 2z) dz dx dy = 0

1

0

0



1

1



= 0



1

1+x 

4.

1



xy

0



1−x



2

5. 0



= 0

1

3

−1 0 2 1 −1

2 3 x 3

2y



0

(z − xy) dz dy dx = 

(4 − 2xy) dy dx = 0

0 2

2



1 1

2 2

0 1

−1



1 2 z − xyz 2



0

1−x



1

dy =

2x y dy dx =

0



 x xz + z 2 0 dx dy =



1+x

4z dz dy dx =

x3 1 dx = . 3 12

dy dx 1



2

8 dy = 16 0

0

1

 1

16 3 2 y − 3 3

2y

2x2 dx dy

 dy =

2 3

 2x2  11 (1 + x)3 − (1 − x)3 dx = 3 9

3

 1 2y − xy 2 −1 dx =



889

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

890

December 7, 2006

SECTION 17.7 



2

6.

−1

0





1





0





π/2



1

0



2

−1





y−2



e2

e



y2

x+y dz dx dy = z 

ln x

9.







y



2

0

y2



y2

= π/2



2

y(x − 1) dx dy =

y

1







1

π/2



10.

1 2 x y − xy 2

y2

0

0



1



0



2

dy = y

π/2

z



π/2

e cos x sin y dz dy dx = 0

 (y − 2)2 − 1 3 + y(y − 3) dy = 2 2

x [yez ]ln dx dy 0



1



2

−1

1

y

1



y−2

(x + y) dx dy =

−1

2

z

2

ye dz dx dy = 1

0



1

2

2

[xy cos z]0 1−x dx dz

1  1  π/2  1 1 π/2 1 − (1 − x2 )3/2 cos z dz = x 1 − x2 cos z dx dz = cos z dz = 3 3 3 0 0 0 0

π/2 

= 

4z dz = 8 0

0

0

2

(2z − 4x) dx dz =

x cos z dy dx dz = 0

8.



1−x2

7.



1

−1

0



1



2

(z − xy) dy dx dz =

1



π/2

3

 1 5 3 3 47 2 y − y + y dy = 2 2 24

(e − 1) cos x sin y dy dx

0 π/2

=

(e − 1) cos x dx = e − 1

0

 11.



c2



b2



a2

f (x)g(y)h(z) dxdydz = c1

Π



b1

c2



  f (x)g(y)h(z) dx dy dz

a1



b2

= c1



b1

c2

=

a1

  h(z)

c1

a2



 

a2

1

  x3 dx

0



2

 

z dz

0 1

13.

  x2 dx

0

 

3

y 2 dy

0

 kxyz dx dy dz = k

=



c

y dy

z dz

0

 

a

kx yz dxdydz = k

2

x dx 1 3

a3

1 2 2 2 ka b c 8  

b

y dy

0

=k

=

0



Π

1 8

h(z) dz c1

 

b

2

By Exercise 14, M =



c2

g(y) dy

  x dx

 xM M =

b2

    8 27 1 =8 3 3 3

0

Π

15.

a



    8 9 1 =3 4 3 2

 z 2 dz

0

 14. M =

=

0 2

  g(y) dy dz

b1



3

y 2 dy

b2

b1

f (x) dx a1



 

f (x) dx

a1

=

12.

  f (x) dx dy dz

a2

g(y)h(z)

z dz

0

 1

ka2 b2 c2 . Therefore x =

2 2 3

b2

 1 2

 c2 =



c

0 1 12

ka3 b2 c2 .

a. Similarly, y =

2 3

b and z =

2 3

c.

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.7

891

16. (a)      I= kxyz (x − a)2 + (y − b)2 dx dy dz Π



 

a

x(x − a) dx

=k



c

y dy

0

=

 

b

2

z dz

0



  x dx

a

+k

0

0

b

  y(y − b) dy 2

0

1 2 2 2 2 ka b c (a + b2 ). 48 M = 18 ka2 b2 c2 ,

Since IM −

(b)

1 2 (a + b2 ) 18

I = 16 M (a2 + b2 ).

by parallel axis theorem

17.





18. V =

1



1



1−y

dx dy dz =

dz dy dx = 0

T

0

0

1 2

19. center of mass is the centroid 1 2

x=

by symmetry   yV = y dxdydz =

1

1





1−y

0

0

1

= V =

1 2

1 2

 0

1

 0

1





0

0

0

 1 1 − 2y + y 2 dy dx = 2

(by Exercise 18 );

20. Ix =

1



 y − y 2 dy dx

0



0

T



0

1  1 1 2 1 3 1 1 = y − y dx = dx = 2 3 6 0 0 6 0   1  1  1−y  zV = z dxdydz = z dz dy dx = 

1

y dz dy dx =

0

T



y = 13 ,

z=

 0

1

1

 0

1

1 (1 − y)2 dy dx 2

 1  1 11 1 1 y − y 2 y 3 dx = dx = 3 2 0 3 6 0

1 3

1 M 2 (y + z 2 ) dx dy dz = M V 3

T

 Iy = T

M 2 1 (x + z 2 ) dx dy dz = M V 2

 Iz = T

M 2 1 (x + y 2 ) dx dy dz = M V 2



c

z dz 0

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

892 

r

−φ(x)

−r





 r2 − (x2 + y 2 ) ,

26.





