Calculus one and several variables 10E Salas solutions manual ch16
Short Description
Calculus one and several variables 10E Salas solutions manual...
Description
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
788
December 7, 2006
SECTION 16.1
CHAPTER 16 SECTION 16.1 1. ∇f = (6x − y) i + (1 − x) j
2. ∇f = (2Ax + By)i + (Bx + 2Cy)j
3. ∇f = exy [ (xy + 1) i + x2 j] 4. ∇f =
(x2
1 [(y 2 − x2 + 2xy)i + (y 2 − x2 − 2xy)j] + y 2 )2
5. ∇f = 2y 2 sin(x2 + 1) + 4x2 y 2 cos(x2 + 1) i + 4xy sin(x2 + 1) j 6. ∇f =
2x 2y i+ 2 j 2 +y x + y2
x2
7. ∇f = (ex−y + ey−x ) i + (−ex−y − ey−x ) j = (ex−y + ey−x )(i − j) 8. ∇f =
AD − BC [ yi − xj ] (Cx + Dy)2
9. ∇f = (z 2 + 2xy) i + (x2 + 2yz) j + (y 2 + 2zx) k x
10. ∇f =
x2 + y 2 + z 2
y
i+
x2 + y 2 + z 2
j+
z x2 + y 2 + z 2
k
11. ∇f = e−z (2xy i + x2 j − x2 y k) xyz xyz 12. ∇f = + yz ln(x + y + z) i + + xz ln(x + y + z) j x+y+z x+y+z xyz + + xy ln(x + y + z) k x+y+z
13. ∇f = ex+2y cos z 2 + 1 i + 2ex+2y cos z 2 + 1 j − 2zex+2y sin z 2 + 1 k 14. ∇f = eyz
2
/x3
−
3yz 2 z2 2yz i + 3j + 3 k 4 x x x
2 1 15. ∇f = 2y cos(2xy) + i + 2x cos(2xy) j + k x z 16. ∇f =
2xy − 3z 4 z
x2 j− i+ z
17. ∇f = (4x − 3y) i + (8y − 3x) j;
x2 y + 12xz 3 z2
k
at (2, 3), ∇f = −i + 18j
18. ∇f =
1 (−2yi + 2xj), (x − y)2
1 3 ∇f (3, 1) = − i + j 2 2
19. ∇f =
2y 2x i+ 2 j; x2 + y 2 x + y2
at (2, 1), ∇f =
4 2 i+ j 5 5
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.1 20. ∇f =
xy tan (y/x) − 2 x + y2 −1
i+
x2 x2 + y 2
21. ∇f = (sin xy + xy cos xy) i + x2 cos xy j; 22. ∇f = e−(x
2
+y 2 )
∇f (1, 1) =
j,
π 1 − 4 2
i+
1 j 2
at (1, π/2), ∇f = i ∇f (1, −1) = e−2 (i − j)
[(y − 2x2 y)i + (x − 2xy 2 )j],
23. ∇f = −e−x sin (z + 2y) i + 2e−x cos (z + 2y) j + e−x cos (z + 2y) k; √ at (0, π/4, π/4), ∇f = − 12 2 (i + 2j + k) 24. ∇f = cos πzi − cos πzj − π(x − y) sin πzk, 25. ∇f = i −
y y2
+
z2
j−
z y2
+
z2
k;
∇f
1, 0,
at (2, −3, 4),
26. ∇f = − sin(xyz )(yz i + xz j + 2xyzk), 2
27. (a) ∇f (0, 2) = 4 i
2
2
(b) ∇f
1
1 4 π, 6 π
∇f
1 2
= −πk
∇f = i +
1 π, , −1 4
3 4 j− k 5 5
√
π 2 1 =− i+πj− k 2 4 2
=
√ √ −1 + 3 1 −1 + 3 √ √ −1 − i+ − − j 2 2 2 2
(c) ∇f (1, e) = (1 − 2e) i − 2 j 1 1 27 28. (a) ∇f (1, 2, −3) = √ i + √ j − √ k 8 2 2 2 8 2 √ 3 π (c) ∇f (1, e2 , π/6) = i+ j+k 2 12e2
(b) ∇f (1, −2, 3) = −
1 1 5 i+ j+ k 18 9 18
29. For the function f (x, y) = 3x2 − xy + y, we have f (x + h) − f (x) = f (x + h1 , y + h2 ) − f (x, y) = 3(x + h1 )2 − (x + h1 )(y + h2 ) + (y + h2 ) − 3x2 − xy + y = [(6x − y) i + (1 − x) j] · (h1 i + h2 j) + 3h21 − h1 h2 = [(6x − y) i + (1 − x) j] · h + 3h21 − h1 h2 The remainder g(h) = 3h21 − h1 h2 = (3h1 i − h1 j) · (h1 i + h2 j) ,
and
|g(h)| 3h1 i − h1 j · h · cos θ = ≤ 3h1 i − h1 j h h Since 3h1 i − h1 j → 0 as h → 0 it follows that ∇f = (6x − y) i + (1 − x) j 30. f (x + h) − f (x) = [(x + 2y) i + (2x + 2y) j] · [h1 i + h2 j] + 12 h21 + 2h1 h2 + h22 ; g(h) = 12 h21 + 2h1 h2 + h22 is o(h).
789
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
790
December 7, 2006
SECTION 16.1
31. For the function f (x, y, z) = x2 y + y 2 z + z 2 x, we have f (x + h) − f (x) = f (x + h1 , y + h2 , z + h3 ) − f (x, y, z)
= (x + h1 )2 (y + h2 ) + (y + h2 )2 (z + h3 ) + (z + h3 )2 (x + h1 ) − x2 y + y 2 z + z 2 x = 2xy + z 2 h1 + 2yz + x2 h2 + 2xz + y 2 h3 + (2xh2 + yh1 + h1 h2 ) h1 + (2yh3 + zh2 + h2 h3 ) h2 + (2zh1 + xh3 + h1 h3 ) h3 = 2xy + z 2 i + 2yz + x2 j + 2xz + y 2 k · h + g(h) · h, where
g(h) = (2xh2 + yh1 + h1 h2 ) i + (2yh3 + zh2 + h2 h3 ) j + (2zh1 + xh3 + h1 h3 ) k
Since
|g(h)| → 0 as h → 0 h
it follows that
∇f = 2xy + z 2 i + 2yz + x2 j + 2xz + y 2 k
32. f (x + h) − f (x) = (2xy + 2h2 x + h1 y) i + 2x2 j + g(h) = h21 h2 is o(h) and ∇f = 4xy i = 2x2 j + 33. ∇f = F(x, y) = 2xy i + 1 + x2 j
⇒
∂f = x2 + g (y) = 1 + x2 ∂y Thus, f (x, y) = x2 y + y + C
k.
∂f = 2xy ∂x g (y) = 1
⇒
Now,
1 z2
1 k · (h1 i + h2 j + h3 k) + h21 ; z(z + h3 )
⇒ ⇒
f (x, y) = x2 y + g(y) for some function g. g(y) = y + C, C a constant.
1 34. ∇f = (2xy + x)i + (x2 + y)j =⇒ fx = 2xy + x =⇒ f (x, y) = x2 y + x2 + g(y) 2 Now, fy = x2 + g (y) = x2 + y =⇒ g (y) = y =⇒ g(y) = 12 y 2 + C Thus,
f (x, y) = x2 y + 12 x2 + 12 y 2 + C
35. ∇f = F(x, y) = (x + sin y) i + (x cos y − 2y) j ⇒ for some function g. ∂f Now, = x cos y + g (y) = x cos y − 2y ∂y Thus, f (x, y) = 12 x2 + x sin y − y 2 + C.
⇒
∂f = x + sin y ⇒ f (x, y) = ∂x g (y) = −2y
⇒
1 2
x2 + x sin y + g(y)
g(y) = −y 2 + C, C a constant.
36. ∇f = yzi + (xz + 2yz)j + (xy + y 2 )k =⇒ fx = yz =⇒ f (x, y, z) = xyz + g(y, z). fy = xz + gy = xz + 2yz =⇒ gy = 2yz =⇒ g(y, z) = y 2 z + h(z) =⇒ f (x, y, z) = xyz + y 2 z + h(z). fx = xy + y 2 + h (z) = xy + y 2 =⇒ h (z) = 0 =⇒ h(z) = C. Thus, f (x, y, z) = xyz + y 2 z + C. 37. With r = (x2 + y 2 + z 2 )1/2 we have ∂r x = , ∂x r (a)
∇(ln r) =
∂r y = , ∂y r
∂r z = . ∂z r
∂ ∂ ∂ (ln r) i + (ln r) j + (ln r)k ∂x ∂y ∂z
1 ∂r 1 ∂r 1 ∂r i+ j+ k r ∂x r ∂y r ∂z x y z r = 2 i+ 2 j+ 2 k= 2 r r r r =
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.1 (b)
∇(sin r) =
791
∂ ∂ ∂ (sin r) i + (sin r) j + (sin r)k ∂x ∂y ∂z
∂r ∂r ∂r i + cos r j + cos r k ∂x ∂y ∂z x y z = (cos r) i + (cos r) j + (cos r) k r r r
cos r = r r
= cos r
(c) ∇er =
er r
r
[ same method as in (a) and (b) ]
38. With rn = (x2 + y 2 + z 2 )n/2 we have ∂rn n = (x2 + y 2 + z 2 )(n/2)−1 (2x) = n(x2 + y 2 + z 2 )(n−2)/2 x = nrn−2 x. ∂x 2 Similarly ∂rn = nrn−2 y ∂y
and
∂rn = nrn−2 z. ∂z
Therefore ∇rn = nrn−2 xi + nrn−2 yj + nrn−2 zk = nrn−2 (xi + yj + zk) = nrn−2 r
39. (a) ∇f = 2x i + 2y j = 0
=⇒
x = y = 0;
∇f = 0 at (0, 0).
(b)
40. (a) (c)
(c) f has an absolute minimum at (0, 0)
∇f =
−1 4 − x2 − y 2
(xi + yj) = 0 at (0, 0)
f has a maximum at (0, 0)
(b)
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
792
December 7, 2006
SECTION 16.2
41. (a) Let c = c1 i + c2 j + c3 k. First, we take h = hi. Since c · h is o(h), c·h c1 h = lim = c1 . h→0 h h
0 = lim
h→0
Similarly, c2 = 0 and c3 = 0. (b) (y − z) · h = [f (x + h) − f (x) − z · h] + [y · h − f (x + h) + f (x) ] = o(h) + o(h) = o(h), so that, by part (a), y − z = 0. 42.
lim g(h) = lim
h→0
h→0
g(h) h h
=
lim h
h→0
g(h) lim h→0 h
= (0)(0) = (0).
43. (a) In Section 15.6 we showed that f was not continuous at (0, 0). It is therefore not differentiable at (0, 0). (b) For (x, y) = (0, 0), ∂f 2 2y 3 = 4 = ∂x y y
∂f 2y(y 2 − x2 ) . As (x, y) tends to (0, 0) along the positive y-axis, = ∂x (x2 + y 2 )2
tends to ∞.
SECTION 16.2 1. ∇f = 2xi + 6yj,
∇f (1, 1) = 2i + 6j,
2. ∇f = [1 + cos(x + y)]i + cos(x + y)j, √ fu (0, 0) = ∇f (0, 0) · u = 5
u=
1 2
√
∇f (0, 0) = 2i + j,
3. ∇f = (ey − yex ) i + (xey − ex ) j, ∇f (1, 0) = i + (1 − e)j, 1 fu (1, 0) = ∇f (1, 0) · u = (7 − 4e) 5 1 (−2yi + 2xj), ∇f (1, 0) = 2j, (x − y)2 √ fu (1, 0) = ∇f (1, 0) · u = − 3
4. ∇f =
u=
1 u = √ (2i + j), 5
u=
1 (3i + 4j), 5
√ 1 (i − 3j), 2
(a − b)y (b − a)x a−b (i − j), i+ j, ∇f (1, 1) = (x + y)2 (x + y)2 4 1√ fu (1, 1) = ∇f (1, 1) · u = 2 (a − b) 4
5. ∇f =
√ fu (1, 1) = ∇f (1, 1) · u = −2 2
2 (i − j),
u=
1√ 2 (i − j), 2
1 d−c [(d − c)yi + (c − d)xj] , ∇f (1, 1) = (i − j), 2 (cx + dy) (c + d)2 d−c √ fu (1, 1) = ∇f (1, 1) · u = (c + d) c2 + d2
6. ∇f =
2x 2y i+ 2 j, ∇f (0, 1) = 2 j, 2 +y x + y2 2 fu (0, 1) = ∇f (0, 1) · u = √ 65
7. ∇f =
x2
1 u = √ (8 i + j), 65
u= √
c2
1 (ci − dj), + d2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.2 π π 8. ∇f = 2xyi + (x2 + sec2 y)j, ∇f (−1, ) = − i + 3j, 4 2
π π 1 π fu −1, = ∇f −1, · u = −√ +6 4 4 5 2
1 u = √ (i − 2j) 5
9. ∇f = (y + z)i + (x + z)j + (y + x)k, ∇f (1, −1, 1) = 2j, 2√ fu (1, −1, 1) = ∇f (1, −1, 1) · u = 6 3 10. ∇f = (z 2 + 2xy)i + (x2 + 2yz)j + (y 2 + 2zx)k, √ 10 fu (1, 0, 1) = ∇f (1, 0, 1) · u = 10
u=
1 6
√
6 (i + 2j + k),
∇f (1, 0, 1) = i + j + 2k,
11. ∇f = 2 x + y 2 + z 3 i + 2yj + 3z 2 k , ∇f (1, −1, 1) = 6(i − 2j + 3k), √ fu (1, −1, 1) = ∇f (1, −1, 1) · u = −3 2 12. ∇f = (2Ax + Byz)i + (Bxz + 2Cy)j + Bxyk, u= √
1 (Ai + Bj + Ck); 2 A + B2 + C 2
13. ∇f = tan−1 (y + z) i + 1 u = √ (i + j − k), 3
793
1 u = √ (3j − k) 10
u=
1 2
√
2 (i + j),
∇f (1, 2, 1) = 2(A + B)i + (B + 4C)j + 2Bk
fu (1, 2, 1) = ∇f (1, 2, 1) · u =
2A2 + B 2 + 2AB + 6BC √ A2 + B 2 + C 2
π 1 1 ∇f (1, 0, 1) = i + j + k, 4 2 2 √ π 3 fu (1, 0, 1) = ∇f (1, 0, 1) · u = √ = π 12 4 3
x x j+ k, 1 + (y + z)2 1 + (y + z)2
14. ∇f = (y 2 cos z − 2πyz 2 cos πx + 6zx)i + (2xy cos z − 2z 2 sin πx)j + (−xy 2 sin z − 4yz sin πx + 3x2 )k ∇f (0, −1, π) = (2π 3 − 1)i; 15. ∇f =
x2
x y i+ 2 j, 2 +y x + y2
u=
1 (2i − j + 2k), 3 1
u=
x2
+
y2
(−xi − yj) ,
17. ∇f = (2Ax + 2By) i + (2Bx + 2Cy) j, ∇f (a, b) = (2aA + 2bB)i + (2aB + 2bC) j √ √ (a) u = 12 2 (−i + j), fu (a, b) = ∇f (a, b) · u = 2 [a(B − A) + b(C − B)] √ √ (b) u = 12 2 (i − j), fu (a, b) = ∇f (a, b) · u = 2 [a(A − B) + b(B − C)] z z i − j + ln x y 1 u = √ (i + j − k); 3
x k, y
∇f (1, 1, 2) = 2i − 2j
fu (1, 1, 2) = ∇f (1, 1, 2) · u = 0
1
fu (x, y) = ∇f · u = −
16. ∇f = exy (y 2 + xy 3 − y 3 )i + (x − 1)(2y + xy 2 )j , ∇f (0, 1) = −2j 1 4√ u = √ (−i + 2j), fu (0, 1) = ∇f (0, 1) · u = − 5 5 5
18. ∇f =
2 (2π 3 − 1). 3
fu (0, −1, π) = ∇f (0, −1, π) · u =
x2
+ y2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
794
December 7, 2006
SECTION 16.2
19. ∇f = ey
2
−z 2
∇f (1, 2, −2) = i + 4j + 4k, r (t) = i − 2 sin (t − 1) j − 2et−1 k, √ 7√ r (1) = i − 2k, u = 15 5 (i − 2k), fu (1, 2, −2) = ∇f (1, 2, −2) · u = − 5 5
(i + 2xyj − 2xzk),
at (1, 2, −2) t = 1, 20. ∇f = 2xi + zj + yk,
∇f (1, −3, 2) = 2i + 2j − 3k 1 1√ Direction: r (−1) = −2i + 3j − 3k, u = √ (−2i + 3j − 3k), fu (1, −3, 2) = ∇f (1, −3, 2) · u = 22 2 22 21. ∇f = (2x + 2yz) i + 2xz − z 2 j + (2xy − 2yz) k, ∇f (1, 1, 2) = 6 i − 2 k
1 The vectors v = ±(2 i + j − 3 k) are direction vectors for the given line; u = ± √ [2 i + j − 3 k] 14 18 √ are corresponding unit vectors; fu (1, 1, 2) = ∇f (1, 1, 2) · (±u) = ± 14 22. ∇f = ex (cos πyzi − πz sin πyzj − πy sin πyzk),
∇f (0, 1, 12 ) = −
π j−πk 2
The vectors v = ±(2 i + 3 j + 5 k) are direction vectors for the line; u = ± 13π fu (0, 1, 12 ) = ∇f (0, 1, 12 ) · (±u) = ∓ √ 2 38
are corresponding unit vectors;
1 √ [2 i + 3 j + 5 k] 38
√ ∇f = 2 2,
∇f 1 = √ (i + j) ∇f 2 √ 1 f increases most rapidly in the direction u = √ (i + j); the rate of change is 2 2. 2 √ 1 f decreases most rapidly in the direction v = − √ (i + j); the rate of change is −2 2. 2
23. ∇f = 2y 2 e2x i + 2ye2x j,
∇f (0, 1) = 2 i + 2 j,
24. ∇f = [1 + cos(x + 2y)]i + 2 cos(x + 2y)j, ∇f (0, 0) = 2i + 2j √ 1 Fastest increase in direction u = √ (i + j), rate of change ∇f (0, 0) = 2 2 2 √ 1 Fastest decrease in direction v = − √ (i + j), rate of change −2 2 2 x
25. ∇f =
x2
+
y2
z2
y
i+
x2
y2
z2
j+
+ + + 1 ∇f (1, −2, 1) = √ (i − 2 j + k), ∇f = 1 6
z x2
+ y2 + z2
k,
1 f increases most rapidly in the direction u = √ (i − 2 j + k); the rate of change is 1. 6 1 f decreases most rapidly in the direction v = − √ (i − 2 j + k); the rate of change is −1. 6 26. ∇f = (2xzey + z 2 )i + x2 zey j + (x2 ey + 2xz)k, ∇f (1, ln 2, 2) = 12i + 4j + 6k 1 Fastest increase in direction u = (6i + 2j + 3k), rate of change ∇f (1, ln 2, 2) = 14 7 1 Fastest decrease in direction v = − (6i + 2j + 3k), rate of change −14 7 27. ∇f = f (x0 ) i. If f (x0 ) = 0, the gradient points in the direction in which f increases: to the right if f (x0 ) > 0, to the left if f (x0 ) < 0.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.2 28. 0;
the vector c =
795
∂f ∂f (x0 , y0 )i − (x0 , y0 )j is perpendicular to the gradient ∇f (x0 , y0 ) and ∂y ∂x
points along the level curve of f at (x0 , y0 ). 29. (a) (b) 30. (a) (b)
√ f (h, 0) − f (0, 0) h2 |h| lim = lim = lim does not exist h→0 h→0 h→0 h h h no; by Theorem 16.2.5 f cannot be differentiable at (0, 0) g(x + h)o(h) o(h) = g(x + h) → g(x)(0) = 0 h h |[g(x + h) − g(x)]∇f (x) · h| [g(x + h) − g(x)]∇f (x)h ≤ h h
by Schwarz’s inequality = |g(x + h) − g(x)| · ∇f (x) → 0 31. ∇λ(x, y) = − 83 xi − 6yj 8 (a) ∇λ(1, −1) = − i = 6j, 3
8 i − 6j −∇λ(1, −1) 2√ = 32 √ , λu (1, −1) = ∇λ(1, −1) · u = − 97 ∇λ(1, −1) 3 3 97 (b) u = i, λu (1, 2) = ∇λ(1, 2) · u = − 83 i − 12j · i = − 83 √ √ 1√ 26 (c) u = 12 2 (i + j), λu (2, 2) = ∇λ(2, 2) · u = − 16 2 3 i − 12 j · 2 2 (i + j) = − 3
u=
32. ∇I = −4xi − 2yj. We want the curve r(t) = x(t)i + y(t)j which begins at (−2, 1) and has tangent vector r (t) in the direction ∇I. We can satisfy these conditions by setting x (t) = −4x(t), x(0) = −2;
y (t) = −2y(t), y(0) = 1.
These equations imply that x(t) = −2e−4t ,
y(t) = e−2t .
Eliminating the parameter, we get x = −2y 2 ; the particle will follow the parabolic path x = −2y 2 toward the origin. 33. (a) The projection of the path onto the xy-plane is the curve C : r(t) = x(t)i + y(t)j which begins at (1, 1) and at each point has its tangent vector in the direction of −∇f. Since ∇f = 2xi + 6yj, we have the initial-value problems x (t) = −2x(t),
x(0) = 1
and
y (t) = −6y(t),
x(t) = e−2t
and
y(t) = e−6t .
y(0) = 1.
From Theorem 7.6.1 we find that
Eliminating the parameter t, we find that C is the curve y = x3 from (1, 1) to (0, 0).
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
796
December 7, 2006
SECTION 16.2 (b) Here x (t) = −2x(t),
x(0) = 1
y (t) = −6y(t),
and
y(0) = −2
so that x(t) = e−2t
and
y(t) = −2e−6t .
Eliminating the parameter t, we find that the projection of the path onto the xy-plane is the curve y = −2x3 from (1, −2) to (0, 0). 1 2 x − y 2 ; ∇f = xi − 2yj, so we choose the projection r(t) = x(t)i + y(t)j of the path 2 onto the xy-plane such that x (t) = x(t), y (t) = −2y(t) 1 (a) With initial point (−1, 1, − 12 ), we get x(t) = −et , y(t) = e−2t , or y = 2 x from (−1, 1), in the direction of decreasing x.
34. z = f (x, y) =
(b) With initial point (1, 0, 12 ), we get x(t) = et , y(t) = 0, or the x-axis from (1, 0), in the direction of increasing x. 35. The projection of the path onto the xy-plane is the curve C : r(t) = x(t)i + y(t)j which begins at (a, b) and at each point has its tangent vector in the direction of −∇f = − 2a2 xi + 2b2 yj . We can satisfy these conditions by setting x (t) = −2a2 x(t),
x(0) = a2
and
y (t) = −2b2 y(t),
y(0) = b
so that x(t) = ae−2a
2
Since
x b 2 a a2
C is the curve (b)
b2
x
b2
= (a) y
a2
t
and
y(t) = be−2b t . 2
b2 y a2 2 = e−2a t = , b
from (a, b) to (0, 0).
36. The particle must go in he direction −∇T = −ey cos xi − ey sin xj, so we set x (t) = −ey(t) cos x(t), y (t) = −ey(t) sin x(t). Dividing, we have
sin x(t) dy y (t) = , or = tan x. x (t) cos x(t) dx
With initial point
(0, 0), we get y = ln | sec x|, in the direction of decreasing x (since x (0) < 0). 37. We want the curve C : r(t) = x(t)i + y(t)j which begins at (π/4, 0) and at each point has its tangent vector in the direction of √ √ ∇T = − 2 e−y sin x i − 2 e−y cos x j. From √ x (t) = − 2 e−y sin x
and
√ y (t) = − 2 e−y cos x
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.2
797
we obtain dy y (t) = = cot x dx x (t) so that y = ln | sin x| + C. √ √ Since y = 0 when x = π/4, we get C = ln 2 and y = ln | 2 sin x|. As ∇T (π/4, 0) = −i − j, the curve √ y = ln | 2 sin x| is followed in the direction of decreasing x. 38. ∇z = (1 − 2x)i + (2 − 6y)j,
so the projection of the path onto the xy-plane satisfies
dy 2 − 6y = . With initial point dx 1 − 2x 3y = (2x − 1)3 + 1, in the direction of increasing x. 1 − 2x(t), y (t) = 2 − 6y(t),
39.
or
(0, 0),
x (t) =
this gives the curve
f 2 + h, (2 + h)2 − f (2, 4) 3(2 + h)2 + (2 + h)2 − 16 lim = lim h→0 h→0 h h 2 4h + h = lim 4 = lim 4(4 + h) = 16 h→0 h→0 h
2 h+8 h+8 f 3 + (4 + h) − 16 , 4 + h − f (2, 4) 4 4 lim = lim h→0 h→0 h h
(a)
(b)
+ 3h + 12 + 4 + h − 16 h→0 h 3 = lim 16 h + 4 = 4 = lim
3 2 16 h
h→0
(c) u =
1 17
√
17 (i + 4j),
∇f (2, 4) = 12i + j;
fu (2, 4) = ∇f (2, 4) · u =
16 17
√
17
(d) The limits computed in (a) and (b) are not directional derivatives. In (a) and (b) we have, in essence, computed ∇f (2, 4) · r0 taking r0 = i + 4j in (a) and r0 = 14 i + j in (b). In neither case is r0 a unit vector. 40. ∇f =
−GM m −GM m (xi + yj + zk) = r r3 (x2 + y 2 + z 2 )3/2
∂f ∂f i+ j; ∂x ∂y
∂f ∂f ∂f ∂f fu (x, y) = ∇f · u = i+ j · (cos θ i + sin θ j) = cos θ + sin θ ∂x ∂y ∂x ∂y (b) ∇f = 3x2 + 2y − y 2 i + (2x − 2xy) j, ∇f (−1, 2) = 3 i + 2 j √ 2 3−3 fu (−1, 2) = 3 cos(2π/3) + 2 sin(2π/3) = 2
41. (a) u = cos θ i + sin θ j,
∇f (x, y) =
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
798
December 7, 2006
SECTION 16.3
√ √ √ ∂f 2 2 5π ∂f 5π 2y 2 2y − − 42. = cos + sin = 2xe + 2x e = − 2xe2y (1 + x) ∂x 4 ∂y 4 2 2 √ √ fu (2, ln 2) = − 2 · 2 · e2 ln 2 (1 + 2) = −24 2
∂(f g) ∂(f g) ∂(f g) ∂g ∂f ∂g ∂f ∂g ∂f i+ j+ k= f +g i+ f +g j+ f +g k 43. ∇(f g) = ∂x ∂y ∂z ∂x ∂x ∂y ∂y ∂z ∂z
∂g ∂g ∂g ∂f ∂f ∂f =f i+ j+ k +g i+ j+ k ∂x ∂y ∂z ∂x ∂y ∂z fu (x, y)
= f ∇g + g ∇f
f ∂ f ∂ f ∂ f ∇ = i+ j+ k g ∂x g ∂y g ∂z g
44.
∂f ∂g ∂f ∂f ∂g ∂g g−f g−f g−f ∂y ∂y ∂x ∂x ∂z ∂z k = i+ j+ g2 g2 g2 = 45. ∇f n =
g(x)∇f (x) − f (x)∇g(x) g 2 (x)
∂f ∂f ∂f ∂f n ∂f n ∂f n i+ j+ k = nf n−1 i + nf n−1 j + nf n−1 k = nf n−1 ∇f ∂x ∂y ∂z ∂x ∂y ∂z
SECTION 16.3 1. f (b) = f (1, 3) = −2; f (a) = f (0, 1) = 0; f (b) − f (a) = −2 ∇f = 3x2 − y i − x j; b − a = i + 2 j and ∇f · (b − a) = 3x2 − y − 2x The line segment joining a and b is parametrized by x = t,
y = 1 + 2t,
0≤t≤1
Thus, we need to solve the equation 3t2 − (1 + 2t) − 2t = −2,
which is the same as
The solutions are: t = 13 , t = 1. Thus, c = ( 13 , 53 )
3t2 − 4t + 1 = 0, 0 ≤ t ≤ 1
satisfies the equation.
Note that the endpoint b also satisfies the equation. 2. ∇f = 4zi − 2yj + (4x + 2z)k, b − a = i + 2j + k,
f (a) = f (0, 1, 1) = 0,
f (b) = f (1, 3, 2) = 3
so we want (x, y, z) such that
∇f · (b − a) = 4z − 4y + 4x + 2z = 6z − 4y + 4x = f (b) − f (a) = 3 Parametrizing the line segment from a to b by x(t) = t, y(t) = 1 + 2t, z(t) = 1 + t, we get t = 12 , or c = ( 12 , 2, 32 ) 3. (a) f (x, y, z) = a1 x + a2 y + a3 z + C
(b)
f (x, y, z) = g(x, y, z) + a1 x + a2 y + a3 z + C
4. Using the mean-value theorem 16.3.1, there exists c such that ∇f (c) · (b − a) = 0
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.3
799
5. (a) U is not connected (b)
(i) g(x) = f (x) − 1
(ii) g(x) = −f (x)
6. By the mean-value theorem f (x1 ) − f (x2 ) = ∇f (c) · (x1 − x2 ) for some point c on the line segment x1 x2 .
Since Ω is convex, c is in Ω.
Thus
|f (x1 ) − f (x2 )| = |∇f (c) · (x1 − x2 )| ≤ ∇f (c)x1 − x2 ≤ M x1 − x2 . ∧ by Schwarz’s inequality 7. ∇f = 2xyi + x2 j;
∇f (r(t)) · r (t) = 2i + e2t j · (et i − e−t j) = et
8. ∇f = i − j;
∇f (r(t)) · r (t) = (i − j) · (ai − ab sin atj) = a(1 + b sin at)
−2x 2y −2 sin t 2 cos t ∇f (r(t)) = i+ j 2 i+ 2 j, 2 2t 2 2 2 2 1 + cos 1 + cos2 2t 1 + (y − x ) 1 + (y − x )
−2 sin t 2 cos t −4 sin t cos t −2 sin 2t ∇f (r(t)) · r (t) = i+ j · (cos t i − sin t j) = = 1 + cos2 2t 1 + cos2 2t 1 + cos2 2t 1 + cos2 2t
9. ∇f =
10. ∇f =
1 (4xi + 3y 2 j) 2x2 + y 3
1 −2/3 8e4t + 1 2t 2/3 2t (4e t i + 3t j) · (2e i + j) = 2e4t + t 3 2e4t + t
1 11. ∇f = (ey − ye−x ) i + (xey + e−x ) j; ∇f (r(t)) = (tt − ln t) i + tt ln t + j t
1 1 1 1 ∇f (r(t)) · r (t) = (tt − ln t) i + tt ln t + j · i + [1 + ln t] j = tt + ln t + [ln t]2 + t t t t 1
∇f (r(t)) · r (t) =
12. ∇f =
2 (xi + yj + zk) x2 + y 2 + z 2
∇f (r(t)) · r (t) =
2 4e4t (sin ti + cos tj + e2t k) · (cos ti − sin tj + 2e2t k) = 4t 1+e 1 + e4t
13. ∇f = yi + (x − z)j − yk; ∇f (r(t)) · r (t) = t2 i + t − t3 j − t2 k · i + 2tj + 3t2 k = 3t2 − 5t4 14. ∇f = 2x i + 2y j ∇f (r(t)) · r (t) = (2a cos ωti + 2b sin ωtj) · (−ωa sin ωti + ωb cos ωtj + bωk) = 2ω(b2 − a2 ) sin ωt cos ωt 15. ∇f = 2xi + 2yj + k; ∇f (r(t)) · r (t) = (2a cos ωt i + 2b sin ωt j + k) · (−aω sin ωt i + bω cos ωt j + bωk) = 2ω b2 − a2 sin ωt cos ωt + bω
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
800
December 7, 2006
SECTION 16.3
16. ∇f = y 2 cos(x + z)i + 2y sin(x + z)j + y 2 cos(x + z)k ∇f (r(t)) · r (t) = [cos2 t cos(2t + t3 )i + 2 cos t sin(2t + t3 )j + cos2 t cos(2t + t3 )k] · (2i − sin tj + 3t2 k) = cos t[(2 + 3t2 ) cos t cos(2t + t3 ) − 2 sin t sin(2t + t3 )] 17.
du ∂u dx ∂u dy = + = (2x − 3y)(− sin t) + (4y − 3x)(cos t) dt ∂x dt ∂y dt = 2 cos t sin t + 3 sin2 t − 3 cos2 t = sin 2t − 3 cos 2t
du y x ∂u dx ∂u dy 1 2 = · + · = 1+2 3t + 2 −3 − 2 dt ∂x dt ∂y dt x y t
2 1 3 = 1 + 2 3t2 + (2t2 − 3) − 2 = 3t2 + 4 + 2 t t t
18.
19.
du ∂u dx ∂u dy = + dt ∂x dt ∂y dt
= (ex sin y + ey cos x) 12 + (ex cos y + ey sin x) (2) = et/2 12 sin 2t + 2 cos 2t + e2t 12 cos 12 t + 2 sin 12 t
20.
21.
du ∂u dx ∂u dy = · + · = (4x − y)(−2 sin 2t) + (2y − x) cos t dt ∂x dt ∂y dt = 2 sin 2t(sin t − 4 cos 2t) + cos t(2 sin t − cos 2t) du ∂u dx ∂u dy = + = (ex sin y) (2t) + (ex cos y) (π) dt ∂x dt ∂y dt 2
= et [2t sin(πt) + π cos(πt)] 22.
23.
y du ∂u dx ∂u dy ∂u dz z z 1 √ + ln = · + · + · = − 2t + et (1 + t) dt ∂x dt ∂y dt ∂z dt x y2 t x √
2t2 et et t =− 2 + + ln 2 et (1 + t) t +1 2 t +1 du ∂u dx ∂u dy ∂u dz = + + dt ∂x dt ∂y dt ∂z dt = (y + z)(2t) + (x + z)(1 − 2t) + (y + x)(2t − 2) = (1 − t)(2t) + (2t2 − 2t + 1)(1 − 2t) + t(2t − 2) = 1 − 4t + 6t2 − 4t3
24.
du ∂u dx ∂u dy ∂u dz = · + · + · = (sin πy + πz sin πx)2t + πx cos πy(−1) − cos πx(−2t) dt ∂x dt ∂y dt ∂z dt = 2t sin[π(1 − t)] + π(1 − t2 ) sin(πt2 ) − πt2 cos[π(1 − t)] + 2t cos(πt2 )
25. V =
1 2 πr h, 3
dV ∂V dr ∂V dh = + = dt ∂r dt ∂h dt
2 πrh 3
dr + dt
1 2 πr 3
dh . dt
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.3
801
At the given instant, dV 2 1 1288 = π(280)(3) + π(196)(−2) = π. dt 3 3 3 1288 The volume is increasing at the rate of π in.3 / sec . 3 26. v = πr2 h, dr = −2, dt
dv dh ∂v dr ∂v dh dr = · + · = 2πrh + πr2 dt ∂r dt ∂h dt dt dt dh dv = 3, r = 13, h = 18 =⇒ = −429π : dt dt
decreasing at the rate of
429π cm3 /sec. 27. A =
1 2
xy sin θ;
dA ∂A dx ∂A dy ∂A dθ = + + = dt ∂x dt ∂y dt ∂θ dt
1 2
dx dy dθ (y sin θ) + (x sin θ) + (xy cos θ) . dt dt dt
At the given instant dA 1 = [(2 sin 1) (0.25) + (1.5 sin 1) (0.25) − (2(1.5) cos 1) (0.1)] ∼ = 41.34 in2 /s = 0.2871 ft2 /s ∼ dt 2 dz dx dx y dy dy dy x dx = 2x + . But x2 + y 2 = 13 =⇒ 2x + 2y = 0 =⇒ =− dt dt 2 dt dt dt dt y dt
dz dx y x dx 3x dx =⇒ = 2x + − = = 15. z is increasing 15 centimeters per second dt dt 2 y dt 2 dt ∂u ∂u ∂x ∂u ∂y 29. = + = (2x − y)(cos t) + (−x)(t cos s) ∂s ∂x ∂s ∂y ∂s 28.
= 2s cos2 t − t sin s cos t − st cos s cos t ∂u ∂u ∂x ∂u ∂y = + = (2x − y)(−s sin t) + (−x)(sin s) ∂t ∂x ∂t ∂y ∂t = −2s2 cos t sin t + st sin s sin t − s cos t sin s 30.
∂u ∂u ∂x ∂u ∂y = · + · ∂s ∂x ∂s ∂y ∂s = [cos(x − y) − sin(x + y)]t + [− cos(x − y) − sin(x + y)]2s = (t − 2s) cos(st − s2 + t2 ) − (t + 2s) sin(st + s2 − t2 ) ∂u ∂u ∂x ∂u ∂y = · + · ∂t ∂x ∂t ∂y ∂t = [cos(x − y) − sin(x + y)]s + [− cos(x − y) − sin(x + y)](−2t) = (s + 2t) cos(st − s2 + t2 ) − (s − 2t) sin(st + s2 − t2 )
31.
∂u ∂u ∂x ∂u ∂y = + = (2x tan y)(2st) + x2 sec2 y (1) ∂s ∂x ∂s ∂y ∂s 3 2 = 4s t tan s + t2 + s4 t2 sec2 s + t2 ∂u ∂u ∂x ∂u ∂y = + = (2x tan y) s2 + x2 sec2 y (2t) ∂t ∂x ∂t ∂y ∂t 4 = 2s t tan s + t2 + 2s4 t3 sec2 s + t2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
802 32.
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.3 ∂u ∂x ∂u ∂y ∂u ∂z ∂u = · + · + · ∂s ∂x ∂s ∂y ∂s ∂z ∂s = z 2 y sec xy tan xy(2t) + z 2 x sec xy tan xy + 2z sec xy(2st) = sec[2st(s − t2 )] 2s4 t3 (s − t2 ) tan[2st(s − t2 )] + 2s3 t2 tan[2st(s − t2 )] + 4s3 t2 ∂u = z 2 y sec xy tan xy(2s) + z 2 x sec xy tan xy(−2t) + 2z sec xy(s2 ) ∂t = sec[2st(s − t2 )] 2s5 t2 (s − t2 ) tan[2st(s − t2 )] − 4s5 t4 tan[2st(s − t2 )] + 2s4 t
33.
∂u ∂u ∂x ∂u ∂y ∂u ∂z = + + ∂s ∂x ∂s ∂y ∂s ∂z ∂s = (2x − y)(cos t) + (−x)(− cos (t − s)) + 2z(t cos s) = 2s cos2 t − sin (t − s) cos t + s cos t cos (t − s) + 2t2 sin s cos s ∂u ∂u ∂x ∂u ∂y ∂u ∂z = + + ∂t ∂x ∂t ∂y ∂t ∂z ∂t = (2x − y)(−s sin t) + (−x)(cos (t − s)) + 2z(sin s) = −2s2 cos t sin t + s sin (t − s) sin t − s cos t cos (t − s) + 2t sin2 s
34.
∂u ∂u ∂x ∂u ∂y ∂u ∂z = · + · + · ∂s ∂x ∂s ∂y ∂s ∂z ∂s = eyz
2
1 2 2 + xz 2 eyz · 0 + 2xyzeyz 2s s
1 t3 (s2 +t2 )2 3 2 2 2 + 4st3 (s2 + t2 ) ln(st)et (s +t ) e s ∂u ∂u ∂x ∂u ∂y ∂u ∂z = · + · + · ∂t ∂x ∂t ∂y ∂t ∂z ∂t =
= eyz
2
1 2 2 + xz 2 eyz 3t2 + 2xyzeyz 2t t
1 t3 (s2 +t2 )2 3 2 2 2 + t2 (s2 + t2 )(3s2 + 7t2 ) ln(st)et (s +t ) e t d r (t) [f (r(t) ) ] = ∇f (r(t) ) · r (t) dt r (t) =
35.
= fu(t) (r(t)) r (t)
36.
where
u(t) =
∂ ∂r x d ∂r [f (r)] = [f (r)] = f (r) = f (r) ; ∂x dr ∂x ∂x r ∂ y [f (r)] = f (r) ∂y r
similarly
z ∂ [f (r)] = f (r) . ∂z r x y z r ∇f (r) = f (r) i + f (r) j + f (r) k = f (r) . r r r r
Therefore 37. (a) (cos r)
r (t) r (t)
and
r r
38. (a) ∇(r ln r) = (1 + ln r)
(b) (r cos r + sin r) r r
2
r r
(b) ∇(e1−r ) = −2re1−r
2
r r
2
= −2e1−r r
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.3
r 39. (a) (r cos r − sin r) 3 r
(b)
40. (a)
(b)
sin r − r cos r sin2 r
r r
du ∂u dx ds ∂u dy ds = + dt ∂x ds dt ∂y ds dt
41. (a)
∂u ∂u = (b) ∂r ∂x
∂x ∂w ∂x ∂t + ∂w ∂r ∂t ∂r
∂u + ∂y
∂y ∂w ∂y ∂t + ∂w ∂r ∂t ∂r
To obtain ∂u/∂s, replace each r by s. 42. (a)
(b)
∂u ∂x ∂u ∂z ∂u ∂w ∂u = + + , ∂r ∂x ∂r ∂z ∂r ∂w ∂r
∂u ∂u ∂y ∂u ∂w = + ∂v ∂y ∂v ∂w ∂v
∂u + ∂z
∂z ∂w ∂z ∂t + ∂w ∂r ∂t ∂r
.
803
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
804 43.
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.3 ∂u dx ∂u dy du = + dt ∂x dt ∂y dt 2 2 d u ∂u d x dx ∂ 2 u dx ∂ 2 u dy ∂u d2 y dy ∂ 2 u dx ∂ 2 u dy = + + + + + 2 dt2 ∂x dt2 dt ∂x2 dt ∂y∂x dt ∂y dt2 dt ∂x ∂y dt ∂y dt and the result follows.
44.