−1 √

k

2



dz dy dx 1−x2 /2

2+y 2





27.

k 2−y 2

  1 k z − 3x2 − y 2 dz dy dx 4

4−x2 −y 2 /4

4−z 2



x2 + y 2 + z 2 dz dy dx

4−x2 −y 2

 √2−y2  −

k the constant of proportionality

dz dy dx

3x2 +y 2 /4





x2 + y 2 dx dz dy

z 2 +2y 2





2

0



2



3

= 0





2

1



1



3

y



1 z+y 3



1



2



1





 x2 y 2 z 2 dx dy dz =

29. T



=

=

=

=



0

−1

1 3 1 3 1 9



y+1

0 0



−1



0

0

−1

1 3 2 2 x y z 3

y+1

−1





y+1



0

dy +



2

dz = 0

1





1



0

 0

1



1

3



1

1 3 x z + xy 3

1 dy dz 0

 2 28 z + 4 dz = 3 3 1

(4y 2 ey − 2yey + 2y − 2y 2 ) dy = 4e −

x2 y 2 z 2 dx dz dy +

1

1



0



1−y



0

1−y

0





0

0

1 3



0

0

y+1 0

0



1 3

3

x

dz dy +

y 2 z 2 dz dy +

1 2 3 y z 3

0

1

0

−1







0

0

2y(x + y)e dx dy =

0

2

x z + y dx dy dz =

y

2ye dz dx dy = 0





2

1 1 zy + y 2 3 2

0

x



0

dy dz = 

x+y

28. 0

1

x z + y dx dy dz =

T



r2 − x2 ,

1−y 2

√ −2 2−2x2

√ − 2



with φ(x) =

x2 +y 2

−2x−3y−10

√ 2 2−2x2



1



1



x−x2



√ − 2





1−x2

 √1−x2 /2 

2

   k r − x2 + y 2 + z 2 dz dy dx

−ψ(x,y)

√ − x−x2

0

25.





1

23.

24.

December 7, 2006

ψ(x,y)

√ − 1−x2

−1







1





φ(x)

ψ(x, y) =

22.

T1: PBU

SECTION 17.7 

21.

QC: PBU/OVY

JWDD027-Salas-v1



1

x2 y 2 z 2 dx dz dy

0

1 dz dy 0

 2 2 1 y z 0 dz dy

1 2 3 y z 3

 1 y 5 + 3y 4 + 3y 3 + y 2 dy + 9

1 3 2 2 x y z 3

0

1−y

1−y

 0

dy 0 1



 1 y 2 − 3y 3 + 3y 4 − y 5 dy = 270

29 3

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.7 

2





 √4−x2 −y2

4−x2

30.







2

4−x2

xy dz dy dx = 0

0

xy 0

0



π/2



0

1 2





3

y 2 dx dy dz =

31.



0

T



3

0

2



r2 cos θ sin θ

2−2x/3



4 − r2 r dr dθ

0



2

r3

0

6−2x−3y

  1 4 √ 32 4 − r2 dr = (4 u − u3/2 ) du = 4 0 15 

3

y 2 dz dy dx =

0

= 0



2−2x/3

4 − x2 − y 2 dy dx

0

= =



0

 0

2−2x/3

 2 6−2x−3y dy dx y z 0

(6y 2 − 2xy 2 − 3y 3 ) dy dx

0

 2−2x/3 2 3 2y 3 − xy 3 − y 4 dx 3 4 0 0    1 3 2 12 = 2 − x dx = 4 0 3 5 

3

=



1





1−x2





1−y

1

2

32.

1−x2

y dz dy dx = 0

0

0

 2

x+2 



x

V = x2

0 2

0



x

2

x2



2

x2



2

x+2

2



x

x2

11 , 10

x=

0

x2 2



1

0

9 , 4

y= 

1

z= 

kz dx dy dz = 0



0

1



0

1



M= 

2

−1



3

0

0



4−x2

1

2−x

2

 1 3 x + 4x2 + 4x − x5 dx = 6 2

x+2

x2

0

1 2 x dy dx = 2

 0

1 k 2

k(x2 + y 2 + z 2 ) dz dy dx = k

27 2 ;

(x, y, z) =

1

3 12 2, 2, 5

 44 x3 + 2x2 − x4 dx = 15

2

0

dz dy dx = 0



11 20

1

M=

2

0



x+2

z dz dy dx = 0



xy dy dx = 0

zV =

 8 x2 + 2x − x3 dx = 3

2

x2

0

0

x+2 



x dy dx = 

x

2

0

y dz dy dx = 0

35. V =

0

0

x+2 

yV =

(b)



x+2

x dz dy dx = x2

1 − y dy dx

x dy dx =

0

x+2 

xV =

34. (a)



2

dz dy dx = 



  2 4 2 16 1 − x3 + x5 − x7 + dx = 3 5 7 105 12

1

0



y2

0

0

=

33.