∂u ∂u ∂x ∂u ∂y = + ∂s ∂x ∂s ∂y ∂s ∂2u ∂u ∂ 2 x ∂x = + ∂s2 ∂x ∂s2 ∂s =
∂2u ∂x2
∂x ∂s
∂ 2 u ∂x ∂ 2 u ∂y + ∂x2 ∂s ∂y∂x ∂s
2 +2
∂ 2 u ∂x ∂y ∂ 2 u + 2 ∂x∂y ∂s ∂s ∂y
∂u ∂ 2 y ∂y + + ∂y ∂s2 ∂s
∂y ∂s
2 +
∂ 2 u ∂x ∂ 2 u ∂y + 2 ∂x∂y ∂s ∂y ∂s
∂u ∂ 2 x ∂u ∂ 2 y + ∂x ∂s2 ∂y ∂s2
∂u ∂x ∂u ∂y ∂u ∂u ∂u = + = cos θ + sin θ ∂r ∂x ∂r ∂y ∂r ∂x ∂y
45. (a)
∂u ∂u ∂x ∂u ∂y ∂u ∂u = + = (−r sin θ) + (r cos θ) ∂θ ∂x ∂θ ∂y ∂θ ∂x ∂y 2 2 2 ∂u ∂u ∂u ∂u ∂u 2 (b) cos θ sin θ + = cos θ + 2 sin2 θ, ∂r ∂x ∂x ∂y ∂y 2 2 2 1 ∂u ∂u ∂u ∂u ∂u 2 = sin θ − 2 cos2 θ, cos θ sin θ + 2 r ∂θ ∂x ∂x ∂y ∂y 2 2 2 2 2 2 ∂u 1 ∂u ∂u 2 ∂u 2 ∂u ∂u + 2 = + cos θ + sin2 θ + sin θ + cos2 θ = ∂r r ∂θ ∂x ∂y ∂x ∂y
46. (a) By Exercise 45 (a) ∂w ∂w ∂w = cos θ + sin θ, ∂r ∂x ∂y ∂w ∂x (b) To obtain the first pair of equations set w = r; Solve these equations simultaneously for
∂w ∂w ∂w =− r sin θ + r cos θ. ∂θ ∂x ∂y and
∂w . ∂y
to obtain the second pair of equations set w = θ. (c) θ is not independent of x; r = x2 + y 2 gives ∂r r cos θ x = = = cos θ 2 2 ∂x r x +y 47. Solve the equations in Exercise 45 (a) for
∂u ∂u and : ∂x ∂y
∂u ∂u 1 ∂u = cos θ − sin θ, ∂x ∂r r ∂θ Then
∇u =
∂u ∂u 1 ∂u = sin θ + cos θ ∂y ∂r r ∂θ
∂u ∂u 1 ∂u ∂u i+ j= (cos θ i + sin θ j) + (− sin θ i + cos θ j) ∂x ∂y ∂r r ∂θ
48. u(r, θ) = r2 =⇒ ∇u = 2rer
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.3 49. u(x, y) = x2 − xy + y 2 = r2 − r2 cos θ sin θ = r2 1 −
1 2
∂u = r(2 − sin 2θ), ∂r
sin 2θ
805
∂u = −r2 cos 2θ ∂θ
∂u 1 ∂u er + eθ = r(2 − sin 2θ)er − r cos 2θ eθ ∂r r ∂θ ∂u ∂u ∂x ∂u ∂y ∂u ∂u = + = −r sin θ + r cos θ ∂θ ∂x ∂θ ∂y ∂θ ∂x ∂y
∇u = 50.
∂u ∂2u = − sin θ − r sin θ ∂r∂θ ∂x = − sin θ
∂ 2 u ∂x ∂ 2 u ∂y + ∂x2 ∂r ∂y∂x ∂r
∂u ∂u + cos θ + r sin θ cos θ ∂x ∂y
∂u + cos θ + r cos θ ∂y
∂2u ∂2u − ∂y 2 ∂x2
∂ 2 u ∂x ∂ 2 u ∂y + 2 ∂x∂y ∂r ∂y ∂r
+ r(cos2 θ − sin2 θ)
∂2u ∂x∂y
51. From Exercise 45 (a), ∂2u ∂2u ∂2u ∂2u sin θ cos θ + 2 sin2 θ = cos2 θ + 2 2 2 ∂r ∂x ∂y ∂x ∂y ∂2u ∂2u 2 2 ∂2u 2 ∂2u 2 = r sin θ − 2 sin θ cos θ + r cos2 θ − r r ∂θ2 ∂x2 ∂y ∂x ∂y 2 The term in parentheses is The result follows.
∂u = 2x − 2y, ∂x
∂u = −2x + 4y 3 ∂y
∂u y−x dy 2y − 2x = − ∂x = 3 = 3 ∂u dx 4y − 2x 2y − x ∂y 53. Set u = xey + yex − 2x2 y.
Then ∂u = xey + ex − 2x2 ∂y
dy ∂u/∂x ey + yex − 4xy =− =− y . dx ∂u/∂y xe + ex − 2x2 54. u(x, y) = x2/3 + y 2/3 ,
∂u ∂u cos θ + sin θ . ∂x ∂y
∂u . Now divide the second equation by r2 and add the two equations. ∂r
52. u(x, y) = x2 − 2xy + y 4 − 4,
∂u = ey + yex − 4xy, ∂x
2 ∂u = x−1/3 , ∂x 3
2 ∂u = y −1/3 ∂y 3
∂u
y 1/3 dy = − ∂x = − =⇒ ∂u dx x ∂y 55. Set u = x cos xy + y cos x − 2. ∂u = cos xy − xy sin xy − y sin x, ∂x
Then ∂u = − x2 sin xy + cos x ∂y
dy ∂u/∂x cos xy − xy sin xy − y sin x =− = . dx ∂u/∂y x2 sin xy − cos x
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
806
December 7, 2006
SECTION 16.4
56. Set u(x, y, z) = z 4 + x2 z 3 + y 2 + xy − 2. Then
∂u = 2xz 3 + y, ∂x
∂u = 2y + x, ∂y
∂u ∂z 2y + x ∂y =− =− 3 ∂u ∂y 4z + 3x2 z 2 ∂z
∂u ∂z 2xz 3 + y = − ∂x = − 3 , ∂u ∂x 4z + 3x2 z 2 ∂z
57. Set u = cos xyz + ln x2 + y 2 + z 2 . ∂u 2x , = −yz sin xyz + 2 ∂x x + y2 + z2
Then ∂u 2y , = −xz sin xyz + 2 ∂y x + y2 + z2
and
∂u 2z . = −xy sin xyz + 2 ∂z x + y2 + z2
2x − yz x2 + y 2 + z 2 sin xyz ∂z ∂u/∂x =− =− , ∂x ∂u/∂z 2z − xy (x2 + y 2 + z 2 ) sin xyz 2y − xz x2 + y 2 + z 2 sin xyz ∂z ∂u/∂y =− =− . ∂y ∂u/∂z 2z − xy (x2 + y 2 + z 2 ) sin xyz
58. (a)
Use
(b) (i)
du du1 du2 = i+ j and apply the chain rule to u1 , u2 . dt dt dt du = t(ex cos yi + ex sin yj) + π(−ex sin yi + ex cos yj) dt 2
= tet
/2
2
(ii) u(t) = et
2
(cos πti + sin πtj) + πet
/2
2
cos πti + et
/2
/2
(− sin πti + cos πtj)
sin πtj
du 2 2 2 2 = (−πet /2 sin πt + tet /2 cos πt)i + (πet /2 cos πt + tet /2 sin πt)j dt
59.
∂u ∂u ∂x ∂u ∂y = + , ∂s ∂x ∂s ∂y ∂s
60.
du ∂u dx ∂u dy ∂u dz = + + dt ∂x dt ∂y dt ∂z dt
∂u ∂u ∂x ∂u ∂y = + ∂t ∂x ∂t ∂y ∂t
∂u ∂u1 ∂u2 ∂u3 = i+ j+ k, ∂y ∂y ∂y ∂y
where
∂u ∂u1 ∂u2 ∂u3 = i+ j+ k, ∂x ∂x ∂x ∂x
∂u ∂u1 ∂u2 ∂u3 = i+ j+ k. ∂z ∂z ∂z ∂z
SECTION 16.4 1. Set f (x, y) = x2 + xy + y 2 .
Then,
∇f = (2x + y)i + (x + 2y)j, normal vector i + j; tangent vector i − j tangent line x + y + 2 = 0; normal line x − y = 0
∇f (−1, −1) = −3i − 3j.
∂u = 4z 3 + 3x2 z 2 ∂z
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.4 2. Set f (x, y) = (y − x)2 − 2x,
∇f = −2(y − x + 1)i + 2(y − x)j,
807
∇f (2, 4) = −6i + 4j
normal vector −3i + 2j; tangent vector 2i + 3j tangent line 3x − 2y + 2 = 0; normal line 2x + 3y − 16 = 0 2 3. Set f (x, y) = x2 + y 2 − 9 x2 − y 2 . Then,
√ √ ∇f = [4x(x2 + y 2 ) − 18x]i + 4y x2 + y 2 + 18y j, ∇f 2, 1 = −6 2 i + 30j. √ √ normal vector 2 i − 5 j; tangent vector 5i + 2 j √ √ √ tangent line 2x − 5y + 3 = 0; normal line 5x + 2 y − 6 2 = 0 ∇f = 3x2 i + 3y 2 j,
4. Set f (x, y) = x3 + y 3 ,
∇f (1, 2) = 3i + 12j
tangent vector 4i − j
normal vector i + 4j;
tangent line x + 4y − 9 = 0;
normal line 4x − y − 2 = 0
5. Set f (x, y) = xy 2 − 2x2 + y + 5x.
Then,
∇f = (y 2 − 4x + 5) i + (2xy + 1) j,
∇f (4, 2) = −7i + 17j.
normal vector 7i − 17j; tangent vector 17i + 7j tangent line 7x − 17y + 6 = 0; normal line 17x + 7y − 82 = 0 6. Set f (x, y) = x5 + y 5 − 2x3 . ∇f = (5x4 − 6x2 )i + 5y 4 j, normal vector i − 5j;
∇f (1, 1) = −i + 5j
tangent vector 5i + j
tangent line x − 5y + 4 = 0;
normal line 5x + y − 6 = 0
7. Set f (x, y) = 2x3 − x2 y 2 − 3x + y.
Then,
∇f = (6x2 − 2xy 2 − 3) i + (−2x2 y + 1) j,
∇f (1, −2) = −5i + 5j.
normal vector i − j; tangent vector i + j tangent line x − y − 3 = 0; normal line x + y + 1 = 0 8. Set f (x, y) = x3 + y 2 + 2x. ∇f = (3x2 + 2)i + 2yj, normal vector 5i + 6j;
tangent vector 6i − 5j
tangent line 5x + 6y − 13 = 0; 9. Set f (x, y) = x2 y + a2 y.
∇f (−1, 3) = 5i + 6j
normal line 6x − 5y + 21 = 0
By (15.4.4) m=−
∂f /∂x 2xy =− 2 . ∂f /∂y x + a2
At (0, a) the slope is 0. 10. Set f (x, y, z) = (x2 + y 2 )2 − z. ∇f = 4x(x2 + y 2 )i + 4y(x2 + y 2 )j − k, Tangent plane: Normal:
8x + 8y − z − 12 = 0
x = 1 + 8t,
y = 1 + 8t,
z =4−t
∇f (1, 1, 4) = 8i + 8j − k
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
808
December 7, 2006
SECTION 16.4
11. Set f (x, y, z) = x3 + y 3 − 3xyz.
Then,
∇f = (3x2 − 3yz) i + (3y 2 − 3xz) j − 3xyk, ∇f 1, 2, 32 = −6i + 15 2 j − 6k; 3 tangent plane at 1, 2, 32 : −6(x − 1) + 15 2 (y − 2) − 6 z − 2 = 0, which reduces to 4x − 5y + 4z = 0. Normal:
y = 2 − 5t,
x = 1 + 4t,
z=
3 2
+ 4t
12. Set f (x, y, z) = xy 2 + 2z 2 . ∇f = y 2 i + 2xyj + 4zk, x + y + 2z − 7 = 0
Tangent plane: Normal:
∇f (1, 2, 2) = 4i + 4j + 8k
x = 1 + t,
y = 2 + t,
z = 2 + 2t
13. Set z = g(x, y) = axy. Then, ∇g = ayi + axj, ∇g
1 tangent plane at 1, , 1 : z − 1 = 1(x − 1) + a y − a Normal: x = 1 + t, y = a1 + at, z = 1 − t 14. Set f (x, y, z) =
√
Tangent plane: Normal:
√
1 1, = i + aj.
a 1 , which reduces to x + ay − z − 1 = 0 a
√
1 1 1 z. ∇f = √ i + √ j + √ k, 2 y 2 x 2 z 2x + y + 2z − 8 = 0
x+
x = 1 + 2t,
y+
y = 4 + t,
Then,
∇g = [cos x + cos (x + y)] i + [cos y + cos (x + y)] j, tangent plane at (0, 0, 0) : z − 0 = 2(x − 0) + 2(y − 0), x = 2t,
y = 2t,
1 1 1 i+ j+ k 2 4 2
z = 1 + 2t
15. Set z = g(x, y) = sin x + sin y + sin (x + y).
Normal:
∇f (1, 4, 1) =
∇g(0, 0) = 2i + 2j;
2x + 2y − z = 0.
z = −t
16. Set f (x, y, z) = x2 + xy + y 2 − 6x + 2 − z. ∇f = (2x + y − 6)i + (x + 2y)j − k, −k Tangent plane: Normal:
x = 4,
z = −10 y = −2,
z = −10 + t
17. Set f (x, y, z) = b2 c2 x2 − a2 c2 y 2 − a2 b2 z 2 .
Then,
∇f (x0 , y0 , z0 ) = 2b2 c2 x0 i − 2a2 c2 y0 j − 2a2 b2 z0 k; tangent plane at (x0 , y0 , z0 ) : 2b2 c2 x0 (x − x0 ) − 2a2 c2 y0 (y − y0 ) − 2a2 b2 z0 (z − z0 ) = 0, which can be rewritten as follows: b2 c2 x0 x − a2 c2 y0 y − a2 b2 z0 z = b2 c2 x0 2 − a2 c2 y0 2 − a2 b2 z0 2 = f (x0 , y0 , z0 ) = a2 b2 c2 . Normal: x = x0 + 2b2 c2 x0 t,
y = y0 − 2a2 c2 y0 t,
z = z0 − 2a2 b2 z0 t
∇f (4, −2, −10) =
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.4 18. Set f (x, y, z) = sin(x cos y) − z. ∇f = cos y cos(x cos y)i − x sin y cos(x cos y)j − k, ∇f (1, π2 , 0) = j − k Tangent plane: Normal:
x = 1,
y+z = y=
π 2
π + t, 2
z=t
19. Set z = g(x, y) = xy + a3 x−1 + b3 y −1 . ∇g = y − a3 x−2 i + x − b3 y −2 j,
∇g = 0 =⇒ y = a3 x−2 and x = b3 y −2 .
Thus, y = a3 b−6 y 4 , y 3 = b6 a−3 , y = b2 /a, x = b3 y −2 = a2 /b The tangent plane is horizontal at a2 /b, b2 /a, 3ab .
and g a2 /b, b2 /a = 3ab.
20. z = g(x, y) = 4x + 2y − x2 + xy − y 2 . ∇g = (4 − 2x + y)i + (2 + x − 2y)j 10 8 ∇g = 0 =⇒ 4 − 2x + y = 0, 2 + x − 2y = 0 =⇒ x = , y= 3 3 8 28 The tangent plane is horizontal at ( 10 , , ). 3 3 3 21. Set z = g(x, y) = xy.
Then, ∇g = yi + xj. ∇g = 0
=⇒
x = y = 0.
The tangent plane is horizontal at (0, 0, 0). 22. z = g(x, y) = x2 + y 2 − x − y − xy. ∇g = (2x − 1 − y)i + (2y − 1 − x)j ∇g = 0 =⇒ 2x − 1 − y = 0 = 2y − 1 − x = 0 =⇒ x = 1, y = 1 The tangent plane is horizontal at (1, 1, −1). 23. Set z = g(x, y) = 2x2 + 2xy − y 2 − 5x + 3y − 2.
Then,
∇g = (4x + 2y − 5) i + (2x − 2y + 3) j. ∇g = 0
4x + 2y − 5 = 0 = 2x − 2y + 3 1 The tangent plane is horizontal at 13 , 11 6 , − 12 . =⇒
=⇒
x = 13 ,
y=
24. (a) Set f (x, y, z) = xy − z.√ ∇f = yi + xj − k, ∇f (1, 1, 1) = i + j − k 3 upper unit normal = (−i − j + k) 3 1 1 1 1 (b) Set f (x, y, z) = − − z. ∇f = − 2 i + 2 j − k, ∇f (1, 1, 0) = −i + j − k x y√ x y 3 lower unit normal: = (−i + j − k) 3 25.
x − x0 y − y0 z − z0 = = (∂f /∂x)(x0 , y0 , z0 ) (∂f /∂y)(x0 , y0 , z0 ) (∂f /∂z)(x0 , y0 , z0 )
11 6 .
809
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
810
December 7, 2006
SECTION 16.4
26. All the tangent planes pass through the origin. To see this, write the equation of the surface as xf (x/y) − z = 0.
The tangent plane at (x0 , y0 , z0 ) has equation
2 x0 x0 x0 x0 x0 +f − (y − y0 ) − (z − z0 ) = 0. (x − x0 ) f f y0 y0 y0 y0 2 y0
The plane passes through the origin:
x0 2 x0 x0 2 x0 x0 x0 − − x0 f + + z0 = z0 − x0 f = 0. f f y0 y0 y0 y0 y0 y0 27. Since the tangent planes meet at right angles, the normals ∇F and ∇G meet at right angles: ∂F ∂G ∂F ∂G ∂F ∂G + + = 0. ∂x ∂x ∂y ∂y ∂z ∂z 28. The sum of the intercepts is a. To see this, note that the equation of the tangent plane at (x0 , y0 , z0 ) can be written x − x0 y − y0 z − z0 + √ + √ = 0. √ x0 y0 z0 Setting y = z = 0 we have √ x − x0 √ = y 0 + z0 . √ x0 Therefore the x-intercept is given by √ √ √ √ √ √ √ x0 ( y0 + z0 ) = x0 + x0 ( a − x0 ) = x0 a. √ √ √ √ Similarly the y-intercept is y0 a and the z-intercept is z0 a. The sum of the intercepts is √ √ √ √ √ √ ( x0 + y0 + z0 ) a = a a = a. x = x0 +
√
29. The tangent plane at an arbitrary point (x0 , y0 , z0 ) has equation y0 z0 (x − x0 ) + x0 z0 (y − y0 ) + x0 y0 (z − z0 ) = 0, which simplifies to y0 z0 x + x0 z0 y + x0 y0 z = 3x0 y0 z0
and thus to
The volume of the pyramid is
x y z + + = 1. 3x0 3y0 3z0
1 1 (3x0 ) (3y0 ) 9 9 V = Bh = (3z0 ) = x0 y0 z0 = a3 . 3 3 2 2 2
30. The equation of the tangent plane at (x0 , y0 , z0 ) can be written x0 −1/3 (x − x0 ) + y0 −1/3 (y − y0 ) + z0 −1/3 (z − z0 ) = 0 Setting y = z = 0, we get the x-intercept x = x0 + x0 1/3 (y0 2/3 + z0 2/3 ) = x0 + x0 1/3 (a2/3 − x0 2/3 ) =⇒ x = x0 1/3 a2/3 Similarly, the y-intercept is y0 1/3 a2/3 and the z-intercept is z0 1/3 a2/3 . The sum of the squares of the intercepts is (x0 2/3 + y0 2/3 + z0 2/3 )a4/3 = a2/3 a4/3 = a2 .
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.4
811
31. The point (2, 3, −2) is the tip of r(1). 3 Since r (t) = 2i − 2 j − 4tk, we have r (1) = 2i − 3j − 4k. t Now set f (x, y, z) = x2 + y 2 + 3z 2 − 25. The function has gradient 2xi + 2yj + 6zk. At the point (2, 3, −2), ∇f = 2(2i + 3j − 6k). The angle θ between r (1) and the gradient gives (2i − 3j − 4k) (2i + 3j − 6k) 19 √ · = √ ∼ = 0.504. 7 29 7 29 Therefore θ ∼ = 1.043 radians. The angle between the curve and the plane is π −θ ∼ = 1.571 − 1.043 ∼ = 0.528 radians. 2 cos θ =
32. The curve passes through the point (3, 2, 1) at t = 1, and its tangent vector is r (1) = 3i + 4j + 3k. For the ellipsoid, set f (x, y, z) = x2 + 2y 2 + 3z 2 . ∇f = 2xi + 4yj + 6zk, ∇f (3, 2, 1) = 6i + 8j + 6k, 33. Set
which is parallel to r (1).
f (x, y, z) = x2 y 2 + 2x + z 3 .
Then,
∇f = (2xy 2 + 2) i + 2x2 yj + 3z 2 k,
∇f (2, 1, 2) = 6i + 8j + 12k.
The plane tangent to f (x, y, z) = 16 at (2, 1, 2) has equation 6(x − 2) + 8(y − 1) + 12(z − 2) = 0, or 3x + 4y + 6z = 22. Next, set
g(x, y, z) = 3x2 + y 2 − 2z.
Then,
∇g = 6xi + 2yj − 2k,
∇g(2, 1, 2) = 12i + 2j − 2k.
The plane tangent to g(x, y, z) = 9 at (2, 1, 2) is 12(x − 2) + 2(y − 1) − 2(z − 2) = 0, or 6x + y − z = 11. 34. Sphere: f (x, y, z) = x2 + y 2 + z 2 − 8x − 8y − 6z + 24,
∇f = (2x − 8)i + (2y − 8)j + (2z − 6)k
∇f (2, 1, 1) = −4i − 6j − 4k Ellipsoid:
g(x, y, z) = x2 + 3y 2 + 2z 2 ,
∇g = 2xi + 6yj + 4zk
∇g(2, 1, 1) = 4i + 6j + 4k Since their normal vectors are parallel, the surfaces are tangent. 35. A normal vector to the sphere at (1, 1, 2) is 2xi + (2y − 4) j + (2z − 2)k = 2i − 2j + 2k. A normal vector to the paraboloid at (1, 1, 2) is 6xi + 4yj − 2k = 6i + 4j − 2k.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
812
December 7, 2006
SECTION 16.4 Since (2i − 2j + 2k) · (6i + 4j − 2k) = 0, the surfaces intersect at right angles.
36. Surface A: Set f (x, y, z) = xy − az 2 ,
∇f = yi + xj − 2azk
Surface B: Set g(x, y, z) = x2 + y 2 + z 2 ,
∇g = 2xi + 2yj + 2zk
Surface C: Set h(x, y, z) = z 2 + 2x2 − c(z 2 + 2y 2 ). ∇h = 4xi − 4cyj + 2(1 − c)zk Where surface A and surface B intersect,
∇f · ∇g = 4(xy − az 2 ) = 0
Where surface A and surface C intersect,
∇f · ∇h = 4(1 − c)(xy − az 2 ) = 0
Where surface B and surface C intersect,
∇g · ∇h = 4[2x2 − 2cy 2 + (1 − c)z 2 ] = 0
37. (a) 3x + 4y + 6 = 0 since plane p is vertical. (b) y = − 14 (3x + 6) = − 14 [3(4t − 2) + 6] = −3t z = x2 + 3y 2 + 2 = (4t − 2)2 + 3(−3t)2 + 2 = 43t2 − 16t + 6 r(t) = (4t − 2)i − 3tj + (43t2 − 16t + 6)k (c) From part (b) the tip of r(1) is (2, −3, 33).
We take
r (1) = 4i − 3j + 70j as d to write R(s) = (2i − 3j + 33k) + s(4i − 3j + 70k). (d) Set g(x, y) = x2 + 3y 2 + 2.
Then,
∇g = 2xi + 6yj
and ∇g(2, −3) = 4i − 18j.
An equation for the plane tangent to z = g(x, y) at (2, −3, 33) is z − 33 = 4(x − 2) − 18(y + 3)
which reduces to
4x − 18y − z = 29.
(e) Substituting t for x in the equations for p and p1 , we obtain 3t + 4y + 6 = 0
and
4t − 18y − z = 29.
From the first equation y = − 34 (t + 2) and then from the second equation z = 4t − 18 − 34 (t + 2) − 29 =
35 2 t
− 2.
Thus, (∗)
r(t) = ti − ( 34 t + 32 )j +
35 2
t − 2 k.
Lines l and l are the same. To see this, consider how l and l are formed; to assure yourself, replace t in (∗) by 4s + 2 to obtain R(s) found in part (c).
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.4 38. (a) normal vector: (b) tangent line: (c) 2
12 25
i−
x=2+
14 25 14 25
j;
normal line:
t, y = 1 +
12 25
x=2+
12 25
t, y = 1 −
14 25
t
t
y
1
1
39. (a) normal vector: (b) tangent plane:
2
3
x
2 i + 2 j + 4 k;
normal line:
x = 1 + 2t, y = 2 + 2t, z = 2 + 4t
2(x − 1) + 2(y − 2) + 4(z − 2) = 0
or x + y + 2z − 7 = 0
(c)
40. (a)
(b)
1.5 1 0.5
2 1
0 0
-1
-0.5 -1
0
-1
1
(c) ∇f = 0 at (±1, 0),
0
-1.5
0, ±
3/2
-1.5 -1
-0.5
0
0.5
1
1.5
813
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
814
December 7, 2006
SECTION 16.5
41. (a)
(b)
1.5 1 0.5 0 -0.5
1
-1
3 2
-1.5 -1.5 -1 -0.5
0
0
0.5
1
1.5
1 0 -1
-1 0 1
(c) ∇f = 4x3 − 4x i − 4y 3 − 4y j; ∇f = 0 :
4x3 − 4x = 0
x = 0, ±1;
=⇒
4y 3 − 4y = 0
y = 0, ±1
=⇒
∇f = 0 at (0, 0), (±1, 0), (0, ±1), (±1, ±1)
42. (a)
(b)
2
1
1
2
0
1
-1 -2
0
0
-1
-1
0 1
2 -2
-1
-2 -2
-1
0
1
√ √ (c) ∇f = 0 at (0, 0), ± 2/2, ± 2/2
SECTION 16.5 1. ∇f = (2 − 2x) i − 2y j = 0 only at (1, 0). The difference f (1 + h, k) − f (1, 0) = 2(1 + h) − (1 + h)2 − k 2 − 1 = −h2 − k 2 ≤ 0 for all small h and k; there is a local maximum of 1 at (1, 0). 2. ∇f = (2 − 2x) i + (2 + 2y) j = 0 only at (1, −1). The difference f (1 + h, −1 + k) − f (1, −1) = [2(1 + h) + 2(−1 + k) − (1 + h)2 + (−1 + k)2 + 5] − 5 = −h2 + k 2 does not keep a constant sign for small h and k; (1, −1) is a saddle point.
2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.5
815
3. ∇f = (2x + y + 3) i + (x + 2y) j = 0 only at (−2, 1). The difference f (−2 + h, 1 + k) − f (−2, 1) = [(−2 + h)2 + (−2 + h)(1 + k) + (1 + k)2 + 3(−2 + h) + 1] − (−2) = h2 + hk + k 2 is nonnegative for all small h and k. To see this, note that h2 + hk + k 2 ≥ h2 − 2|h||k| + k 2 = (|h| − |k|)2 ≥ 0; there is a local minimum of −2 at (−2, 1). 4. ∇f = (3x2 − 3) i + j is never 0 ;
there are no stationary points and no local extreme values.
5. ∇f = (2x + y − 6) i + (x + 2y) j = 0 only at (4, −2). fxx = 2,
fxy = 1,
fyy = 2.
At (4, −2), D = 3 > 0 and A = 2 > 0 so we have a local min; the value is −10. 6. ∇f = (2x + 2y + 2) i + (2x + 6y + 10) j = 0 ∂2f = 2, ∂x2
∂2f = 2, ∂y∂x
∂2f = 6; ∂y 2
only at (1, −2).
D = 2 · 6 − 22 > 0, A = 2 =⇒ local min; the value is −8.
7. ∇f = (3x2 − 6y) i + 3y 2 − 6x j = 0 at (2, 2) and (0, 0). fxx = 6x,
fxy = −6,
D = 36xy − 36.
fyy = 6y,
At (2, 2), D = 108 > 0 and A = 12 > 0 so we have a local min; the value is −8. At (0, 0), D = −36 < 0 so we have a saddle point. 8. ∇f = (6x + y + 5) i + (x − 2y − 5) j = 0 at ∂2f = 6, ∂x2
∂2f = 1, ∂y∂x
∂2f = −2; ∂y 2
−
5 35 ,− . 13 13
D = 6 · (−2) − 12 < 0;
9. ∇f = (3x2 − 6y + 6) i + (2y − 6x + 3) j = 0 at (5, fxx = 6x,
fxy = −6,
fyy = 2,
27 2 )
(−5/13, −35/13) is a saddle point.
and (1, 32 ).
D = 12x − 36.
117 At (5, 27 2 ), D = 24 > 0 and A = 30 > 0 so we have a local min; the value is − 4 .
At (1, 32 ), D = −24 < 0 so we have a saddle point. 10. ∇f = (2x − 2y − 3) i + (−2x + 4y + 5) j = 0 ∂2f ∂2f = 2, = −2, ∂x2 ∂y∂x the value is − 13 4 .
∂2f = 4; ∂y 2
11. ∇f = sin y i + x cos y j = 0 fxx = 0,
fxy = cos y,
at
( 12 , −1).
D = 2 · 4 − (−2)2 > 0, A = 2 =⇒ local minimum;
at (0, nπ) for all integral n.
fyy = −x sin y.
Since D = − cos nπ = −1 < 0, each stationary point is a saddle point. 2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
816
December 7, 2006
SECTION 16.5
12. ∇f = sin y i + (1 + x cos y) j = 0 ∂2f = 0, ∂x2
∂2f = cos y, ∂y∂x
at (−1, 2nπ) and (1, (2n + 1)π) for all integral n.
∂2f = −x sin y; ∂y 2
D = 0 · (−x sin y) − cos2 y < 0
at the above points
so they are all saddle points 13. ∇f = (2xy + 1 + y 2 ) i + x2 + 2xy + 1 j = 0 at fxx = 2y,
fxy = 2x + 2y,
(1, −1) and (−1, 1).
D = 4xy − 4(x + y)2 .
fyy = 2x,
At both (1, −1) and (−1, 1) we have saddle points since D = −4 < 0. 14. ∇f =
1 y + 2 y x
x 1 i+ − 2 − y x
j=
x2 + y 2 x2 + y 2 j i − x2 y xy 2
is never 0;
no stationary points, no local extreme values. 1 15. ∇f = (y − x−2 ) i + x − 8y −2 j = 0 only at 2, 4 . fxx = 2x−3 , fxy = 1, fyy = 16y −3 , D = 32x−3 y −3 − 1. At 12 , 4 , D = 3 > 0 and A = 16 > 0 so we have a local min; the value is 6. 16. ∇f = (2x − 2y) i + (−2x − 2y) j = 0 only at (0, 0) ∂2f = 2, ∂x2
∂2f = −2, ∂y∂x
∂2f = −2; ∂y 2
D = 2 · (−2) − (−2)2 < 0;
17. ∇f = (y − x−2 ) i + x − y −2 j = 0 only at fxx = 2x−3 ,
fxy = 1,
fyy = 2y −3 ,
(0, 0) is a saddle point.
(1, 1).
D = 4x−3 y −3 − 1.
At (1, 1), D = 3 > 0 and A = 2 > 0 so we have a local min; the value is 3. 18. ∇f = (2xy − y 2 − 1) i + (x2 − 2xy + 1) j = 0 at (1, 1), (−1, −1) ∂2f = 2y, ∂x2
∂2f = 2(x − y), ∂y∂x
∂2f = −2x; ∂y 2
D = −4xy − 4(x − y)2 < 0
at the above points;
(1, 1) and (−1, −1) are saddle points. 19. ∇f =
fxx =
2 x2 − y 2 − 1 (x2
+
y2
2
+ 1)
i+
(x2
−4x3 + 12xy 2 + 12x , (x2 + y 2 + 1)3
f (1, 0) = −1;
4xy j=0 + y 2 + 1)2 fxy =
at
(1, 0) and (−1, 0).
4y 3 + 4y − 12x2 y , (x2 + y 2 + 1)3
fyy =
4x3 + 4x − 12xy 2 . (x2 + y 2 + 1)3
point
A
B
C
D
(1, 0)
1
0
1
1
loc. min.
(−1, 0)
−1
0
−1
1
loc. max.
f (−1, 0) = 1
result
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.5 20. ∇f =
3 ln xy + 1 − x
∂2f 1 3 = + 2, 2 ∂x x x
x−3 j=0 y
i+
∂2f 1 = , ∂y∂x y
∂2f 2 = , ∂x2 3
At (3, 1/3),
3−x ∂2f = 2 ∂y y2
∂2f = 3, ∂y∂x
21. ∇f = 4x3 − 4x i + 2y j = 0 fxx = 12x2 − 4,
at (3, 1/3)
fxy = 0,
at
∂2f =0 ∂y 2
and D = −9 < 0 =⇒ saddle point.
(0, 0), (1, 0), and (−1, 0).
fyy = 2. point
A
B
C
D
result
(0, 0)
−4
0
2
−8
saddle
(1, 0)
8
0
2
16
loc. min.
(−1, 0)
8
0
2
16
loc. min.
f (±1, 0) = −3. 2
22. ∇f = 2xex
−y 2
2
(1 + x2 + y 2 ) i + 2yex
−y 2
(1 − x2 − y 2 ) j = 0
at (0, 0), (0, 1), (0, −1)
2
A=
∂ f 2 2 2 2 = 2xex −y (2x + 2x3 + 2xy 2 ) + ex −y (2 + 6x2 + 2y 2 ) ∂x2
B=
∂2f 2 2 2 2 = −2yex −y (2x + 2x3 + 2xy 2 ) + ex −y (4xy) ∂y∂x
C=
∂2f 2 2 2 2 = −2yex −y (2y − 2yx2 − 2y 3 ) + ex −y (2 − 2x2 − 6y 2 ) ∂y 2
At (0, 0), At (0, ±1),
AC − B 2 = (2)(2) = 4 > 0, A > 0
local minimum; the value is 0.
AC − B 2 = (4e−1 )(−4e−1 ) = −8e−2 > 0, 1
23. ∇f = cos x sin y i + sin x cos y j = 0 at fxx = − sin x sin y,
1 2 π, 2 π
point 1 2 π, 2 π 1 3 2 π, 2 π
1 3 , 2 π, 2 π , (π, π), 32 π, 12 π , 32 π, 32 π .
fyy = − sin x sin y
fxy = cos x cos y, 1
saddle points
A
B
C
D
−1
0
−1
1
loc. max.
1
0
1
1
loc. min.
(π, π) 0 1 0 −1 1 1 0 1 1 2 π, 2 π 3 3 −1 0 −1 1 2 π, 2 π 1 1 3 3 1 3 3 1 f 2 π, 2 π = f 2 π, 2 π = 1; f 2 π, 2 π = f 2 π, 2 π = −1 3
result
saddle loc. min. loc. max.
24. ∇f = − sin x cosh y i + cos x sinh y j = 0 at (−π, 0) , (0, 0) , (π, 0). fxx = − cos x cosh y,
fxy = − sin x sinh y,
D = − cos2 x cosh y − sin2 x sinh y < 0; 2
2
fyy = cos x cosh y
(−π, 0) , (0, 0) , (π, 0) are saddle points.
817
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
818
December 7, 2006
SECTION 16.5
25. (a) ∇f = (2x + ky) i + (2y + kx) j and ∇f (0, 0) = 0 independent of the value of k. (b) fxx = 2,
fxy = k,
fyy = 2,
D = 4 − k 2 . Thus, D < 0 for |k| > 2 and (0, 0) is a saddle point
(c) D = 4 − k 2 > 0 for |k| < 2. Since A = fxx = 2 > 0, (0, 0) is a local minimum. (d) The test is inconclusive when D = 4 − k 2 = 0 i.e., for k = ±2. (If k = ±2, f (x, y) = (x ± y)2 and (0, 0) is a minimum.) 26. (a) ∇f = (2x + ky) i + (kx + 8y) j = 0 (b)
∂2f = 2, ∂x2
∂2f = k, ∂y∂x
∂2f = 8; ∂y 2
at (0, 0). we want
16 − k 2 < 0, or |k| > 4
(c) We want 16 − k 2 > 0, or |k| < 4 (d) k = ±4. (If k = ±4, f (x, y) = (x ± 2y)2 and (0, 0) is a minimum.) 27. Let P (x, y, z) be a point in the plane. We want to find the minimum of f (x, y, z) = 2
2
x2 + y 2 + z 2 .
2
However, it is sufficient to minimize the square of the distance: F (x, y, z) = x + y + z . It is clear that F has a minimum value, but no maximum value. Since P lies in the plane, 2x − y + 2z = 16 which implies y = 2x + 2z − 16 = 2(x + z − 8). Thus, we want to find the minimum value of F (x, z) = x2 + 4(x + z − 8)2 + z 2 Now, ∇F = [2x + 8(x + z − 8)] i + [8(x + z − 8) + 2z] k The gradient is 0 when 2x + 8(x + z − 8) = 0
and
8(x + z − 8) + 2z = 0
32 16 , from which it follows that y = − . 9 9 16 32 The point in the plane that is closest to the origin is P 32 , − , . 9 9 9
The only solution to this pair of equations is: x = z =
The distance from the origin to the plane is: F (P ) = Check using (13.6.5): d(P, 0) =
16 3 .
|2 · 0 − 0 + 2 · 0 − 16| 16 = . 2 2 2 3 2 + (−1) + 2
28. We want to minimize (x + 1)2 + (y − 2)2 + (z − 4)2 on the plane. Since z = −16 − 32 x + 2y, we need to minimize f (x, y) = (x + 1)2 + (y − 2)2 + (−20 − 32 x + 2y)2 ; ∇f = 13 2 x − 6y + 62 i + (−84 − 6x + 10y) j = 0 at (−4, 6) √ Closest point (−4, 6, 2), distance= (−1 − (−4))2 + (2 − 6)2 + (4 − 2)2 = 29 29. f (x, y) = (x − 1)2 + (y − 2)2 + z 2 = (x − 1)2 + (y − 2)2 + x2 + 2y 2
since z =
x2 + 2y 2
1 2 , y= . 2 3 fxx = 4 > 0, fxy = 0, fyy = 6, D = 24 > 0. Thus, f has a local minimum at (1/2, 2/3). √ The shortest distance from (1, 2, 0) to the cone is f 12 , 23 = 16 114 ∇f = [2(x − 1) + 2x] i + [2(y − 2) + 4y] j = 0
=⇒
x=
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.5 30. V = 8xyz,
x2 + y 2 + z 2 = a2 =⇒ V (x, y) = 8xy
a2 − x2 − y 2 , x > 0, y > 0, x2 + y 2 < a2
8y(a2 − x2 − y 2 ) − 8x2 y 8x(a2 − x2 − y 2 ) − 8xy 2 i+ j=0 a2 − x2 − y 2 a2 − x2 − y 2 2a 2a 2a 8 3√ dimensions: √ × √ × √ , maximum volume: a 3 9 3 3 3
∇V =
31. (a)
-2
-1
2 4
0
0.5 0 -0.5
1
-1
-0.5
1
1
2
-2
√ √ a/ 3, a/ 3
(b) 0
3
0
at
1
-1
0 2
-1
0.5
1
(c) ∇f = (4y − 4x3 ) i + (4x − 4y 3 ) j = 0 at (0, 0), (1, 1), (−1, −1). fxx = −12x2 ,
fxy = 4,
fyy = −12y 2 ,
D = 144x2 y 2 − 16
point
A
B
C
D
result
(0, 0)
0
4
0
−16
saddle
(1, 1)
−12
4
−12
128
loc. max.
(−1, −1)
−12
4
−12
128
loc. max.
f (1, 1) = f (−1, −1) = 3 32. (a)
(b)
1.5 1 0.5
3 2
0
1
1 0
-1 0
-0.5
-1
1
-1 -1.5 -1.5
-1
-0.5
(c) ∇f = (4x3 − 4x) i + 2y j = 0 at (0, 0), (1, 0), (−1, 0). fxx = 12x2 − 4,
fx,y = 0,
f (1, 0) = f (−1, 0) = 0
fyy = 2,
D = 24x2 − 8
point
A
B
C
D
result
(0, 0)
−8
0
2
−8
saddle
(1, 0)
8
0
2
16
loc. min.
(−1, 0)
8
0
2
16
loc. min.
0
0.5
1
1.5
819
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
820
December 7, 2006
SECTION 16.5
33. (a)
(b)
4
1.5 1 0.5
2
0 -0.5 -1
0 -2
0
-1.5
2
-1.5 -1 -0.5 0
0.5
1
1.5
f (1, 1) = 3 is a local max.; f has a saddle at (0, 0).
34. (a)
(b)
2
1 0.6 0.4 0.2 0 -2
2 1
0
0 -1
-1
0
1
2
-1
-2
-2 -2
-1
0
1
2
f (0, 0) = 0 is a local min.; f (0, 1) = f (0, −1) = 2e−1 are local maxima; f has a saddle at (±1, 0).
35. (a) 0
2
-2
0
(b)
2
2
-2 1
1
0
0
-1
f (1, 0) = −1 is a local min.; f (−1, 0) = 1 is a loc. max.
-1
-2 -2
-1
0
1
2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.6 36. (a)
(b)
821
10
8
3 2 1 0 -1 0
6
10 8
4
6 2
4
4 6
8
2
2 100
0
0
2
4
6
8
10
f (π/2, π/2) = f (π/2, 5π/2) = f (5π/2, π/2) = f (5π/2, 5π/2) = 3 are local maxima; (π/2, 3π/2), (3π/2, π/2), (3π/2, 3π/2), (3π/2, 5π/2), (5π/2, 3π/2) are saddle points of f ; f (7π/6, 7π/6) = f (11π/6, 11π/6) = − 32 are local minima.