 1 3 22 x + 2x2 − x4 dx = 2 15

893

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

894

December 7, 2006

SECTION 17.7 

 (x − x) dx dy dz =

36. T

 x dx dy dz − x

T

dx dy dz = xV − xV = 0. T

Similarly, the other two integrals are zero. 



a



φ(x)

 x 1 abc with φ(x) = b 1 − , 6 a

ψ(x,y)

37. V =

dz dy dx = 0

0

0

1

(x, y, z) = 

1 4

a,

4

b,

1 4

 c



M 2 1 (x + y 2 ) dx dy dz = V 30

38. Iz =

M V

 =

 x y ψ(x, y) = c 1 − − a b

1 M 5

T

39. Π : 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c  a b c   M  2 1  (a) Iz = x + y 2 dz dy dx = M a2 + b2 3 0 0 0 abc       1 (b) IM = Iz − d2 M = 13 M a2 + b2 − 14 a2 + b2 M = 12 M a2 + b2 ∧ parallel axis theorem (17.5.7)   1 1 (c) I = IM + d2 M = 12 M a2 + b2 + 14 a2 M = 13 M a2 + 12 M b2 ∧ parallel axis theorem (17.5.7) 



2



2

40. V = 1



2



2

1



2



2



zV = 1



1

1





y

41. M =

2

0

z dz dy dx =

73 73 =⇒ z = . 12 72

2

0

(xM , yM , zM ) =

42. T is symmetric



1

109 109 =⇒ x = =y 12 72

k x +y +z 0

2

x dz dy dx =

1+x+y

−2

1



1+x+y

−2

1



(3 + x + y) dy dx = 6 1



xV =

2

dz dy dx =

−2

1



1+x+y

7 34 37 12 , 45 , 90



2



 1 3 k x y + y + y dy dx dz dy dx = 3 0 0   1  1 1 2 1 = x + dx = k k 2 3 2 0

(a) about the yz-plane,

(d) about the origin.

by symmetry



1



1



2

3

(b) about the xz-plane,

(c) about the xy-plane,

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.7 43. (a)

0 by symmetry   (b) (a1 x + a2 y + a3 z + a4 ) dxdydz = a4 dxdydz = a4 (volume of ball) = T

4 3

T

∧ by symmetry



2



2



4−y 2

x2 y 2 dz dy dx =

44. 0

2−y

0



a





a2 −x2

352 45

 √a2 −x2 −y2

45. V = 8



a





a2 −x2

dz dy dx = 8 0

0

0

∧ 

π/2





a

a2 − r2 r dr dθ

=8 0

0



π/2

= −4 = 

a

8 3

46. 8 0

47.

M=

2







4−x2 /2

√ − 4−x2 /2

−2



2





0





4x − x − 4xy 3





V =2 0

49. M =

2



−1

3



0



2

4−x2



2



2−z



2





1





2



2−x



(xM , yM , zM ) =

dy dz dx 0



5

0



2

0



(c) V =



2−x

9





9−y



dz dx dy + 0

0

0

2−x

dz dx dy 5

3/2  128 k x 4 − x2 dx = 15



9−x2

(b) V =

0

2

(r − r3 ) dr dθ = π

0

0

4−y 2

0

dy dx dz 0



x2 +3y 2

9−x2

50. (a) V =

4−x2 /2

0

4 dy dx = k 3

135 k; k(1 + y) dz dy dx = 4

2−x

4 π a3 3

kx dz dy dx 0





dθ 0

k|x| dz dy dx = 4 x2 +3y 2

0

48. using polar coordinates

a

4 πabc. 3

4−y 2

4−x2 /2

= 4k

π/2

0

0



2 2 (a − r2 )3/2 3

dθ =

dz dy dx = 0



0



 b√1−x2 /a2  c√1−x2 /a2 −y2 /b2

a2 − x2 − y 2 dy dx

0

0

polar coordinates



0

0

1 9 12 , , 2 5 5



πa4

895

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

896

December 7, 2006

SECTION 17.8 



6



3

6−x

51. (a) V =

dy dx dz 0

z/2





3

2x

x



6−x

(b) V =

dy dz dx 0

 (c)

0



6

x



3



y

V =

6



(12−z)/2



6−y

dx dy dz + 0

z/2

 Ωxy

(c) V =

dx dy dz 0

3

z/2

  

 2 4 − y dx dy

52. (a) V = 

z/2



4

−4



4



V = 

dz dy dx

(d)

  

Ωxy



4

(c) V =



(b) V =



4−y

√ − 4−y

0



dx dz dy

−y

(d) V =

(4 − z − |x|) dx dz

54. (a) V =

−2

 (d) V = 

4

0

5







3

4+x

√ − 4+x 2

4−z

1



4−z 2

2

dy dz dx +

|x|

0





4−x

2



√ − 4−x

56. Let f (x, z) = 36 − 9x2 − 4z 2 and g(x, z) = 1 − 



4−y

√ − 4−y

dx 

dydz

y

−y

dx dy dz 

4−z 2

|x|

dz dx dy



y

4−z 2

dx dy

dy

dx dz

dy dx dz

|x|



dz

2

3−(3/2)x



4−z 2

dy dz dx

|x|



ln xy dz dy dx ∼ = 6.80703 z

55. (a) 2



z 2 −4

−2



4−z

2



0

Ωxy



2

−2

(b) V =

Ωxy

(c) V =



2

   2



−y

Ωxy y





y

−y

0

2y dydz 



4

V =

 53. (a) V =



4−y

√ − 4−y

Ωxy 4−y

√ − 4−y

|x|

(b)



4



2



(b) 0 1 2

x−

1 3

1

0

3

√  16 3  √ √ 4 2−2 x yz dz dy dx = 3

z. Then

f (x,z)

V =

1 dy dz dx = 71 0

0

g(x,z)

SECTION 17.8 1. r2 + z 2 = 9

2. r = 2

3. z = 2r

4. r cos θ = 4z

5. 4r2 = z 2

6. r2 sin2 θ + z 2 = 8

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.8 

π/2





2

4−r 2

7. 0

0



π/2

0



2

= 0



2

1

0

r dz dr dθ 

4

 4r − r2 dr dθ

0 π/2

=

2

4 dθ = 2π 0

0 1

0 2



π/4



1





1−r 2

8.

r dz dr dθ = 0



0

0







2

π 12

r2

9.

r dz dr dθ 0

0

0







2

= 0



4

r3 dr dθ

0 2π

=

-2 -

4 dθ = 8π 0

2 0 0

2



3







0 2

3

10.

r dz dθ dr = 9π 0

0

r



1





1−x2

 √4−(x2 +y2 )

11.