SECTION 16.6 y 4
1. ∇f = (4x − 4) i + (2y − 2) j = 0 at (1, 1) in D; f (1, 1) = −1 Next we consider the boundary of D. We parametrize each side of the triangle: C1 : r1 (t) = t i,
1
2
x
t ∈ [ 0, 2 ],
C2 : r2 (t) = 2 i + t j, C3 : r3 (t) = t i + 2t j,
t ∈ [ 0, 4 ], t ∈ [ 0, 2 ],
Now, f1 (t) = f (r1 (t)) = 2(t − 1)2 ,
t ∈ [ 0, 2 ]; critical number: t = 1,
f2 (t) = f (r2 (t)) = (t − 1) + 1,
t ∈ [ 0, 4 ];
critical number: t = 1,
f3 (t) = f (r3 (t)) = 6t2 − 8t + 2,
t ∈ [ 0, 2 ];
critical number: t = 23 .
2
Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f1 (0) = f3 (0) = f (0, 0) = 2; f2 (1) = f (2, 1) = 1;
f1 (1) = f (1, 0) = 0;
f2 (4) = f3 (2) = f (2, 4) = 10;
f1 (2) = f2 (0) = f (2, 0) = 2; f3 (2/3) = f (2/3, 4/3) = − 23 .
f takes on its absolute maximum of 10 at (2, 4) and its absolute minimum of −1 at (1, 1). 2. ∇f = −3 i + 2 j = 0; no stationary points in D; Next we consider the boundary of D. We parametrize each side of the triangle: t ∈ [ 0, 4 ], 3 C2 : r2 (t) = t i + − 2 t + 6 j, C1 : r1 (t) = t i,
C3 : r3 (t) = t j,
t ∈ [ 0, 6 ],
t ∈ [ 0, 4 ],
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
822
December 7, 2006
SECTION 16.6 and evaluate f : f1 (t) = f (r1 (t)) = 2 − 3t,
t ∈ [ 0, 4 ]; no critical numbers,
f2 (t) = f (r2 (t)) = −6t + 14, f3 (t) = f (r3 (t)) = 2 + 2t,
t ∈ [ 0, 4 ];
t ∈ [ 0, 6 ];
no critical numbers, no critical numbers.
Evaluating these functions at the endpoints of their domains, we find that: f1 (4) = f2 (4) = f (4, 0) = −10;
f1 (0) = f3 (0) = f (0, 0) = 2;
f2 (0) = f3 (6) = f (0, 6) = 14;
f takes on its absolute maximum of 14 at (0, 6) and its absolute minimum of −10 at (4, 0). 3. ∇f = (2x + y − 6) i + (x + 2y) j = 0 at (4, −2) in D;
y 1
f (4, −2) = −13
2
3
4
5
x
-1
Next we consider the boundary of D. We -2
parametrize each side of the rectangle: C1 : r1 (t) = −t j,
-3
t ∈ [ 0, 3 ]
C2 : r2 (t) = t i − 3 j,
t ∈ [ 0, 5 ]
C3 : r3 (t) = 5 i − t j,
t ∈ [ 0, 3 ]
C4 : r4 (t) = t i,
t ∈ [ 0, 5 ]
Now, f1 (t) = f (r1 (t)) = t2 − 1,
t ∈ [ 0, 3 ];
no critical numbers
f2 (t) = f (r2 (t)) = t2 − 9t + 8,
t ∈ [ 0, 5 ];
critical number: t =
9 2
f3 (t) = f (r3 (t)) = t2 − 5t − 6,
t ∈ [ 0, 3 ];
critical number: t =
5 2
f4 (t) = f (r4 (t)) = t2 − 6t − 1,
t ∈ [ 0, 5 ];
critical number: t = 3
Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f1 (0) = f4 (0) = f (0, 0) = −1;
f1 (−3) = f2 (0) = f (0, −3) = 8;
f2 (5) = f3 (3) = f (5, −3) = −12;
f3 (5/2) = f (5, −5/2) = − 49 4 ;
f2 (9/2) = f (9/2, −3) = − 49 4 ; f3 (0) = f4 (5) = f (5, 0) = −6.
f4 (3) = f (3, 0) = −10 f takes on its absolute maximum of 8 at (0, −3) and its absolute minimum of −13 at (4, −2). 4. ∇f = (2x + 2y) i + (2x + 6y) j = 0 at (0, 0) in D; Next we consider the boundary of D. C1 : r1 (t) = t i − 2 j,
t ∈ [ −2, 2 ],
C2 : r2 (t) = 2 i + t j,
t ∈ [ −2, 2 ],
C3 : r3 (t) = t i + 2 j,
t ∈ [ −2, 2 ],
C4 : r4 (t) = −2 i + t j,
f (0, 0) = 0
We parametrize each side of the square:
t ∈ [ −2, 2 ],
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.6
823
and evaluate f : f1 (t) = f (r1 (t)) = t2 − 4t + 12,
t ∈ [ −2, 2 ];
f2 (t) = f (r2 (t)) = 4 + 4t + 3t2 ,
t ∈ [ −2, 2 ];
critical number: t = − 23 ,
f3 (t) = f (r3 (t)) = t2 + 4t + 12,
t ∈ [ −2, 2 ];
no critical numbers,
f4 (t) = f (r4 (t)) = 4 − 4t + 3t2 ,
t ∈ [ −2, 2 ];
critical number: t = 23 .
no critical numbers,
Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f1 (−2) = f4 (−2) = f (−2, −2) = 24; f2 (2) = f3 (2) = f (2, 2) = 24;
f1 (2) = f2 (−2) = f (2, −2) = 8;
f3 (−2) = f4 (2) = f (−2, 2) = 8;
f2 (−2/3) = f (2, −2/3) = 83 ;
f4 (2/3) = f (−2, 2/3) = 83 .
f takes on its absolute maximum of 24 at (−2, −2) and (2, 2) and its absolute minimum of 0 at (0, 0). Note that x2 + 2xy + 3y 2 = (x + y)2 + 2y 2 . The results follow immediately from this observation. 5. ∇f = (2x + 3y) i + (2y + 3x) j = 0 at (0, 0) in D; Next we consider the boundary of D. C : r(t) = 2 cos t i + 2 sin t j,
f (0, 0) = 2
We parametrize the circle by:
t ∈ [ 0, 2π ]
The values of f on the boundary are given by the function F (t) = f (r(t)) = 6 + 12 sin t cos t, F (t) = 12 cos2 t − 12 sin2 t :
F (t) = 0
=⇒
t ∈ [ 0, 2π ]
cos t = ± sin t
=⇒
t = 14 π,
3 5 7 4 π, 4 π, 4 π
Evaluating F at the endpoints and critical numbers, we have:
√ √
√ √ F (0) = F (2π) = f (2, 0) = 6; F 14 π = F 54 π = f 2, 2 = f ( − 2, − 2 = 12;
√ √
√ √ 3 7 2, − 2 = 0 4 π = f − 2, 2 = F 4 π = f √ √ √ √ f takes on its absolute maximum of 12 at 2, 2 and at − 2, − 2 ; f takes on its absolute √ √ √ √ 2, − 2 . minimum of 0 at − 2, 2 and at F
6. ∇f = yi + (x − 3)j = 0 at (3, 0), which is not in the interior of D. The boundary is r(t) = 3 cos t i + 3 sin t j.
f (r(t)) = 3 sin t(3 cos t − 3) = 9 sin t(cos t − 1),
t ∈ [0, 2π].
df df = 9(2 cos2 t − cos t − 1); = 0 =⇒ cos t = 1, − 12 which yields the points A (3, 0), dt dt √ √ √ √ B (− 32 , 3 2 3 ), C (− 32 , − 3 2 3 ) : f (A) = 0, f (B) = − 274 3 min, f (C) = 274 3 max 7. ∇f = 2(x − 1)i + 2(y − 1) j = 0
only at (1, 1) in D.
As the sum of two squares, f (x, y) ≥ 0.
Thus, f (1, 1) = 0 is a minimum. To examine the behavior of f on the boundary of D, we note that f represents the square of the distance between (x, y) and (1, 1). Thus, f is maximal at the point √ √ of the boundary furthest from (1, 1). This is the point − 2, − 2 ; the maximum value of f is √ √ √ f − 2, − 2 = 6 + 4 2.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
824
December 7, 2006
SECTION 16.6
8. ∇f = (y + 1) i + (x − 1) j = 0 at (1, −1) which is not in the interior of D. Next we consider the boundary of D. C1 : r1 (t) = t j + t2 j, C2 : r2 (t) = t i + 4 j,
We parametrize the boundary by:
t ∈ [ −2, 2 ], t ∈ [ −2, 2 ],
and evaluate f : f1 (t) = f (r1 (t)) = t3 − t2 + t + 3, f2 (t) = f (r2 (t)) = 5t − 1,
t ∈ [ −2, 2 ];
t ∈ [ −2, 2 ];
no critical numbers,
no critical numbers.
Evaluating these functions at the endpoints of their domains, we find that: f1 (−2) = f2 (−2) = f (−2, 4) = −11;
f1 (2) = f2 (2) = f (2, 4) = 9.
f takes on its absolute maximum of 9 at (2, 4) and its absolute minimum of −11 at (−2, 4). 9. ∇f =
2x2 − 2y 2 − 2 4xy i+ 2 j = 0 at (1, 0) and (−1, 0) in D; f (1, 0) = −1, (x2 + y 2 + 1)2 (x + y 2 + 1)2
f (−1, 0) = 1.
Next we consider the boundary of D. We parametrize each side of the squre: C1 : r1 (t) = −2 i + t j,
t ∈ [ −2, 2 ]
C2 : r2 (t) = t i + 2 j,
t ∈ [ −2, 2 ]
C3 : r3 (t) = 2 i + t j,
t ∈ [ −2, 2 ]
C4 : r4 (t) = t i,
t ∈ [ −2, 2 ]
Now, 4 , +5 −2t , f2 (t) = f (r2 (t)) = 2 t +5 −4 f3 (t) = f (r3 (t)) = 2 , t +5 −2t f4 (t) = f (r4 (t)) = 2 , t +5
f1 (t) = f (r1 (t)) =
t2
t ∈ [ −2, 2 ]; critical number: t = 0 t ∈ [ −2, 2 ]; no critical numbers t ∈ [ −2, 2 ]; critical number: t = 0 t ∈ [ −2, 2 ]; no critical numbers
Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f1 (−2) = f4 (−2) = f (−2, −2) = 49 ; f4 (2) = f3 (−2) = f (2, −2) = − 49 ;
f1 (0) = f (−2, 0) = 45 ; f3 (0) = f (2, 0) = − 45 ;
f1 (2) = f2 (−2) = f (−2, 2) = 49 ; f2 (2) = f3 (2) = f (2, 2) = − 49 .
f takes on its absolute maximum of 1 at (−1, 0) and its absolute minimum of −1 at (1, 0). 10. ∇f =
2x2 − 2y 2 − 2 4xy i+ 2 j = 0 at (1, 0) in D; f (1, 0) = −1. (x2 + y 2 + 1)2 (x + y 2 + 1)2
Next we consider the boundary of D. We parametrize each side of the triangle: C1 : r1 (t) = t i − t j,
t ∈ [ 0, 2 ]
C2 : r2 (t) = 2 i + t j,
t ∈ [ −2, 2 ]
C3 : r3 (t) = t i + t j,
t ∈ [ 0, 2 ],
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.6
825
and evaluate f : √ −2t , t ∈ [ 0, 2 ]; critical number: t = 1/ 2, 2 2t + 1 −4 f2 (t) = f (r2 (t)) = 2 , t ∈ [ −2, 2 ]; critical number: t = 0 t +5 √ −2t f3 (t) = f (r3 (t)) = 2 , t ∈ [ 0, 2 ]; critical number: t = 1/ 2. 2t + 1
f1 (t) = f (r1 (t)) =
Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: √ √ √ √ f1 (0) = f3 (0) = f (0, 0) = 0; f1 (1/ 2) = f (1/ 2, −1/ 2) = −1/ 2; f1 (2) = f2 (−2) = f (2, −2) = − 49 ; f2 (0) = f (2, 0) = − 45 ; √ √ √ √ f3 (1/ 2) = f (1/ 2, 1/ 2) = −1/ 2.
f2 (2) = f3 (2) = f (2, 2) = − 49 ;
f takes on its absolute maximum of 0 at (0, 0) and its absolute minimum of −1 at (1, 0). 11. ∇f = (4 − 4x) cos y i − (4x − 2x2 ) sin y j = 0 at (1, 0) in D: f (1, 0) = 2 Next we consider the boundary of D. We parametrize each side of the rectangle: C1 : r1 (t) = t j, t ∈ − 14 π, 14 π C2 : r2 (t) = t i − 14 π j, C3 : r3 (t) = 2 i + t j,
t ∈ [ 0, 2 ] t ∈ − 14 π, 14 π t ∈ [ 0, 2 ]
C4 : r4 (t) = t i + 14 π j, Now, f1 (t) = f (r1 (t)) = 0; √
2 (4t − 2t2 ), 2 f3 (t) = f (r3 (t)) = 0; √ 2 f4 (t) = f (r4 (t)) = (4t − 2t2 ), 2 f2 (t) = f (r2 (t)) =
t ∈ [ 0, 2 ];
t ∈ [ 0, 2 ];
f at the vertices of the rectangle has the value 0;
critical number: t = 1;
critical number: t = 1; √ f2 (1) = f4 (1) = f 1, − 14 π = f 1, 14 π = 2.
f takes on its absolute maximum of 2 at (1, 0) and its absolute minimum of 0 along the lines x = 0 and x = 2. 12. ∇f = 2(x − 3)i + 2yj = 0
at
(3, 0)
which is not in the interior of D. df Boundary: On y = x2 , f = (x − 3)2 + x4 , = 2(x − 3) + 4x3 = 0 at x = 1 =⇒ (1, 1) dx 3 3 12 df On y = 4x, f = (x − 3)2 + 16x2 , = 2(x − 3) + 32x = 0 at x = =⇒ ( , ). dx 17 17 17 So the maximum and minimum occur at one or more of the following points: (0, 0), (4, 16), (1, 1), (
3 12 , ). 17 17
Evaluating f at these points, we find that f (1, 1) = 5 is the absolute minimum of f ; f (4, 16) = 257 is the absolute maximum of f .
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
826
December 7, 2006
SECTION 16.6
13. ∇f = (3x2 − 3y) i + (−3x − 3y 2 ) j = 0 at (−1, 1) in D;
y 2
f (−1, 1) = 1 Next we consider the boundary of D. We -2
parametrize each side of the triangle: C1 : r1 (t) = −2 i + t j,
-1
t ∈ [ −2, 2 ],
C2 : r2 (t) = t i + t j,
t ∈ [ −2, 2 ],
C3 : r3 (t) = t i + 2 j,
t ∈ [ −2, 2 ],
and evaluate f :
x
-2
t ∈ [ −2, 2 ];
f3 (t) = f (r3 (t)) = t3 − 6t − 8,
2
√ t ∈ [ −2, 2 ]; critical numbers: t = ± 2,
f1 (t) = f (r1 (t)) = −8 + 6t − t3 , f2 (t) = f (r2 (t)) = −3t2 ,
1
critical number: t = 0,
√ critical numbers: t = ± 2.
t ∈ [ −2, 2 ];
Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: √ √ √ f1 (−2) = f2 (−2) = f (−2, −2) = −12; f1 (− 2) = f (−2, − 2) = −8 − 4 2 ∼ = −13.66; √ √ √ f1 ( 2) = f (−2, 2) = −8 + 4 2 ∼ f1 (2) = f3 (−2) = f (−2, 2) = −4; = −2.34; f2 (0) = f (0, 0) = 0; f2 (2) = f3 (2) = f (2, 2) = −12; √ √ √ √ √ √ f3 ( 2) = f ( 2, 2) = −8 − 4 2 f3 (− 2) = f (− 2, 2) = −8 + 4 2;
√ √ f takes on its absolute maximum of 1 at (−1, 1) and its absolute minimum of −8 − 4 2 at ( 2, 2) √ and (−2, − 2). 14. ∇f = 2(x − 4)i + 2yj = 0 at (4, 0) which is not in the interior of D. Next we examine f on the boundary of D: C1 : r1 (t) = ti + 4tj,
t ∈ [ 0, 2, ],
C2 : r2 (t) = ti + t3 j,
t ∈ [ 0, 2 ].
Note that f1 (t) = f (r1 (t)) = 17t2 − 8t + 16, f2 (t) = f (r2 (t)) = (t − 4)2 + t6 . Next f1 (t) = 34t − 8 = 0
=⇒
t = 4/17
and gives x = 4/17, y = 16/17
and f2 (t) = 6t5 + 2t − 8 = 0
=⇒
t=1
and gives x = 1, y = 1.
The extreme values of f can be culled from the following list: 4 16 f (0, 0) = 16, f (2, 8) = 68, f 17 , 17 =
256 17 ,
f (1, 1) = 10.
We see that f (1, 1) = 10 is the absolute minimum and f (2, 8) = 68 is the absolute maximum.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.6 15. ∇f =
827
4xy 2y 2 − 2x2 − 2 i + j = 0 at (0, 1) and (0, −1) in D; (x2 + y 2 + 1)2 (x2 + y 2 + 1)2
f (0, 1) = −1,
f (0, −1) = 1
Next we consider the boundary of D. C : r(t) = 2 cos t i + 2 sin t j,
We parametrize the circle by:
t ∈ [ 0, 2π ]
The values of f on the boundary are given by the function F (t) = f (r(t)) = − 45 sin t, F (t) = − 45 cos t :
F (t) = 0
=⇒
t ∈ [ 0, 2π ]
cos t = 0
Evaluating F at the endpoints and critical numbers, we have: F (0) = F (2π) = f (2, 0) = 0; F 12 π = f (0, 2) = − 45 ;
=⇒
F
t = 12 π,
3 2 π.
3 2 π = f (0, −2) =
4 5
f takes on its absolute maximum of 1 at (0, −1) and its absolute minimum of −1 at (0, 1). 16. ∇f = (2x + 1) i + (8y − 2) j = 0 at − 12 , 14 in D; Next we consider the boundary of D. C : r(t) = 2 cos t i + sin t j,
f − 12 , 14 = − 12
We parametrize the ellipse by:
t ∈ [ 0, 2π ]
The values of f on the boundary are given by the function F (t) = f (r(t)) = 4 cos2 t + 4 sin2 t + 2 cos t − 2 sin t = 4 + 2 cos t − 2 sin t, F (t) = −2 sin t − 2 cos t :
F (t) = 0
=⇒
cos t = − sin t
=⇒
t ∈ [ 0, 2π ]
t = 34 π, or 74 π
Evaluating F at the endpoints and critical numbers, we have: F (0) = F (2π) = f (2, 0) = 6;
√ √
√ √ √ √ 3 F 4 π = f − 2, 2/2 = 4 − 2 2; F 74 π = f 2, − 2/ = 4 + 2 2 √ √ √ f takes on its absolute maximum of 4 + 2 2 at 2, − 2/2 ; f takes on its absolute minimum of − 12 at − 12 , 14 . 17. ∇f = 2(x − y)i − 2(x − y) j = 0 at each point of the line segment y = x from (0, 0) to (4, 4). Since f (x, x) = 0 and f (x, y) ≥ 0, f takes on its minimum of 0 at each of these points. Next we consider the boundary of D. We parametrize each side of the triangle: C1 : r1 (t) = tj,
t ∈ [ 0, 12 ]
C2 : r2 (t) = ti,
t ∈ [ 0, 6 ]
C3 : r3 (t) = ti + (12 − 2t) j,
t ∈ [ 0, 6 ]
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
828
December 7, 2006
SECTION 16.6 and observe from f (r1 (t)) = t2 , 2
f (r2 (t)) = t ,
t ∈ [ 0, 12 ] t ∈ [ 0, 6 ]
f (r3 (t)) = (3t − 12)2 ,
t ∈ [ 0, 6 ]
that f takes on its maximum of 144 at the point (0, 12). 18. ∇f =
1 (x2 + y 2 )3/2
(−xi − yj) = 0 in D. Note that f (x, y) is the reciprocal of the distance of (x, y)
√ from the origin. The point of D closest to the origin (draw a figure) is (1, 1). Therefore f (1, 1) = 1/ 2 is the maximum value of f. The point of D furthest from the origin is (3, 4). Therefore f (3, 4) = 1/5 is the least value taken on by f . 19. Using the hint, we want to find the maximum value of f (x, y) = 18xy − x2 y − xy 2 in the triangular region. The gradient of f is: ∇D = 18y − 2xy − y 2 i + 18x − x2 − 2xy j The gradient is 0 when 18y − 2xy − y 2 = 0
and
18x − x2 − 2xy = 0
The solution set of this pair of equations is: (0, 0), (18, 0), (0, 18), (6, 6). It is easy to verify that f is a maximum when x = y = 6. The three numbers that satisfy x + y + z = 18 and maximize the product xyz are: x = 6, y = 6, z = 6. 20. f (y, z) = 30yz − y z − yz , 2
2 2
3
∇f = (30z − 2yz − z )j + (60yz − 2y z − 3yz )k = 0 at 2
2
15 , 15 2
3
2
2
154 . 4
(other points are not in the interior);
f
On the line y + z = 30, f (y, z) = 0
so the maximum of xyz 2 occurs at x = y =
21. f (x, y) = xy(1 − x − y),
0 ≤ x ≤ 1,
=
15 , 15 2
15 , 2
z = 15
0 ≤ y ≤ 1 − x.