π/2



1





4−r 2

dz dy dx = 0

0

0



π/2



1

=

r 0

 = 0



π



1



12. 0

0

r

1

 z 3 r dz dr dθ = 0

r dz dr dθ 0

π

 0

1



0

0

4 − r2 dr dθ

0 π/2





8 √ − 3 3

1 π (1 − r4 ) r dr dθ = 4 12

dθ =

√  1 8−3 3 π 6

897

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

898

December 7, 2006

SECTION 17.8 

3

 √9−y2  √9−x2 −y2

13. 0

0



x2

0



1 +



π/2

3





9−r 2

dz dx dy =

y2

0



0 π/2



0 3

= 0

1 · r dz dr dθ r

 9 − r2 dr dθ

0

3 π/2   r 9 −1 r 2 = 9 − r + sin dθ 2 2 3 0 0 

9π = 4 

π/2



1







1−r 2

14.

π/2



1



0 1





0

0

1−x2



0

0

0



2

π/2

sin(x2 + y 2 ) dz dy dx =

15. 0



0



1



0







1



2−r 2

0

0

 r2 dz dr dθ = 4π

r2

1

dθ = 0



0

π/2

9 2 π 8

0

sin(r2 )r dz dr dθ

2r sin(r2 ) dr dθ = 12 π(1 − cos 1) ∼ = 0.7221

(1 − r2 )r2 dr =

0

2

0 1

=

16.

π/2

r π (1 − r2 ) dr dθ = 2 16

zr dz dr dθ = 0



8π 15

17. (0, 1, 2) → (1, 12 π, 2)

18. (0, 1, −2) → (1, 12 π, −2)

19. (0, −1, 2) → (1, 32 π, 2)

20. (0, 0, 0) → (0, arbitrary, 0)

 21. V = 

π/2

−π/2

 22. V =

π/2

−π/2

 23. V =

π/2



π/2

−π/2



0



r

π/2



−π/2

0

2a cos θ

r2 dr dθ

0

8 3 32 3 a cos3 θ dθ = a 3 9 

2a cos θ



r 2 /a

r dz dr dθ = 0

0





a cos θ

0

0

 3

a

 0

1 1 cos2 θ − cos3 θ 2 3

2 cos θ

 0

3 3 πa 2 

a−r

r dz dr dθ =

π/2

−π/2

2a cos θ

r dz dr dθ =

−π/2



24. V =



−π/2

=

=

π/2

2+ 12 r cos θ

π/2



−π/2

 dθ =

r dz dr dθ =

a cos θ

r(a − r) dr dθ

0

1 3 a (9π − 16) 36

5 π 2

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.8  25. V =



π/2





3





25−r 2

26. V = 

0





r+1 √



1/2

27. V = 0







a









0



3

1





2r



9−r 2



  √  √  1  r 1 − r2 − r2 3 dr dθ = π 2 − 3 3

2



0





0

1 2

1



1/2

3

r

0

30. V = 0

 r2 cos θ − r3 dr dθ

2π 3 √ a ( 2 − 1) 3

a2 +r 2

r dz dr dθ =







r dz dr dθ = 



0

0

29. V = 0

cos θ

−π/2

r dz dr dθ =

r 3

28. V = 0



1−r 2



0





41 π 3

r dz dr dθ = 0

π/2

1 1 cos4 θ dθ = π 12 32

−π/2



r2

0

π/2





r cos θ

r dz dr dθ =

−π/2

=



cos θ

899

36−r 2

r dz dr dθ =

0



9 − r2 dr dθ =

1

32 3 π



2

√ √ 1 π(35 35 − 128 2). 3

31. Set the lower base of the cylinder on the xy-plane so that the axis of the cylinder coincides with the z-axis. Assume that the density varies directly as the distance from the lower base. 





R



M=

h

kzr dz dr dθ = 0

0

0

1 kπR2 h2 2

32. xM = yM = 0 by symmetry  2π  R  h 1 zM M = kz 2 r dz dr dθ = kπR2 h3 3 0 0 0 M=

1 kπR2 h2 , 2

zM =

2 h 3

The center of mass lies on the axis of the cylinder at a distance density. 





R



h

33. I = Iz = k =

1 4

0

0

4 2

1 2

kπR h =

1 2

zr3 dr dθ dz

0

 kπR2 h2 R2 =

1 2

∧ from Exercise 31

MR2

2 3h

from the base of zero mass

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

900

SECTION 17.9

34. (a)

M I= πR2 h

(b)

 0



M πR2 h

I=





R



0 2π 

0

h

r3 dz dr dθ =

0 R

0

h

1 M R2 2

0

I = 14 M R2 + 13 M h2 − M ( 12 h)2 = 14 M R2 +

(c)

1 1 M R 2 + M h2 4 3

(r2 sin2 θ + z 2 )r dz dr dθ = 1 2 12 M h

35. Inverting the cone and placing the vertex at the origin, we have 

h







(R/h)z

V =

r dr dθ dz = 0

36. xM = yM = 0 





(R/h)z



zM M = 0

0

0

M V



 zr dr dθ dz =

On the axis of the cone at a distance 

M 37. I = V

h



0



M 38. I = V



0









0

h

1

(R/h)z

r3 dr dθ dz =

0





0



(R/h)z



1−r 2

0





0

1



1−r 2

41. M = 0

0

0

M V



πR2 h2 3 πR2 h2 =⇒ zM = = h 4 4V 4

from the vertex.

3 MR2 10

z 2 r dr dθ dz =

r dz dr dθ = 

3 4h

0

39. V = 0

0

by symmetry



h

0

1 2 πR h. 3

3 M h2 . 5 

1 π 2

40.





1



1−r 2

kzr dz dr dθ =

M= 0

0

0

  1 k r2 + z 2 r dz dr dθ = kπ 4

SECTION 17.9 1. 3. 5.

√

3,

( 34 ,

3 4

1 4



π, cos−1 3,

3 2



 1 √  3 3

3)

√  √ 4 6 2 2 2 ρ = 2 + 2 + (2 6/3) = 3  √  2 6/3 π √ φ = cos−1 = cos−1 (1/2) = 3 4 6/3 π θ = tan−1 (1) = 4  √  4 6 π π (ρ, θ, φ) = , , 3 4 3

2. 4.

1√ 2

1 2

√ (2 10, 

6.

6,



√  2

2,

2 3 π,

√ 3 cos−1 [ 10 10])

π 5π 8, − , 4 6



1 πk 6

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.9

901

8. (a) (5, 12 π, arccos 45 )

7. x = ρ sin φ cos θ = 3 sin 0 cos(π/2) = 0

(b) (5, 32 π, arccos 45 )

z = ρ cos φ = 3 cos 0 = 3 y = ρ sin φ sin θ = 3 sin 0 sin(π/2) = 0 (x, y, z) = (0, 0, 3) 9. The circular cylinder x2 + y 2 = 1;

the radius of the cylinder is 1 and the axis is the z-axis.

10. The xy-plane. 11. The lower nappe of the circular cone z 2 = x2 + y 2 . 12. Vertical plane which bisects the first and third quadrants of the xy-plane. 13. Horizontal plane one unit above the xy-plane. 14. sphere

x2 + y 2 + (z − 12 )2 =

1 4

of radius

1 2

and center (0, 0, 12 )

15. Sphere of radius 2 centered at the origin:  2π  π  2    8 2π π 16 2π 32π ρ2 sin φ dρ dφ dθ = sin φ dφ dθ = dθ = 3 0 3 0 3 0 0 0 0 16. That part of the sphere of radius 1 that lies in the first quadrant between the x, z-plane and the plane y=x



π/4



0

π/2

0



1

π 12

ρ2 sin φ dρ dφ dθ =

0

17. The first quadrant portion of the sphere that lies between the x, y-plane and the plane z = 

π/2



π/2



3



π/2

2



π/2

ρ sin φ dρ dθ dφ = 9 π/6

0

sin φ dθ dφ

0

π/6



π/4





π

=

9 2

√ π/2 π [− cos φ]π/6 = 94 π 3



sec φ



1



19. 0

0



1−x2

 √2−x2 −y2 √



0 π/4



0

π/2





2

=

2 3



2 3

0

π/4 

π/2

2

ρ2 sin φ dρ dθ dφ

sin φ dθ dφ 



=

0



ρ2 sin φ dρ dθ dφ =

0

dz dy dx = x2 +y 2

sin φ dφ π/6

18. A cone of radius 1 and height 1; 0

π/2

9 2

=



0

0

π

0

π/4

sin φ dφ = 0



√ 2 π (2 − 2) 6

1 π 3

3 2



3.

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

902

December 7, 2006

SECTION 17.9 

π/4





π/2

2

0

 21.

0 3

16π 5

ρ4 sin φ dρ dθ dφ =

20. 0



π/4

sin φ dφ = 0

√ 8π (2 − 2) 5

 √9−y2  √9−x2 −y2  z x2 + y 2 + x2 dz dx dy 0

0

0





π/2



π/2

3

= 0



0 π/2

ρ cos φ · ρ · ρ2 sin φ dρ dθ dφ

0

1 sin 2φ dφ 2

= 0





π/2

3  π/2    π 1 1 5 ρ dρ = − cos 2φ ρ 4 2 5 0 0

3

4

dθ 0

0

243π = 20 

π/2





π/2

1

1 2 π ρ sin φ dρ dθ dφ = 2 ρ 2

22. 0

0



0





π



R

23. V = 0

0

0

24. r = ρ sin φ, 

α

θ = θ,





π

R

25. V = 0

0





ρ2 sin φ dρ dφ dθ =

0



0



π



0 2π

z = ρ cos φ

ρ2 sin φ dρ dφ dθ = R

26. M = 







4



=



tan−1 (r/h)

0

h sec φ

tan−1 (r/h)