[ dom (f ) is the triangle with vertices (0, 0), (1, 0), (0, 1).] ∇f = (y − 2xy − y 2 )i + x − 2xy − x2 j = 0 =⇒ x = y = 0, x = 1, y = 0, x = 0, y = 1, x = y = 13 . (Note that [ 0, 0 ] is not an interior point of the domain of f .) fxx = −2y, fxy = 1 − 2x − 2y, fyy = −2x. 1 1 1 At 3 , 3 , D = 3 > 0 and A < 0 so we have a local max; the value is 1/27. Since f (x, y) = 0 at each point on the boundary of the domain, the local max of 1/27 is also the absolute max.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.6
829
x y z x y x y + + = 1 =⇒ V (x, y) = xyc 1 − − , x > 0, y > 0, + 0.
V (x, y) = xy
S − 2xy 2(x + y)
and
S − 2xy 2(x + y)(−2y) − (S − 2xy)(2) ∇V = y + xy i 2(x + y) 4(x + y)2 S − 2xy 2(x + y)(−2x) − (S − 2xy)(2) + x + xy j 2(x + y) 4(x + y)2 ∂V ∂V Setting = = 0 and simplifying, we get the pair of equations ∂x ∂y 2S − 4x2 − 8xy = 0 2S − 4y 2 − 8xy = 0
from which it follows that x = y = S/6. From practical considerations, we conclude that V has a maximum value at ( S/6, S/6). Substituting these values into the equation for z, we get z = S/6 and so the box of maximum volume is a cube.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
830
December 7, 2006
SECTION 16.6
26. V = xyz,
S = xy + 2xz + 2yz
=⇒
V (x, y) = xy
(S − xy) , x > 0, y > 0, xy < S. 2(x + y)
y 2 (S − x2 − 2xy) x2 (S − y 2 − 2xy) i + j 2(x + y)2 2(x + y)2 S S ∇V = 0 =⇒ x = , y= ; dimensions for maximum volume: 3 3 ∇V =
27.
f (x, y) =
3
(x − xi )2 + (y − yi )2
S × 3
S 1 × 3 2
S 3
i=1
∇f (x, y) = 2 [(3x − x1 − x2 − x3 ) i + (3y − y1 − y2 − y3 ) j]
x1 + x2 + x3 y1 + y2 + y3 ∇f = 0 only at , = (x0 , y0 ) . 3 3 The difference
f (x0 + h, y0 + k) − f (x0 , y0 ) 3 = (x0 + h − xi )2 + (y0 + k − yi )2 − (x0 − xi )2 − (y0 − yi )2 i=1
=
3 2h (x0 − xi ) + h2 + 2k (y0 − yi ) + k 2 i=1
= 2h (3x0 − x1 − x2 − x3 ) + 2k (3y0 − y1 − y2 − y3 ) + 3h2 + 3k 2 = 3h2 + 3k 2 is nonnegative for all h and k. Thus, f has its absolute minimum at (x0 , y0 ) . 28. Profit P (x, y) = N1 (x − 50) + N2 (y − 60) = 250(y − x)(x − 50) + [32, 000 + 250(x − 2y)](y − 60) ∇P = 250(2y − 2x − 10)i + [32, 000 + 250(2x + 70 − 4y)]j = 0 =⇒ x = 89,
y = 94 1 x tan θ , A = xy + x 2 2
x P = x + 2y + 2 sec θ , 2 1 P 0 < θ < π, 0 < x < . 2 1 + sec θ
29.
A(x, θ) = 12 x(P − x − x sec θ) + 14 x2 tan θ,
2
P x2 x x 2 ∇A = − x − x sec θ + tan θ i + sec θ − sec θ tan θ j, 2 2 4 2 (Here j is the unit vector in the direction of increasing θ.) ∇A =
1 x2 [P + x(tan θ − 2 sec θ − 2)] i + sec θ (sec θ − 2 tan θ) j. 2 4
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.6 From
831
∂A ∂A = 0 we get θ = 16 π and then from = 0 we get ∂θ ∂x √ √ √ P + x 13 3 − 43 3 − 2 = 0 so that x = (2 − 3)P.
Next, Axx = 12 (tan θ − 2 sec θ − 2), x sec θ (sec θ − 2 tan θ), 2 x2 = sec θ sec θ tan θ − sec2 θ − tan2 θ . 2
Axθ = Aθθ Apply the second-partials test:
√ √ C = − 13 P 2 3 (2 − 3 )2 , D < 0. √ √ Since, D > 0 and A < 0, the area is a maximum when θ = 16 π, x = (2 − 3 ) P and y = 16 (3 − 3 )P. A = − 12 (2 +
√
3 ),
B = 0,
30. (a) ∇f = (2ax + by)i + (bx + 2cy)j ∂2f = 2a, ∂x2
∂2f = b, ∂y∂x
∂2f = 2c; ∂y 2
D = 4ac − b2 .
(b) The point (0, 0) is the only stationary point. If D < 0, (0, 0) is a saddle point; if D > 0, (0, 0) is a local minimum if a > 0 and a local maximum if a < 0. √ √ √ √ (c) (i) if b > 0, f (x, y) = ( ax + cy)2 ; every point on the line ax + cy = 0 is a stationary point and at each such point f takes on a local and absolute min of 0 √ √ √ √ if b < 0, f (x, y) = ( ax − cy)2 ; every point on the line ax − cy = 0 is a stationary point and at each such point f takes on a local and absolute min of 0 |a|x − |c|y = 0 (ii) if b > 0, f (x, y) = −( |a|x − |c|y)2 ; every point on the line is a stationary point and at each such point f takes on a local and absolute max of 0 if b < 0, f (x, y) = −( |a|x + |c|y)2 ; every point on the line |a|x + |c|y = 0 is a stationary point and at each such point f takes on a local and absolute max of 0 31. From
x = 12 y = 13 z = t
and
x=y−2=z =s
(t, 2t, 3t)
and
(s, 2 + s, s)
we take
as arbitrary points on the lines. It suffices to minimize the square of the distance between these points: f (t, s) = (t − s)2 + (2t − 2 − s)2 + (3t − s)2 = 14t2 − 12ts + 3s2 − 8t + 4s + 4,
t, s real.
Let i and k be the unit vectors in the direction of increasing t and s, respectively. ∇f = (28t − 12s − 8)i + (−12t + 6s + 4) j; ftt = 28,
fts = −12,
fss = 6,
∇f = 0
=⇒
t = 0, s = −2/3.
D = 6(28) − (−12)2 = −24 < 0.
By the second-partials test, the distance is a minimum when t = 0, s = −2/3; √ problem tells us the minimum is absolute. The distance is f (0, −2/3) = 23 6.
the nature of the
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
832
December 7, 2006
SECTION 16.6
32. We want to minimize S = 4πr2 + 2πrh given that V = 43 πr3 + πr2 h = 10, 000.
4 V 4 2V 2 S(r) = 4πr + 2πr − r = πr2 + πr2 3 3 r V 8πr3 − 6V 4 3 6V S (r) = , h= 2 − r=0 = 0 =⇒ r = 3r2 8π πr 3 The optimal container is a sphere of radius r = 3 7500/π meters. 33. (a) Let x and y be the cross-sectional measurements of the box, and let l be its length. Then V = xyl,
where
2x + 2y + l ≤ 108,
x, y > 0
To maximize V we will obviously take 2x+2y+l = 108. Therefore, V (x, y) = xy(108−2x−2y) and ∇V = [y(108 − 2x − 2y) − 2xy] i + [x(108 − 2x − 2y) − 2xy] j Setting
∂V ∂V = = 0, we get the pair of equations ∂x ∂y ∂V = 108y − 4xy − 2y 2 = 0 ∂x ∂V = 108x − 4xy − 2x2 = 0 ∂y
from which it follows that x = y = 18
=⇒
l = 36.
Now, at (18, 18), we have A = Vxx = −4y = −72 < 0,
B = Vxy = 108 − 4x − 4y = −36,
C = Vyy = −4x = −72,
and D = (36)2 − (72)2 < 0.
Thus, V is a maximum when x = y = 18 inches and l = 36 inches. (b) Let r be the radius of the tube and let l be its length. Then V = π r2 l,
where
2π r + l ≤ 108,
r>0
To maximize V we take 2π r + l = 108. Then V (r) = π r2 (108 − 2π r) = 108π r2 − 2π 2 r3 . Now dV = 216π r − 6π 2 r2 dr Setting
dV = 0, we get dr 216π r − 6π 2 r2 = 0
=⇒
r=
36 π
=⇒
Now, at r = 36/π, we have d2 V 36 = − 216π < 0 = 216π − 12π 2 2 dr π Thus, V is a maximum when r = 36/π inches and l = 36 inches.
l = 36
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.6 34. Let (x, y, z) be on the ellipsoid, x > 0, y > 0, z > 0.
833
Then
V = 2x · 2y · 2z = 8xyz. Note that V achieves its maximum ⇐⇒ Let s = x2 y 2 z 2 ,
=⇒
then
2x2 y2 + = 1, 9 4
x2 y 2 z 2 achieves its maximum.
x2 y2 s = x2 y 2 1 − − , 9 4
2x2 ∂s y2 = 2xy 2 1 − − =0 ∂x 9 4
∂s x2 2y 2 2 = 2x y 1 − − =0 ∂y 9 4 x2 2y 2 + =1 9 4
Thus, Vmax
=⇒
3 x= √ , 3
2 y=√ , 3
1 z=√ 3
√ 3 2 1 16 3 = 8xyz = 8 · √ · √ · √ = . 3 3 3 3
35. Let S denote the cross-sectional area. Then S= where
1 1 (12 − 2x + 12 − 2x + 2x cos θ) x sin θ = 12x sin θ − 2x2 sin θ + x2 sin 2θ, 2 2
0 < x < 6, 0 < θ < π/2
Now, with j in the direction of increasing θ, ∇S = (12 sin θ − 4x sin θ + x sin 2θ) i + (12x cos θ − 2x2 cos θ + x2 cos 2θ) j Setting
∂S ∂S = = 0, we get the pair of equations ∂x ∂θ 12 sin θ − 4x sin θ + x sin 2θ = 0 12x cos θ − 2x2 cos θ + x2 cos 2θ = 0
from which it follows that x = 4, θ = π/3. Now, at (4, π/3), we have 3√ 3, B = Sxθ = 12 cos θ − 4x cos θ + 2x cos 2θ = −6, 2 √ = −12x sin θ + 2x2 sin θ − 2x2 sin 2θ = −24 3 and D = 108 − 36 > 0.
A = Sxx = −4 sin θ + sin 2θ = − C = Sθθ
Thus, S is a maximum when x = 4 inches and θ = π/3. 36.
96 = xyz, C = 30xy + 10(2xz + 2yz) 96 = 30xy + 20(x + y) . xy
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
834
December 7, 2006
SECTION 16.7 64 64 + , C(x, y) = 30 xy + x y ∇C = 30(y − 64x−2 )i + 30(x − 64y −2 ) j = 0
=⇒
Cxx = 128x−3 ,
x = y = 4. Cyy = 128y −3 .
Cxy = 1,
When x = y = 4, we have D = 3 > 0 and A = 2 > 0 so the cost is minimized by making the dimensions of the crate 4 × 4 × 6 meters. 37. (a) f (m, b) = [2 − b]2 + [−5 − (m + b)]2 + [4 − (2m + b)]2 . fm = 10m + 6b − 6, fmm = 10,
fb = 6m + 6b − 2;
fmb = 6,
fbb = 6,
Answer: the line y = x −
fm = fb = 0
D = 24 > 0
=⇒
m = 1, b = − 23 .
=⇒
a minimum.
2 3.
(b) f (α, β) = [2 − β]2 + [−5 − (α + β)]2 + [4 − (4α + β)]2 . fα = 34α + 10β − 22, fαα = 34,
fβ = 10α + 6β − 2;
⎧ ⎨α =
fα = fβ = 0
fαβ = 10,
fββ = 6, D = 104 > 0 1 Answer: the parabola y = 13 14x2 − 19 .
=⇒
=⇒
⎩
14 13
β = − 19 13
⎤ ⎦.
a minimun.
38. (a) f (m, b) = [2 − (−m + b)]2 + [−1 − b]2 + [1 − (m + b)]2 fm = 4m + 2, fmm = 4,
fb = 6b − 4,
2 1 m=− , b= 2 3 =⇒ minimum
fm = fb = 0
=⇒
fmb = 0,
fbb = 6, D = 24 > 0 1 2 Answer: the line y = − x + 2 3 (b) f (α, β) = [2 − (α + β)]2 + [−1 − β]2 + [1 − (α + β)]2 fα = 4α + 4β − 6, fαα = 4,
fβ = 4α + 6β − 4;
fα = fβ = 0
fαβ = 4,
fββ = 6, D = 8 > 0 5 Answer: the parabola y = x2 − 1 2
=⇒
=⇒
α=
5 , β = −1 2
minimum
SECTION 16.7 g(x, y) = xy − 1
f (x, y) = x2 + y 2 ,
1.
∇f = 2xi + 2yj, ∇f = λ∇g
=⇒
∇g = yi + xj.
2x = λy and 2y = λx.
Multiplying the first equation by x and the second equation by y, we get 2x2 = λxy = 2y 2 . Thus, x = ±y. From g(x, y) = 0 we conclude that x = y = ±1. The points (1, 1) and (−1, −1) clearly give a minimum, since f represents the square of the distance of a point on the hyperbola from the origin. The minimum is 2.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.7 2. f (x, y) = xy,
835
g(x, y) = b2 x2 + a2 y 2 − a2 b2 ∇f = yi + xj,
∇g = 2b2 xi + 2a2 yj
∇f = λ∇g =⇒ y = 2λb2 x,
x = 2λa2 y =⇒ a2 y 2 = b2 x2 a b From g(x, y) = 0 we get 2b2 x2 = a2 b2 =⇒ x = ± √ , y = ± √ 2 2 √ √ √ √ 1 The maximum value of xy is 2 ab, achieved at (a/ 2, b 2) and at (−a/ 2, −b 2). g(x, y) = b2 x2 + a2 y 2 − a2 b2
f (x, y) = xy,
3.
∇f = yi + xj, ∇f = λ∇g
∇g = 2b2 xi + 2a2 yj. =⇒
y = 2λb2 x and x = 2λa2 y.
Multiplying the first equation by a2 y and the second equation by b2 x, we get a2 y 2 = 2λa2 b2 xy = b2 x2 . √ √ Thus, ay = ±bx. From g(x, y) = 0 we conclude that x = ± 12 a 2 and y = ± 12 b 2. Since f is continuous and the ellipse is closed and bounded, the minimum exists. It occurs at √ 1 √ 1 √ 1 √ 1 1 2 a 2, − 2 b 2 and − 2 a 2, 2 b 2 ; the minimum is − 2 ab. 4. f (x, y) = xy 2 ,
g(x, y) = x2 + y 2 − 1
∇f = y 2 i + 2xyj,
∇g = 2xi + 2yj
∇f = λ∇g =⇒ y 2 = 2λx,
2xy = 2λy =⇒ y = 0
y = 0: From g(x, y) = 0 we get x = ±1;
or y 2 = 2x2
f (±1, 0) = 0
√ 2 y = ±√ 3
1 y = 2x : From g(x, y) = 0 we get 3x = 1, =⇒ x = ± √ , 3 √ √ √ √ 2 The Minimum of xy 2 is: − 3 at (−1/ 3, ± 2 3) 9 2
2
2
5. Since f is continuous and the ellipse is closed and bounded, the maximum exists. g(x, y) = b2 x2 + a2 y 2 − a2 b2
f (x, y) = xy 2 , ∇f = y 2 i + 2xyj, ∇f = λ∇g
=⇒
∇g = 2b2 xi + 2a2 yj.
y 2 = 2λb2 x and
2xy = 2λa2 y.
Multiplying the first equation by a2 y and the second equation by b2 x, we get a2 y 3 = 2λa2 b2 xy = 2b2 x2 y. We can exclude y = 0; it clearly cannot produce the maximum. Thus, a2 y 2 = 2b2 x2 and, from g(x, y) = 0, 3b2 x2 = a2 b2 . √ √ √ √ This gives us x = ± 13 3 a and y = ± 13 6 b. The maximum occurs at x = 13 3 a, y = ± 13 6 b; the √ value there is 29 3 ab2 .
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
836
December 7, 2006
SECTION 16.7
6. f (x, y) = x + y, ∇f = i + j,
g(x, y) = x4 + y 4 − 1
∇g = 4x3 i + 4y 3 j
∇f = λ∇g =⇒ 1 = 4λx3 ,
1 = 4λy 3 =⇒ x = y
From g(x, y) = 0 we get 2x4 = 1 =⇒ x = y = ±2−1/4 The maximum of x + y is:
2 · 2−1/4 = 23/4 , achieved at (2−1/4 , 2−1/4 ).
7. The given curve is closed and bounded. Since x2 + y 2 represents the square of the distance from points on this curve to the origin, the maximum exists. g(x, y) = x4 + 7x2 y 2 + y 4 − 1 ∇g = 4x3 + 14xy 2 i + 4y 3 + 14x2 y j.
f (x, y) = x2 + y 2 , ∇f = 2xi + 2yj,
We use the cross-product equation (16.7.4) : 2x(4y 3 + 14x2 y) − 2y(4x3 + 14xy 2 ) = 0, 20x3 y − 20xy 3 = 0, xy(x2 − y 2 ) = 0. Thus, x = 0, y = 0, or x = ±y. From g(x, y) = 0 we conclude that the points to examine are √ 1√ (0, ±1), (±1, 0), ± 3 3, ± 13 3 . The value of f at each of the first four points is 1;
the value at the last four points is 2/3. The
maximum is 1. 8. f (x, y, z) = xyz,
g(x, y, z) = x2 + y 2 + z 2 − 1
∇f = yzi + xzj + xyk,
∇g = 2xi + 2yj + 2zk
∇f = λ∇g =⇒ yz = 2λx,
xz = 2λy,
xy = 2λz =⇒ x2 = y 2 = z 2 or λ = 0.
λ = 0: In this case, at least two of x, y, z are 0 and f = 0. x2 = y 2 = z 2 From g(x, y, z) = 0 we get 3x2 = 1 =⇒ x = ± √13 , y = ± √13 , z = ± √13 √ √ √ √ √ √ 1√ 3 at (−1/ 3, −1/ 3, −1/ 3), (−1/ 3, 1/ 3, 1/ 3), 9 √ √ √ √ √ √ (1/ 3, −1/ 3, 1/ 3), (1/ 3, 1/ 3, −1/ 3).
The minimum of xyz is:
−
9. The maximum exists since xyz is continuous and the ellipsoid is closed and bounded. x2 y2 z2 + + −1 a2 b2 c2 2x 2y 2z ∇f = yzi + xzj + xyk, ∇g = 2 i + 2 j + 2 k. a b c 2x 2y 2z ∇f = λ∇g =⇒ yz = 2 λ, xz = 2 λ, xy = 2 λ. a b c
f (x, y, z) = xyz,
g(x, y, z) =
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.7
837
We can assume x, y, z are non-zero, for otherwise f (x, y, z) = 0, which is clearly not a maximum. Then from the first two equations yza2 xzb2 = 2λ = x y
so that a2 y 2 = b2 x2
or
x2 y2 = . a2 b2
Similarly from the second and third equations we get b2 z 2 = c2 y 2
y2 z2 = 2. 2 b c
or
3x2 a b From g(x, y, z) = 0, we get 2 = 1 =⇒ x ± √ , from which it follows that y = ± √ , a 3 3 √ c 1 z = ± √ . The maximum value is 9 3 abc. 3 g(x, y, z) = x2 + y 2 + z 2 − 7
10. f (x, y, z) = x + 2y + 4z, ∇f = i + 2j + 4k,
∇g = 2xi + 2yj + 2zk
∇f = λ∇g =⇒ 1 = 2λx, 2 = 2λy, 4 = 2λz =⇒ y = 2x, z = 4x 1 From g(x, y, z) = 0 we get 21x2 = 7 =⇒ x = ± √ 3 √ √ √ √ Minimum of x + 2y + 4z is: −7 3, achieved at (−1/ 3, −2/ 3, −4/ 3). 11. Since the sphere is closed and bounded and 2x + 3y + 5z is continuous, the maximum exists. g(x, y, z) = x2 + y 2 + z 2 − 19
f (x, y, z) = 2x + 3y + 5z, ∇f = 2i + 3j + 5k, ∇f = λ∇g
∇g = 2xi + 2yj + 2zk.
=⇒
2 = 2λx, 3 = 2λy, 5 = 2λz.
Since λ = 0 here, we solve the equations for x, y and z: x=
1 , λ
y=
3 , 2λ
z=
5 , 2λ
and substitute these results in g(x, y, z) = 0 to obtain 1 9 25 + 2 + 2 − 19 = 0, 2 λ 4λ 4λ
38 − 19 = 0, 4λ2
λ=±
1√ 2. 2
The positive value of λ will produce positive values for x, y, z and thus the maximum for f. We get √ √ √ √ x = 2, y = 32 2, z = 52 2, and 2x + 3y + 5z = 19 2. g(x, y, z) = x + y + z − 1
12. f (x, y, z) = x4 + y 4 + z 4 , ∇f = 4x i + 4y j + 4z k, 3
3
3
∇g = i + j + k
∇f = λ∇g =⇒ 4x = λ, 4y 3 = λ, 4z 3 = λ =⇒ x = y = z 3
From g(x, y, z) = 0 we get 3x = 1, =⇒ x = 1 Minimum is: 27 13.