=



0

kh4 tan φ sec3 φ dφ dθ 4

1  3 tan−1 (r/h) kh4 sec φ 0 dθ = 3 4





0

⎡ √

1⎣ 3

r2

+ h

h2

3

⎤ − 1⎦ dθ

3/2  1 − h3 kπh r2 + h2 6 





tan−1 r/h



h sec φ

28. V = 0

=

kρ3 sin φ dρ dφ dθ

0

0

kh 4

1 kπR4 3

0

= 0

2 αR3 3

k(R − ρ)ρ2 sin φ dρ dφ dθ =

27. M = 0

4 πR3 3

0

ρ2 sin φ dρ dφ dθ =

0

r 1 π 3 h tan2 (tan−1 = πr2 h 3 h 3

29. center ball at origin; density = (a) I =

3M 4πR3

(b) I =

2 5







0 2

0 2

π



R

7 5



tan−1 (r/h)

0

M 3M = V 4πR3

ρ4 sin3 φ dρ dφ dθ =

0

MR + R M =

2π 3

MR2

2 MR2 5

(parallel axis theorem)

h3 tan φ sec2 φ dφ

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.9 30. The center of mass is the centroid; 







π/2

R

zV = 0

0

3 z = R; 8

(a) I =



(x, y, z) =

31. center balls at origin; 3M  4π R2 3 − R1 3

density 







0

2 3 πR 3

V =

(ρ cos φ)ρ2 sin φ dρ dφ dθ =

0

3 0, 0, R 8

=

π





1 4 πR 4

M 3M   = V 4π R2 3 − R1 3

R2

ρ4 sin3 φ dρ dφ dθ =

R1

0

903

  5 2 R2 − R1 5 M 5 R2 3 − R1 3

This result can be derived from Exercise 29 without further integration. View the solid as a ball of mass M2 from which is cut out a core of mass M1 .   MR2 3 M 3M 4 3  3  M2 = = ; V2 = πR 2 V 3 4π R2 − R1 3 R2 3 − R1 3 Then I = I2 − I1 =

2 5

M2 R 2 2 −

2 5

similarly

M1 =

MR1 3 . R2 3 − R1 3

   2 MR2 3 MR1 3 2 − R R1 2 2 5 R2 3 − R1 3 R2 3 − R1 3  5  R2 − R1 5 2 . = M 5 R2 3 − R1 3

M1 R 1 2 =

2 5



(b) Outer radius R and inner radius R1 gives

  5 2 R − R1 5 moment of inertia = M . 5 R 3 − R1 3

[part (a) ]

As R1 → R, R 5 − R1 5 R4 + R3 R1 + R2 R1 2 + RR1 3 + R1 4 5R4 5 = −→ = R2 . 3 2 3R2 3 R 3 − R1 R2 + RR1 + R1 Thus the moment of inertia of spherical shell of radius R is   2 2 5 2 M R = MR2 . 5 3 3 (c) I = 23 MR2 + R2 M =

5 3

MR2

(parallel axis theorem)

32. (a) The center of mass is the centroid;

using the result of Exercise 30,

x=y=0

3 4 3 4 R2 πR2 3 − R1 πR1 3 z 2 V2 − z 1 V1 3(R2 2 + R1 2 )(R2 + R1 ) 8 3 8 3 z= = = 4 V 8(R2 2 + R2 R1 + R1 2 ) π(R2 3 − R1 3 ) 3 (b) Setting 



R1 = R 2 = R



α



33. V = 0

0

0

a

in (a), we get

ρ2 sin φ dρ dφ dθ =

x = y = 0,

2 π (1 − cos α) a3 3

z = 12 R

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

904

December 7, 2006

SECTION 17.9 







π/4

1

34. 0

0

3

eρ ρ2 sin φ dρ dφ dθ =

0

35. (a) Substituting

x = ρ sin φ cos θ,

z = ρ cos φ

ρ2 sin2 φ + (ρ cos φ − R)2 = R2 ,

we have

which simplifies to (b) 0 ≤ θ ≤ 2 π, 



ρ = 2R cos φ.

0 ≤ φ ≤ π/4,



π/2



2R cos φ

0

0 2π 



0 π/2 

2R cos φ

(b) M = 0

0

2π 



2R cos φ

0 2π



π/4





π



38. V = 0



2

2





π/2



ρ sin φ dρ dφ dθ + 0



1 2 4 kπ R 8

kρ3 cos2 θ sin2 φ dρ dφ dθ =

V =

=

1 2 4 kπ R 4

0

 37.

8 kπR4 5

kρ3 sin2 φ dρ dφ dθ =

0

π/2 

(c) M = 0

R sec φ ≤ ρ ≤ 2R cos φ

kρ3 sin φ dρ dφ dθ =

36. (a) M =

0

y = ρ sin φ sin θ,

x2 + y 2 + (z − R)2 = R2

into



 √  1 π(e − 1) 2 − 2 3

0

0

0

π/4

√ 2 2 cos φ

ρ2 sin φ dρ dφ dθ

0

√  1  16 − 6 2 π 3

1−cos φ

ρ2 sin φ dρ dφ dθ =

0

8 π 3

39. Encase T in a spherical wedge W . W has spherical coordinates in a box Π that contains S. f to be zero outside of T .

Then F (ρ, θ, φ) = f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ)

is zero outside of S and 

 f (x, y, z) dxdydz =

T

f (x, y, z) dxdydz W

 F (ρ, θ, φ) ρ2 sin φ dρdθdφ

= Π

 F (ρ, θ, φ) ρ2 sin φ dρdθdφ.

= S

Define

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.9 40. Break up T into little basic solids T1 , . . . , TN . all the mass as concentrated there.