1 3
=y=z
x y z + + −1 a b c 1 1 1 ∇f = yzi + xzj + xyk, ∇g = i + j + k. a b c λ λ λ ∇f = λ∇g =⇒ yz = , xz = , xy = . a b c f (x, y, z) = xyz,
g(x, y, z) =
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
838
December 7, 2006
SECTION 16.7 Multiplying these equations by x, y, z respectively, we obtain xyz =
λx , a
xyz =
λy , b
xyz =
λz . c
Adding these equations and using the fact that g(x, y, z) = 0, we have
x y z 3xyz = λ + + = λ. a b c Since x, y, z are non-zero, yz = Similarly, y =
λ 3xyz = , a a
1=
3x , a
x=
a . 3
b c 1 and z = . The maximum is abc. 3 3 27
14. Maximize area A = xy given that the perimeter P = 2x + 2y f (x, y) = xy,
g(x, y) = 2x + 2y − P
∇f = yi + xj,
∇g = 2i + 2j;
∇f = λ∇g =⇒ y = 2λ,
x = 2λ =⇒ x = y.
The rectangle of maximum area is a square. 15. It suffices to minimize the square of the distance from (0, 1) to a point on the parabola. Clearly, the minimum exists. f (x, y) = x2 + (y − 1)2 ,
g(x, y) = x2 − 4y
∇f = 2xi + 2(y − 1)j,
∇g = 2xi − 4j.
We use the cross-product equation (16.7.4): 2x(−4) − 2x(2y − 2) = 0,
4x + 4xy = 0,
x(y + 1) = 0.
Since y ≥ 0, we have x = 0 and thus y = 0. The minimum is 1. 16. Minimize f (x, y) = (x − p)2 + (y − 4p)2 ∇f = 2(x − p)i + 2(y − 4p)j,
subject to
g(x, y) = 2px − y 2 = 0
∇g = 2pi − 2yj
∇f = λ∇g =⇒ 2(x − p) = 2λp,
2(y − 4p) = −2λy =⇒ x =
8p3 = y 2 =⇒ y = 2p, x = 2p y √ Distance to parabola is: f (x, y) = 5p
4p2 y
From g(x, y) = 0 we get
17. It suffices to maximize and minimize the square of the distance from (2, 1, 2) to a point on the sphere. Clearly, these extreme values exist. f (x, y, z) = (x − 2)2 + (y − 1)2 + (z − 2)2 , ∇f = 2(x − 2) i + 2(y − 1) j + 2(z − 2) k, ∇f = λ∇g
=⇒
g(x, y, z) = x2 + y 2 + z 2 − 1 ∇g = 2x i + 2y j + 2z k.
2(x − 2) = 2xλ, 2(y − 1) = 2yλ, 2(z − 2) = 2zλ
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.7
839
Thus, x=
2 , 1−λ
y=
1 , 1−λ
2 . 1−λ
z=
Using the fact that x2 + y 2 + z 2 = 1, we have
At λ = −2, At λ = 4,
2 1−λ
2 +
1 1−λ
(x, y, z) = (2/3, 1/3, 2/3)
2 +
2 1−λ
2 =1
=⇒
λ = −2, 4
and f (2/3, 1/3, 2/3) = 4
(x, y, z) = (−2/3, −1/3, −2/3)
and f (−2/3, −1/3, −2/3) = 16
Thus, (2/3, 1/3, 2/3) is the closest point and (−2/3, −1/3, −2/3) is the furthest point. 18. f (x, y, z) = sin x sin y sin z,
g(x, y, z) = x + y + z − π
∇f = cos x sin y sin zi + sin x cos y sin zj + sin x sin y cos zk,
∇g = i + j + k
∇f = λ∇g =⇒ cos x sin y sin z = λ = sin x cos y sin z = sin z sin y cos z =⇒ cos x = cos y = cos z π =⇒ x = y = z = 3 √ 3 3 Maximum of sin x sin y sin z is: 8 g(x, y, z) = x2 + y 2 + z 2 − 14
f (x, y, z) = 3x − 2y + z,
19.
∇f = 3 i − 2 j + k, ∇f = λ∇g
∇g = 2x i + 2y j + 2z k.
=⇒
3 = 2xλ,
3 , 2λ
y=−
−2 = 2yλ,
1 = 2zλ.
Thus, x=
1 , λ
z=
1 . 2λ
Using the fact that x2 + y 2 + z 2 = 14, we have
At λ =
1 , 2
3 2λ
2
2 2 1 1 + − + = 14 λ 2λ
=⇒
(x, y, z) = (3, −2, 1) and f (3, −2, 1) = 14
1 At λ = − , (x, y, z) = (−3, 2, −1) and f (−3, 2, −1) = −14 2 Thus, the maximum value of f on the sphere is 14. 20. f (x, y, z) = xyz,
g(x, y, z) = x2 + y 2 + z − 4
∇f = yzi + xzj + xyk,
∇g = 2xi + 2yj + k
∇f = λ∇g =⇒ yz = 2λx, xz = 2λy, xy = λ =⇒ x2 = y 2 = From g(x, y, z) = 0 we get 4x2 = 4 =⇒ x = 1, y = 1, z = 2. Maximum volume is 2
z 2
1 λ=± . 2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
840
December 7, 2006
SECTION 16.7
21. It’s easier to work with the square of the distance; the minimum certainly exists. f (x, y, z) = x2 + y 2 + z 2 ,
g(x, y, z) = Ax + By + Cz + D
∇f = 2xi + 2yj + 2zk, ∇f = λ∇g
=⇒
∇g = Ai + Bj + Ck.
2x = Aλ, 2y = Bλ, 2z = Cλ.
Substituting these equations in g(x, y, z) = 0, we have 1 2 −2D . λ A + B 2 + C 2 + D = 0, λ = 2 2 A + B2 + C 2 Thus, in turn, −DA −DB −DC , y= 2 , z= 2 A2 + B 2 + C 2 A + B2 + C 2 A + B2 + C 2 −1/2 so the minimum value of x2 + y 2 + z 2 is |D| A2 + B 2 + C 2 . x=
22. f (x, y, z) = xyz,
g(x, y, z) = 2xy + 2xz + 2yz − 6a2
∇f = yzi + xzj + xyk,
∇g = 2(y + z)i + 2(x + z)j + 2(x + y)k
∇f = λ∇g =⇒ yz = 2λ(y + z),
xz = 2λ(x + z),
xy = 2λ(x + y) =⇒ x = y = z
From g(x, y, z) = 0 we get 6x2 = 6a2 =⇒ x = y = z = a Maximum volume is a3 . 23.
area A = 12 ax + 12 by + 12 cz. The geometry suggests that x2 + y 2 + z 2 has a minimum.
g(x, y, z) = ax + by + cz − 2A
f (x, y, z) = x2 + y 2 + z 2 , ∇f = 2xi + 2yj + 2zk,
∇g = ai + bj + ck. ∇f = λ∇g
=⇒
2x = aλ, 2y = bλ, 2z = cλ.
Solving these equations for x, y, z and substituting the results in g(x, y, z) = 0, we have a2 λ b2 λ c2 λ + + − 2A = 0, 2 2 2
λ=
a2
4A + b2 + c2
and thus x=
a2
2aA , + b2 + c2
The minimum is 4A2 (a2 + b2 + c2 )−1 .
y=
a2
2bA , + b2 + c2
z=
a2
2cA . + b2 + c2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.7
841
24. Use figure 16.7.6 and write the side condition as x + y + z = 2π. For (a) maximize f (x, y, z) = 8R3 sin 12 x sin 12 y sin 12 z. For (b) maximize f (x, y, z) = 4R2 (sin2 12 x + sin2 12 y + sin2 12 z). 2π Each maximum occurs with x = y = z = . This gives an equilateral triangle. 3 25. Since the curve is asymptotic to the line y = x as x → −∞ and as x → ∞, the maximum exists. The distance between the point (x, y) and the line y − x = 0 is given by |y − x| 1√ √ 2 |y − x|. (see Section 1.4) = 2 1+1 Since the points on the curve are below the line y = x, we can replace |y − x| by x − y. To simplify √ the work we drop the constant factor 12 2. f (x, y) = x − y, ∇f = i − j,
g(x, y) = x3 − y 3 − 1 ∇g = 3x2 i − 3y 2 j.
We use the cross-product equation (16.7.4): 1 −3y 2 − 3x2 (−1) = 0,
3x2 − 3y 2 = 0,
x = −y (x = y).
Now g(x, y) = 0 gives us x3 − (−x)3 − 1 = 0,
2x3 = 1,
x = 2−1/3 .
The point is 2−1/3 , −2−1/3 . 26. Let r, s, t be the intercepts. We wish to minimize the volume 1 1 V = rst [volume of pyramid = base × height] 6 3 a b c subject to the side condition + + = 1. The minimum occurs when all the intercepts are: r s t r = 3a, s = 3b, t = 3c 27. It suffices to show that the square of the area is a maximum when a = b = c. f (a, b, c) = s(s − a)(s − b)(s − c),
g(a, b, c) = a + b + c − 2s
∇f = −s(s − b)(s − c)i − s(s − a)(s − c) j − s(s − a)(s − b)k,
∇g = i + j + k.
(Here i, j, k are the unit vectors in the directions of increasing a, b, c.) ∇f = λ∇g
=⇒
−s(s − b)(s − c) = −s(s − a)(s − c) = −s(s − a)(s − b) = λ.
Thus, s − b = s − a = s − c so that a = b = c. This gives us the maximum, as no minimum exists. [The area can be made arbitrarily small by taking a close to s.] 28. f (x, y, z) = 8xyz,
g(x, y, z) = a2 − x2 − y 2 − z 2 , x > 0, y > 0, z > 0.
∇f = 8yzi + 8xzj + 8xyk,
∇g = −2x i − 2y j − 2z k
∇f = λ∇g =⇒ 8yz = −2λx,
8xz = −2λy,
8xy = −2λz =⇒ x = y = z
The rectangular box of maximum volume inscribed in the sphere is a cube.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
842
December 7, 2006
SECTION 16.7 g(x, y) = x + y − k, (x, y ≥ 0, k a nonnegative constant)
29. (a) f (x, y) = (xy)1/2 , ∇f =
y 1/2 x1/2 i + j, 2x1/2 2y 1/2
∇g = i + j.
∇f = λ∇g
=⇒
y 1/2 x1/2 = λ = 2x1/2 2y 1/2
Thus, the maximum value of f is: f (k/2, k/2) =
=⇒
x=y=
k . 2
k . 2
(b) For all x, y (x, y ≥ 0) we have (xy)1/2 = f (x, y) ≤ f (k/2, k/2) =
k x+y = . 2 2
k k , where (xyz)1/3 = . 3 3 x+y+z k 1/3 (xyz) . ≤ = 3 3
30. (a) The maximum occurs when x = y = z = (b) If x + y + z = k,
then, by (a),
31. Simply extend the arguments used in Exercises 29 and 30. 32. T (x, y, z) = xy 2 z,
g(x, y, z) = x2 + y 2 + z 2 − 1
∇T = y 2 zi + 2xyzj + xy 2 k,
∇g = 2xi + 2yj + 2zk
∇T = λ∇g =⇒ y 2 z = 2λx,
2xyz = 2λy, xy 2 = 2λz =⇒ x2 =
y2 = z2 2
From g(x, y, z) = 0 we get 4x2 = 1 =⇒ x = ± 12 , y = ± √12 , z = ± 12 Maximum
1 8
at ( 12 , ± √12 , 12 ),
(− 12 , ± √12 , − 12 )
Minimum − 18 at ( 12 , ± √12 , − 12 ),
(− 12 , ± √12 , 12 ) g(r, h) = πr2 h − V, (V constant)
S(r, h) = 2πr2 + 2πrh,
33.
∇S = (4πr + 2πh) i + 2πr j, ∇S = λ∇g
∇g = 2πrh i + πr2 j.
4πr + 2πh = 2πrhλ, 2πr = πr2 λ =⇒ 4V 3 V 3 16π 2 Now πr h = V, =⇒ λ = =⇒ r = , h= 3 . V 2π π 4V 3 V To minimize the surface area, take r = , and h = 3 . 2π π 34. f (x, y, z) = xyz,
r=
g(x, y, z) = x + y + z − 18
∇f = yzi + xzj + xyk, ∇f = λ∇g
=⇒
=⇒
35. Same as Exercise 13.
∇g = i + j + k
yz = xz = xy
=⇒
x=y=z
=⇒
x=y=z=6
2 , λ
h=
4 . λ
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.7 36. f (x, y, z) = xyz 2 ,
g(x, y, z) = x + y + z − 30
∇f = yz 2 i + xz 2 j + 2xyzk, ∇f = λ∇g
=⇒
843
∇g = i + j + k
yz 2 = λ = xz 2 = 2xyz
=⇒
x=y=
z 2
=⇒
x=y=
15 , 2
z = 15
37. Let x, y, z denote the length, width and height of the box. We want to maximize the volume V of the box given that the surface area S is constant. That is: maximize V (x, y, z) = xyz
subject to
S(x, y, z) = 2xy + 2xz + 2yz = S constant
Let g(x, y, z) = 2xy + 2xz + 2yz − S. Then ∇V = yz i + xz j + xy k,
∇g = (2y + 2z) i + (2x + 2z) j + (2x + 2y) k
∇V = λ ∇g and the side condition yield the system of equations: yz = λ (2y + 2z) xz = λ (2x + 2z) xy = λ (2x + 2y) xy + 2xz + 2yz = S. Multiply the first equation by x, the second by y and subtract. This gives 0 = 2λ z(x − y)
=⇒
x=y
since z = 0
=⇒
V = 0.
Multiply the second equation by y, the third by z and subtract. This gives 0 = 2λ x(y − z)
=⇒
y=z
since x = 0
=⇒
V = 0.
Thus the closed rectangular box of maximum volume is a cube. The cube has side length x =
S/6.
38. Let x, y, z denote the length, width and height of the box. We want to maximize the volume V of the box given that the surface area S is constant. That is: maximize V (x, y, z) = xyz
subject to
S(x, y, z) = 2xy + 2xz + 2yz = S constant
Let g(x, y, z) = xy + 2xz + 2yz − S. Then ∇V = yz i + xz j + xy k,
∇g = (y + 2z) i + (x + 2z) j + (2x + 2y) k
∇V = λ ∇g and the side condition yield the system of equations: yz = λ (y + 2z) xz = λ (x + 2z) xy = λ (2x + 2y) xy + 2xz + 2yz = S. Multiplying the first equation by x, the second by y and subtracting, we get 0 = 2λ z(x − y)
=⇒
x=y
since z = 0
=⇒
V = 0.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
844
December 7, 2006
SECTION 16.7 Now put y = x in the third equation. This gives x2 = 4λ x
x(x − 4λ) = 0
=⇒
=⇒
x = 4λ
since x = 0
=⇒
V = 0.
Thus, x = y = 4λ. Substituting x = 4λ in the second equation gives z = 2λ. Finally, substituting these values for x, y, z in the fourth equation, we get S 1 S 2 2 48λ = S =⇒ λ = =⇒ λ = 48 4 3 S 1 S To maximize the volume, take x = y = and z = . 3 2 3 39. S(r, h) = 4πr2 + 2πrh,
4 3 πr + πr2 h − 10, 000 3 ∇g = (4πr2 + 2πrh)i + πr2 j
g(r, h) =
∇S = (8πr + 2πh)i + 2πrj,
(Here i, j are the unit vectors in the directions of increasing r and h.) ∇S = λ∇g
2π(4r + h) = 2πrλ(2r + h), 2πr = λπr2 Maximum volume for sphere of radius r = 3 7500/π meters.
40. (a)
=⇒
=⇒
h=0
g(x, y, l) = 2x + 2y + l − 108,
f (x, y, l) = xyl, ∇f = yl i + xl j + xy k, ∇f = λ∇g
∇g = 2 i + 2 j + k. =⇒
Now 2x + 2y + l = 108,
yl = 2λ,
=⇒
xl = 2λ,
xy = λ
=⇒
y = x and l = 2x.
x = 18 and l = 36.
To maximize the volume, take x = y = 18 in. and l = 36 in. g(r, l) = 2πr + l − 108,
f (r, l) = πr2 l,
(b)
∇g = 2π i + j.
∇f = 2πrl i + πr j, 2
∇f = λ∇g
2πrl = 2πλ, πr2 = λ, l = πr. 36 and l = 36. Now 2πr + l = 108, =⇒ r = π To maximize the volume, take r = 36/π in. and l = 36 in. 41. f (x, y, z) = 8xyz,
=⇒
g(x, y, z) = 4x2 + 9y 2 + 36z 2 − 36.
∇f (x, y, z) = 8yzi + 8xzj + 8xyk, ∇f = λ∇g
∇g(x, y, z) = 8xi + 18yj + 72zk.
gives yz = λx, 4
xyz = 4x2 , λ
4xz = 9λy, 4
xyz = 9y 2 , λ
xy = 9λz. 4
xyz = 36z 2 . λ
Also notice 4x2 + 9y 2 + 36z 2 − 36 = 0 We have 12
xyz = 36 λ
=⇒
x=
√
3,
2 y=√ , 3
1 z=√ . 3
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.7 Thus, V = 8xyz = 8 ·
√
2 1 16 3· √ · √ = √ . 3 3 3
42. Let x, y, z denote the length, width and height of the crate, and let C be the cost. Then C(x, y, z) = 30xy + 20xz + 20yz
g(x, y, z) = xyz − 96 = 0
subject to
∇C = (30y + 20z) i + (30x + 20z) j + (20x + 20y) k,
∇g = yz i + xz j + xy k
∇C = λ ∇g implies 30y + 20z = λ yz 30x + 20z = λ xz 20x + 20y = λ xy xyz = 96 Multiplying the first equation by x, the second by y and subtracting, we get 20z(x − y) = 0
=⇒
x=y
since z = 0
Now put y = x in the third equation. This gives 40x = λ x2
=⇒
x(λ x − 40) = 0
=⇒
x=
40 λ
since x = 0
Thus, x = y = 40/λ. Substituting x = 40/λ in the second equation gives z = 60/λ. Finally, substituting these values for x, y, z in the fourth equation, we get 40 40 60 = 96 λ λ λ
=⇒
96λ3 = 96, 000
=⇒
λ3 = 1000
=⇒
λ = 10
To minimize the cost, take x = y = 4 meters and z = 6 meters. 43. To simplify notation we set x = Q1 , f (x, y, z) = 2x + 8y + 24z,
y = Q2 ,
g(x, y, z) = x2 + 2y 2 + 4z 2 − 4, 500, 000, 000
∇f = 2i + 8j + 24k, ∇f = λ∇g
z = Q3 .
∇g = 2xi + 4yj + 8zk. =⇒
2 = 2λx,
8 = 4λy,
24 = 8λz.
Since λ = 0 here, we solve the equations for x, y, z: x=
1 , λ
y=
2 , λ
z=
and substitute these results in g(x, y, z) = 0 to obtain
4 1 9 + 2 + 4 − 45 × 108 = 0, λ2 λ2 λ2
3 , λ
45 = 45 × 108 , λ2
λ = ±10−4 .
Since x, y, z are non-negative, λ = 10−4 and x = 104 = Q1 ,
y = 2 × 104 = Q2 ,
z = 3 × 104 = Q3 .
845
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
846
December 7, 2006
SECTION 16.7
44. f (x, y, z) = 8xyz,
g(x, y, z) =
x2 y2 z2 + + − 1. We take a, b, c, x, y, z > 0 a2 b2 c2
∇f (x, y, z) = 8yzi + 8xzj + 8xyk;
∇g(x, y, z) =
2x 2y 2z i + 2 j + 2 k. 2 a b c
∇f = λ ∇g and the side condition yield the system of equations: 8yz =
2xλ a2
8xz =
2yλ b2
8xy =
2zλ c2
x2 y2 z2 + + =1 a2 b2 c2 Multiply the first equation by x, the second by y and subtract. This gives 0=
2λx2 2λy 2 − 2 2 a b
=⇒
y=
b x since λ = 0 a
=⇒
V = 0.
Multiply the second equation by y, the third by z and subtract. This gives 0=
2λy 2 2λz 2 − 2 2 b c
c c z = y = x. b a
=⇒
Substituting these results into the side condition, we get: 3x2 =1 a2
a x= √ 3
c and z = √ . 3 √
a b c 8 3 √ √ The volume of the largest rectangular box is: V = 8 √ abc. = 9 3 3 3 =⇒
=⇒
b y=√ 3
PROJECT 16.7 1. f (x, y, z) = xy + z 2 ,
g(x, y, z) = x2 + y 2 + z 2 − 4,
∇f = y i + x j + 2z k,
∇g = 2x i + 2y j + 2z k,
∇f = λ∇g + μ∇h
=⇒
2z = 2λz
=⇒
λ=0
y = 2λx − μ,
h(x, y, z) = y − x
∇h = −i + j.
x = 2λy − μ,
2z = 2λz
or z = 1.
λ=0
=⇒
y = −x which contradicts y = x.
z=1
=⇒
x2 + y 2 = 3, which, with y = x implies x = ± 3/2;
± 3/2, ± 3/2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.7 Adding the first two equations gives x + y = 2λ(x + y) x=y=0
z = ±2;
=⇒
(x + y)[2λ − 1] = 0
=⇒
=⇒
λ=
1 c
or x = y = 0.
(0, 0, ±2).