905

Choose a point (x∗i , yi∗ , zi∗ ) from each Ti and view

Now Ti attracts m with a force

Gmλ(x∗i , yi∗ , zi∗ )(Volume of Ti ) Fi ∼ ri =− ri 3 where ri is the vector from (x∗i , yi∗ , zi∗ ) to (a, b, c).

We therefore have

Gmλ(x∗i , yi∗ , zi∗ )[(x∗i − a)i + (yi∗ − b)j + (zi∗ − c)k] Fi ∼ = [(x∗i − a)2 + (yi∗ − b)2 + (zi∗ − c)2 ]3/2

(Volume of Ti ).

The sum of these approximations is a Riemann sum for the triple integral given and tends to that triple integral as the maximum diameter of the Ti tends to zero. 41. T is the set of all (x, y, z) with spherical coordinates (ρ, θ, φ) in the set 0 ≤ θ ≤ 2π,

S: T has volume V =

2 3

0 ≤ φ ≤ π/4,

R sec φ ≤ ρ ≤ 2R cos φ.

πR3 . By symmetry the i, j components of force are zero and ⎧ ⎫ ⎨ 3GmM    ⎬ z F= dxdydz k ⎩ 2πR3 ⎭ (x2 + y 2 + z 2 )3/2 T

⎧ ⎫ ⎨ 3GmM     ρ cos φ  ⎬ = ρ2 sin φ dρdθdφ k 3 3 ⎩ 2πR ⎭ ρ + = =

S

3GmM 2πR3



cos φ sin φ dρ dφ dθ 0

0

R sec φ

 GmM √ 2 − 1 k. R2

42. With the coordinate system shown in the figure, T is the set of all points (x, y, z) with cylindrical coordinates (r, θ, z) in the set S:

0 ≤ r ≤ R,

0 ≤ θ ≤ 2π,

α ≤ z ≤ α + h.

The gravitational force is ⎡ ⎤    GmM z F =⎣ dxdydz ⎦ k V (x2 + y 2 + z 2 )3/2 ⎡

T

GmM =⎣ πR2 h



⎤ zr dr dθ dz ⎦ k (r2 + z 2 )3/2

S

 =

GmM πR2 h

 0

2π R α+h 0

α

,

2π π/4 2R cos φ

 zr dzdrdθ k (r2 + z 2 )3/2

  2GmM  2 2− 2 + (α + h)2 + h k = R + α R R2 h

k

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

906

December 7, 2006

SECTION 17.10

SECTION 17.10 1.

ad − bc

2.

1

3.

  2 v 2 − u2

4.

u ln v − u

5.

−3u2 v 2

6.

1+

7.

abc

8.

2

9.

ρ2 sin φ

  cos θ  10. |J(r, θ, z)| = −r sin θ  0

  0  0 = r.  1

sin θ r cos θ 0

  sin φ cos θ  11. J(ρ, θ, φ) = −ρ sin φ sin θ  ρ cos φ cos θ

sin φ sin θ

     = −ρ2 sin φ; 0   −ρ sin φ  cos θ

ρ sin φ cos θ ρ cos φ sin θ

dx − by = (ad − bc)u0

12. (a)

(b)

v = x − y.

13. Set u = x + y,

1 uv

|J(ρ, θ, φ)| = ρ2 sin φ.

cx − ay = (bc − ad)v0

Then

x=

u+v , 2

y=

u−v 2

1 and J (u, v) = − . 2

Ω is the set of all (x, y) with uv-coordinates in 0 ≤ u ≤ 1,

Γ: Then 



 x2 − y 2 dxdy =

Ω

1 = 2





1

u du 0



1 1 uv dudv = 2 2

Γ



2

v dv 0

1 = 2

 1

0 ≤ v ≤ 2. 2

uv dv du 0

0

  1 1 (2) = . 2 2

14. Using the changes of variables from Exercise 13,      1 2  2  1 1 2 2 u − v2 1 dv du = 4xy dx dy = 4 u − v 2 dv du = −1 4 2 2 0 0 0 0 Ω

15.

1 2



1



2

u cos (πv) dv du = 0

0

16. Set u = x − y,

1 2

v = x + 2y.





1

u du 0



2

cos (πv) dv 0

=

1 2

  1 (0) = 0 2

Then

2u + v v−u 1 , y= , and J(u, v) = 3 3 3 Ω is the set of all (x, y) with uv-coordinates in the set x=

Γ:

0 ≤ u ≤ π,

0 ≤ v ≤ π/2.

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.10 Therefore  



1 1 (u + 2v) du dv = 9 9

(x + y) dxdy = Ω

Γ

17. Set u = x − y,

π/2

(u + 2v) dv du = 0

0

1 3 π . 18

v = x + 2y. Then x=

Ω

 π

2u + v , 3

y=

v−u , 3

and J(u, v) =

1 . 3

is the set of all (x, y) with uv-coordinates in the set Γ : 0 ≤ u ≤ π,

0 ≤ v ≤ π/2.

Therefore     1 1 π π/2 sin u cos v dudv = sin (x − y) cos (x + 2y) dxdy = sin u cos v dv du 3 3 0 0 Ω Γ  π    π/2  1 2 1 = sin u du cos v dv = (2)(1) = . 3 3 3 0 0 18. Using the change of variables from Exercise 16,   π π/2 1 sin 3x dx dy = sin(2u + v) du dv = 0. 3 0 0 Ω

19. Set u = xy,

v = y.

xy = 1,

xy = 4

y = x,

y = 4x

Then x = u/v,

y=v

u = 1,

u=4

=⇒ =⇒

and

J (u, v) = 1/v.