1 =⇒ z = 0 and y = x =⇒ 2
5 f ± 3/2, ± 3/2, 1 = ; f (0, 0, ±2) = 4; 2
2x4 = 4;
λ=
√ x = ± 2;
√ √ (± 2, ± 2, 0).
√ √ f (± 2, ± 2, 0) = 2.
The maximum value of f is 4; the minimum value is 2.
2. D(x, y, z) = x2 + y 2 + z 2 , ∇D = 2xi + 2yj + 2zk, ∇D = λ∇g + μ∇h
g(x, y, z) = x + 2y + 3z, ∇g = i + 2j + 3k,
=⇒
∇h = 2i + 3j + k
2x = λ + 2μ,
2y = 2λ + 3μ,
Then g(x, y, z) = 0 and h(x, y, z) = 0 give x = Closest point
68 16 76 , ,− 75 15 75
3. f (x, y, z) = x2 + y 2 + z 2 , ∇f = 2x i + 2y j + 2z k, ∇f = λ∇g + μ∇h
h(x, y, z) = 2x + 3y + z − 4
68 , 75
y=
g(x, y, z) = x + y − z + 1, ∇g = i + j − k, =⇒
2z = 3λ + μ 16 , 15
z=−
=⇒
z = 5y − 7x
76 75
h(x, y, z) = x2 + y 2 − z 2
∇h = 2x i + 2y j − 2z k.
2x = λ + 2xμ,
2y = λ + 2yμ,
2z = − λ − 2zμ
Multiplying the first equation by y, the second equation by x and subtracting, yields λ(y − x) = 0. Now λ = 0
=⇒
μ=1
x = y = z = 0. This is impossible since x + y − z = −1. √ =⇒ z = ± 2 x.
=⇒
Therefore, we must have y = x √ Substituting y = x, z = 2 x into the equation x + y − z + 1 = 0, we get √ √ √ 2 2 x = −1 − =⇒ y = −1 − , z = −1 − 2 2 2 √ Substituting y = x, z = − 2 x into the equation x + y − z + 1 = 0, we get √ √ √ 2 2 x = −1 + =⇒ y = −1 + , z = −1 + 2 2 2
847
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
848
December 7, 2006
SECTION 16.8 Since
√ √ √ 2 2 −1 − , −1 − , −1 − 2 = 6 + 4 2 and 2 2
f
√
√ √ √ 2 2 −1 + , −1 + , −1 + 2 = 6 − 4 2, 2 2
f
√
it follows that
√ √ 2 2 −1 + , −1 + , −1 + 2 is closest to the origin and 2 2 √
√ √ 2 2 −1 − is furthest from the origin. , −1 − , −1 − 2 2 2 √
SECTION 16.8 1. df = 3x2 y − 2xy 2 Δx + x3 − 2x2 y Δy 2. df =
∂f ∂f ∂f Δx + Δy + Δz = (y + z)Δx + (x + z)Δy + (x + y)Δz ∂x ∂y ∂z
3. df = (cos y + y sin x) Δx − (x sin y + cos x) Δy 4. df = 2xye2z Δx + x2 e2z Δy + 2x2 ye2z Δz 5. df = Δx − (tan z) Δy − y sec2 z Δz
x−y x−y 6. df = + ln(x + y) Δx + − ln(x + y) Δy x+y x+y 7. df =
y(y 2 + z 2 − x2 ) x(x2 + z 2 − y 2 ) 2xyz Δx + Δz 2 2 Δy − 2 2 2 2 2 2 2 (x + y + z ) (x + y + z ) (x + y 2 + z 2 )2
8. df =
2x 2y xy 2 xy Δy + e (1 + xy) Δx + + x e x2 + y 2 x2 + y 2
9. df = [cos(x + y) + cos(x − y)] Δx + [cos(x + y) − cos(x − y)] Δy 10. df = ln
1+y 1−y
Δx +
2x Δy 1 − y2
x 11. df = y 2 zexz + ln z Δx + 2yexz Δy + xy 2 exz + Δz z 12. df = y(1 − 2x2 )e−(x
2
+y 2 )
Δx + x(1 − 2y 2 )e−(x
2
+y 2 )
Δy
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.8 Δu = (x + Δx)2 − 3(x + Δx)(y + Δy) + 2(y + Δy)2 − x2 − 3xy + 2y 2 = (1.7)2 − 3(1.7)(−2.8) + 2(−2.8)2 − 22 − 3(2)(−3) + 2(−3)2
13.
= (2.89 + 14.28 + 15.68) − 40 = −7.15 du = (2x − 3y) Δx + (−3x + 4y) Δy = (4 + 9)(−0.3) + (−6 − 12)(0.2) = −7.50 14. du =
√
x+y x−y+ √ 2 x−y
Δx +
√
x+y x−y− √ 2 x−y
Δy = 1
15. Δu = (x + Δx)2 (z + Δz) − 2(y + Δy)(z + Δz)2 + 3(x + Δx)(y + Δy)(z + Δz) − x2 z − 2yz 2 + 3xyz = (2.1)2 (2.8) − 2(1.3)(2.8)2 + 3(2.1)(1.3)(2.8) − (2)2 3 − 2(1)(3)2 + 3(2)(1)(3) = 2.896 du = (2xz + 3yz) Δx + −2z 2 + 3xz Δy + x2 − 4yz + 3xy Δz = [2(2)(3) + 3(1)(3)](0.1) + [−2(3)2 + 3(2)(3)](0.3) + [22 − 4(1)(3) + 3(2)(1)](−0.2) = 2.5 16. du =
y 3 + yz 2 x3 + xz 2 xyz 77 Δx + Δy − 2 Δz = 2 2 2 3/2 2 2 2 3/2 2 2 3/2 (x + y + z ) (x + y + z ) (x + y + z ) 4(14)3/2
17. f (x, y) = x1/2 y 1/4 ;
x = 121, y = 16, Δx = 4, Δy = 1
f (x + Δx, y + Δy) ∼ = f (x, y) + df = x1/2 y 1/4 + 12 x−1/2 y 1/4 Δx + 14 x1/2 y −3/4 Δy √ √ √ √ 4 4 125 17 ∼ = 121 16 + 12 (121)−1/2 (16)1/4 (4) + 14 (121)1/2 (16)−3/4 (1) 1 (2)(4) + 14 (11) 18 = 11(2) + 12 11 = 22 +
4 11
+
11 32
∼ = 22 249 352 = 22.71
√ √ 18. f (x, y) = (1 − x)(1 + y), x = 9, y = 25, Δx = 1, Δy = −1 √ √ 1+ y 1− x 4 df = − √ Δx + √ Δy = − 2 y 5 2 x 4 4 f (10, 24) ∼ = f (9, 25) − = −12 5 5 π π π f (x, y) = sin x cos y; x = π, y = , Δx = − , Δy = − 19. 4 7 20 df = cos x cos y Δx − sin x sin y Δy f (x + Δx, y + Δy) ∼ = f (x, y) + df 6 1 π π π π π sin π cos π ∼ − − sin π sin − = sin π cos + cos π cos 7 5 4 4 7 4 20 √
1√ π π 2∼ = 0+ 2 +0= = 0.32 2 7 14
849
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
850
December 7, 2006
SECTION 16.8 √
1 π , Δx = −1, Δy = π 4 16 √ 1 1 3π df = √ tan yΔx + x sec2 yΔy = − + 6 8 2 x
π 1 3π 17 3 ∼ 5 − + = + π = 4.01 f 8, π ∼ = f 9, 16 4 6 8 6 8
20. f (x, y) =
x tan y,
x = 9, y =
21. f (2.9, 0.01) ∼ = f (3, 0) + df, where df is to be evaluated at x = 3, y = 0, Δx = −0.1, Δy = 0.01. df = 2xexy + x2 yexy Δx + x3 exy Δy = 2(3)e0 + (3)2 (0)e0 (−0.1) + 33 e0 (0.01) = − 0.33 Thus, f (2.9, .01) ∼ = 32 e0 − 0.33 = 8.67. 22. x = 2, y = 3, z = 3, Δx = 0.12, Δy = −0.08, Δz = 0.02 df = 2xy cos πzΔx + x2 cos πzΔy − πx2 y sin πzΔz = −12(0.12) + 4(0.08) = −1.12 f (2.12, 2.92, 3.02) ∼ = f (2, 3, 3) − 1.12 = −13.12 23. f (2.94, 1.1, 0.92) ∼ = f (3, 1, 1) + df,
where df is to be evaluated at x = 3, y = 1, z = 1,
Δx = −0.06, Δy = 0.1, Δz = −0.08 xz xy π Δy + Δz = (−0.06) + (1.5)(0.1) + (1.5)(−0.08) ∼ = −0.0171 2 2 2 2 1+y z 1+y z 4 Thus, f (2.94, 1.1, 0.92) ∼ = 34 π − 0.0171 ∼ = 2.3391 df = tan−1 yz Δx +
24. x = 3, y = 4, Δx = 0.06, Δy = −0.12 x y 3 4 df = Δx + Δy = (0.06) + (−0.12) = −0.06 2 2 2 2 5 5 x +y x +y ∼ f (3.06, 3.88) = f (3, 4) − 0.06 = 4.94 ∂z 2x ∂z 2y Δx − Δy Δx + Δy = 2 ∂x ∂y (x + y) (x + y)2 With x = 4, y = 2, Δx = 0.1, Δy = 0.1, we get
25. df =
4 8 1 df = 36 (0.1) − 36 (0.1) = − 90 . 4.1 − 2.1 4 − 2 2 1 1 The exact change is − = − =− . 4.1 + 2.1 4 + 2 6.2 3 93
26. V (r, h) = πr2 h,
r = 8,
h = 12,
Δr = −0.3,
Δh = 0.2
dV = 2πrhΔr + πr Δh = 192π(−0.3) + 64π(0.2) = −44.8π 2
decreases by approximately 44.8π cubic inches. 27. S = 2πr2 + 2πrh;
r = 8, h = 12, Δr = −0.3, Δh = 0.2 dS =
∂S ∂S Δr + Δh = (4πr + 2πh) Δr + (2πr) Δh ∂r ∂h = 56π(−0.3) + 16π(0.2) = −13.6π.
The area decreases about 13.6π in.2 .
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.8 28. dT = 2x cos πzΔx − 2y sin πzΔy − (πx2 sin πz + πy 2 cos πz)Δz 2 4 = 4(0.1) − 4π(0.2) = − π 5 5 4 2 T decreases by about π − ∼ = 2.11 5 5 29. S(9.98, 5.88, 4.08) ∼ = S(10, 6, 4) + dS = 248 + dS, where dS = (2w + 2h) Δl + (2l + 2h) Δw + (2l + 2w) Δh = 20(−0.02) + 28(−0.12) + 32(0.08) = −1.20 Thus, S(9.98, 5.88, 4.08) ∼ = 248 − 1.20 = 246.80. πr2 h , r = 7, h = 10, Δr = 0.2, Δh = 0.15 3 2πrh πr2 140 49 π df = Δr + Δh = π(0.2) + π(0.15) = (35.35) 3 3 3 3 3 π π ∼ ∼ f (7.2, 10.15) = f (7, 10) + (35.35) = 525.35 = 550.15 3 3
30. f (r, h) =
31. (a) dV = yz Δx + xz Δy + xy Δz = (8)(6)(0.02) + (12)(6)(−0.05) + (12)(8)(0.03) = 0.24 (b) ΔV = (12.02)(7.95)(6.03) − (12)(8)(6) = 0.22077 32. (a) S(x, y, z) = 2(xy + xz + yz),
x = 12, y = 8, z = 6, Δx = 0.02, Δy = −0.05, Δz = 0.03
dS = 2(y + z)Δx + 2(x + z)Δy + 2(x + y)Δz = 28(0.02) + 36(−0.05) + 40(0.03) = −0.04 (b) ΔS = S(12.02, 7.95, 6.03) − S(12, 8, 6) = −0.0438 33. T (P ) − T (Q) ∼ = dT = (−2x + 2yz) Δx + (−2y + 2xz) Δy + (−2z + 2xy) Δz Letting x = 1, y = 3, z = 4, Δx = 0.15, Δy = −0.10, Δz = 0.10, we have dT = (22)(0.15) + (2)(−0.10) + (−2)(0.10) = 2.9 34. Amount of paint is increase in volume. f (x, y, z) = xyz, x = 48 in, y = 24 in, z = 36 in, Δx = Δy = Δz =
2 16
2 Δf ∼ ) = 468 = df = yzΔx + xzΔy + xyΔz = 3774( 16
in.
The amount of paint is approximately 468 cubic inches. 35. (a) πr2 h = π(r + Δr)2 (h + Δh)
=⇒
Δh =
df = (2πrh) Δr + πr2 Δh,
r2 h (2r + Δr)h −h=− Δr. 2 (r + Δr) (r + Δr)2 df = 0
=⇒
Δh =
−2h Δr. r
(b) 2πr2 + 2πrh = 2π(r + Δr)2 + 2π(r + Δr)(h + Δh). Solving for Δh, r2 + rh − (r + Δr)2 2r + h + Δr −h=− Δr. r + Δr r + Δr
2r + h df = (4πr + 2πh) Δr + 2πr Δh, df = 0 =⇒ Δh = − Δr. r Δh =
851
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
852
December 7, 2006
SECTION 16.9
36. The area is given by A =
1 2
x2 tan θ.
(a) The change in area is approximated by: dA = x tan θ Δx +
1 2
x2 sec2 θ Δθ = 3Δx +
25 2 Δθ.
(b) The actual change in area is 1 1 1 (x + Δx)2 tan(θ + Δθ) − x2 tan θ = [4 + Δx]2 tan[arctan (3/4) + Δθ] − 6. 2 2 2 (c) The area is more sensitive to a change in θ. 1 2 x2 x sin θ; ΔA ∼ cos θΔθ = dA = x sin θΔx + 2 2 (b) The area is more sensitive to changes in θ if x > 2 tan θ, otherwise it is more sensitive to changes
37. (a) A =
in x. 38. (a) dV ∼ = yzΔx + xzΔy + xyΔz,
x = 60 in, y = 36 in, z = 42 in
1 Maximum possible error = 6192( 12 ) = 516 cubic inches.
(b) dS ∼ = 2(y + z)Δx + 2(x + z)Δy + 2(x + y)Δz 1 Maximum possible error = 552( 12 ) = 46 square inches
39. s =
A ; A = 9, W = 5, ΔA = ±0.01, ΔW = ±0.02 A−W A ∂s ∂s −W ΔA + ΔW ds = ΔA + ΔW = 2 ∂A ∂W (A − W ) (A − W )2 =−
5 9 (±0.01) + (±0.02) ∼ = ±0.014 16 16
The maximum possible error in the value of s is 0.014 lbs; 2.23 ≤ s + Δs ≤ 2.27 40. Assuming A > W , s is more sensitive to change in A. SECTION 16.9 1.
∂f = xy 2 , ∂x Thus,
2. 3.
4.
∂f = x, ∂x
f (x, y) = 12 x2 y 2 + φ(y),
φ (y) = 0, φ(y) = C,
and
∂f = x2 y + φ (y) = x2 y. ∂y f (x, y) = 12 x2 y 2 + C.
∂f 1 = y =⇒ f (x, y) = (x2 + y 2 ) + C ∂y 2
∂f ∂f = y, f (x, y) = xy + φ(y), = x + φ (y) = x. ∂x ∂y Thus, φ (y) = 0, φ(y) = C, and f (x, y) = xy + C. ∂f x3 = x2 + y =⇒ f (x, y) = + xy + φ(y); ∂x 3
∂f 1 1 = x + φ (y) = y 3 + x =⇒ f (x, y) = x3 + y 4 + xy + C ∂y 3 4 ∂ ∂ 5. No; y 3 + x = 3y 2 whereas x2 + y = 2x. ∂y ∂x
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.9 6.
7.
8.
9.
∂f = y 2 ex − y =⇒ f (x, y) = y 2 ex − xy + φ(y); ∂x ∂f = 2yex − x + φ (y) = 2yex − x =⇒ f (x, y) = y 2 ex − xy + C ∂y ∂f ∂f = cos x − y sin x, f (x, y) = sin x + y cos x + φ(y), = cos x + φ (y) = cos x. ∂x ∂y Thus, φ (y) = 0, φ(y) = C, and f (x, y) = sin x + y cos x + C. ∂f = 1 + ey =⇒ f (x, y) = x + xey + φ(y); ∂x ∂f y3 = xey + φ (y) = xey + y 2 =⇒ f (x, y) = x + xey + +C ∂y 3 ∂f = ex cos y 2 , ∂x Thus,
10.
11.
12.
15.
17.
φ (y) = 0, φ(y) = C,
and
∂f = −2yex sin y 2 + φ (y) = −2yex sin y 2 . ∂y
f (x, y) = ex cos y 2 + C.
∂2f ∂2f = ex sin y = ; ∂x∂y ∂y∂x
not a gradient.
∂f ∂f = xex − e−y , f (x, y) = xyex + e−y + φ(x), = yex + xyex + φ (x) = yex (1 + x). ∂y ∂x Thus, φ (x) = 0, φ(x) = C, and f (x, y) = xyex + e−y + C. ∂f = ex + 2xy =⇒ f (x, y) = ex + x2 y + φ(y); ∂x =⇒ f (x, y) = ex + x2 y − cos y + C ∂ xy xe + x2 = x2 exy ∂y
∂f = x2 + φ (y) = x2 + sin y ∂y
∂ (yexy − 2y) = y 2 exy ∂x
whereas
∂f = x sin x + 2y + 1 =⇒ f (x, y) = xy sin x + y 2 + y + φ(x) ∂y ∂f = y sin x + xy cos x + φ (x) = y sin x + xy cos x =⇒ f (x, y) = xy sin x + y 2 + y + C ∂x ∂f = 1 + y 2 + xy 2 , f (x, y) = x + xy 2 + ∂x Thus,
16.
f (x, y) = ex cos y 2 + φ(y),
∂2f = −ex sin y, ∂y∂x
13. No;
14.
853
φ (y) = y + 1,
φ(y) =
1 2
1 2
x2 y 2 + φ(y),
y2 + y + C
∂f = 2xy + x2 y + φ (y) = x2 y + y + 2xy + 1. ∂y
and f (x, y) = x + xy 2 +
∂f 1 = 2 ln 3y + =⇒ f (x, y) = 2x ln 3y + ln |x| + φ(y); ∂x x y3 +C f (x, y) = 2x ln 3y + ln |x| + 3 ∂f x , = 2 ∂x x + y2 Thus,
f (x, y) =
φ (y) = 0, φ(y) = C,
x2 y 2 +
1 2
y 2 + y + C.
2x ∂f 2x = + φ (y) = + y2 ∂y y y
∂f y y + φ (y) = . = 2 2 2 ∂y x +y x + y2 f (x, y) = x2 + y 2 + C.
x2 + y 2 + φ(y), and
1 2
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
854 18.
19.
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.9 ∂f x2 = x tan y + sec2 x =⇒ f (x, y) = tan y + tan x + φ(y); ∂x 2 ∂f x2 π x2 x2 = sec2 y + φ (y) = sec2 y + πy; =⇒ f (x, y) = tan y + tan x + y 2 + C. ∂y 2 2 2 2 ∂f = x2 sin−1 y, ∂x Thus,
f (x, y) = 13 x3 sin−1 y + φ(y),
φ (y) = − ln y,
=⇒
∂f x3 x3 + φ (y) = − ln y. = ∂y 3 1 − y2 3 1 − y2
φ(y) = y − y ln y + C,
and
1 f (x, y) = x3 sin−1 y + y − y ln y + C. 3 20.
x x2 ∂f tan−1 y + =√ =⇒ f = sin−1 x tan−1 y + + φ(y); ∂x y 2y 1 − x2 ∂f x2 sin−1 x x2 x2 sin−1 x − + φ (y) = − 2 + 1 =⇒ f (x, y) = sin−1 x tan−1 y + = + y + C. 2 2 2 ∂y 1+y 2y 1+y 2y 2y
21. (a) Yes
(b) Yes
22. (a) f (x, y) = (x − y)e−x
2
y
(c) No
+C
(b) f (x, y) = sin(x + y) − cos(x − y) + C;
f (π/3, π/4) = 6
=⇒
C=6
f (x, y) = sin(x + y) − cos(x − y) + 6. 23.
∂f = f (x, y), ∂x Thus,
24.
∂f /∂x = 1, f (x, y)
ln f (x, y) = x + φ(y),
φ (y) = 1, φ(y) = y + K,
and
∂f /∂y = 0 + φ (y), f (x, y)
∂f = f (x, y). ∂y
f (x, y) = ex+y+K = Cex+y .
∂f = eg(x,y) gx (x, y) =⇒ f (x, y) = eg(x,y) + φ(y); ∂x ∂f = eg(x,y) gy (x, y) + φ (y) = eg(x,y) gy (x, y) =⇒ f (x, y) = eg(x,y) + C. ∂y
25. (a) P = 2x, Q = z, R = y;
∂P ∂Q =0= , ∂y ∂x
∂P ∂R =0= , ∂z ∂x
∂Q ∂R =1= ∂z ∂y
(b), (c), and (d) ∂f = 2x, f (x, y, z) = x2 + g(y, z). ∂x ∂f ∂g ∂f ∂g =0+ with = z =⇒ = z. ∂y ∂y ∂y ∂y Then, g(y, z) = yz + h(z)