4u/v = v =⇒ v 2 = u,

u/v = v,

v 2 = 4u

Ω is the set of all (x, y) with uv-coordinates in the set

 (a) A =

1 dudv = v

Γ

 4 (b) xA = 1

√ 2 u



 4 yA = 1

u

 4



1

u

1 dv du = v

u 7 dv du = ; 2 v 3

√ 2 u



√ 2 u

dv du = u



1 ≤ u ≤ 4,

Γ:

14 ; 3

x=

y=



u≤v≤2



u.

4

ln 2 du = 3 ln 2 1

7 9 ln 2

14 9 ln 2

Γ : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π   2π 1 A= abr dr dθ = ab r dr dθ = πab

20. J(r, θ) = abr,

0

Γ

21. Set u = x + y,

0

v = 3x − 2y. Then x=

2u + v , 5

y=

3u − v 5

and

1 J (u, v) = − . 5

907

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

908

December 7, 2006

SECTION 17.10 0 ≤ u ≤ 1,

0≤v≤2  1 2 1 2 M= λ dv du = λ 5 5 0 0

With Γ :

Then



1





2

Ix = 0



0 1





2

Iy = 0

0

3u − v 5 2u + v 5

Iz = Ix + Iy =

2

2

where

λ is the density.

1 8λ 4 λ dv du = = 5 375 75 1 28λ 14 λ dv du = = 5 375 75





2 λ 5



2 λ 5

=

4 M, 75

=

14 M, 75



18 M. 75

u+v v−u 1 , y= , J(u, v) = Γ: 2 2 2    2 1 16 1 2 −u A= dv du = du dv = 2 2 −2 −4 3

−2 ≤ u ≤ 2,

22. x =

−4 ≤ v ≤ −u2

Γ

23. Set u = x − 2y,

v = 2x + y. Then x=

u + 2v , 5

v − 2u 5

y=

and

J (u, v) =

1 . 5

Γ is the region between the parabola v = u2 − 1 and the line v = 2u + 2. A sketch of the curves shows that Γ:

−1 ≤ u ≤ 3,

Then A=

24. xA = A=

1 2



2



−2

−u2

−4

1 1 (area of Γ) = 5 5

32 u+v dv du = − 2 5



3

u2 − 1 ≤ v ≤ 2u + 2. 

−1

yA =

1 2

  32 (2u + 2) − u2 − 1 du = . 15 

2

−2



−u2

−4

32 v−u dv du = − 2 5

16 6 =⇒ x = y = − 3 5

25. The choice θ = π/6 reduces the equation to 13u2 + 5v 2 = 1. This is an ellipse in the uv-plane √ √ with area πab = π/ 65. Since J(u, v) = 1, the area of Ω is also π/ 65.  26.

e−(x−y) 1 dx dy = 2 1 + (x + y) 2 2

Sa



e−u du dv 1 + v2 2

Γ

where Γ is the square in the uv-plane with vertices (−2a, 0), (0, −2a), (2a, 0), (0, 2a). Γ contains the square −a ≤ u ≤ a, −a ≤ v ≤ a and is contained in the square −2a ≤ u ≤ 2a, −2a ≤ v ≤ 2a. Therefore 1 2



a

−a



a

−a

e−u 1 du dv ≤ 2 1+v 2 2

 Γ

e−u 1 dudv ≤ 2 1+v 2 2



2a

−2a



2a

−2a

e−u du dv. 1 + v2 2

16:38

P1: PBU/OVY JWDD027-17

P2: PBU/OVY

QC: PBU/OVY

T1: PBU

JWDD027-Salas-v1

December 7, 2006

SECTION 17.10 The two extremes can be written   a   a 1 1 2 e−u du dv 2 2 −a −a 1 + v

1 2

and



2a

−2a

e−u du 2

 

2a

−2a

 1 dv . 1 + v2

√ As a → ∞ both expressions tend to 12 ( π) (π) = 12 π 3/2 . It follows that  ∞  ∞ 2 1 e−(x−y) dx dy = π 3/2 . 2 1 + (x + y) 2 −∞ −∞  27. J = abcρ2 sin φ;



0

28. x = y = 0  2π  zV = 0

π/2

0



π



1

V = 

1

0

abcρ2 sin φ dρ dφ dθ =

0

(cρ cos φ)abcρ2 sin φ dρ dφ dθ =

0

4 πabc 3

πabc2 3 =⇒ z = c . 4 8

2 M 3M V = πabc, λ = = 3 V 2πabc  2π  π/2  1   2 2 3M Ix = b ρ sin2 φ sin2 θ + c2 ρ2 cos2 φ abcρ2 sin φ dρ dφ dθ 2πabc 0 0 0  2  1 2 = 5M b +c     Iy = 15 M a2 + c2 , Iz = 15 M a2 + b2

29.







1



π

30. I = 0

0

0

PROJECT 17.10 1. (a)

ρ2 (abcρ2 sin φ) dφ dρ dθ =

−1

θ = tan

   ay 1/α bx

,

r=

4 πabc 5

  x 2/α a

+

 y 2/α α/2 b

⎫ ar1 (cos θ1 )α = ar2 (cos θ2 )α ⎪ ⎪ ⎬

(b)

br1 (sin θ1 )α = br2 (sin θ2 )α r1 > 0,

0
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF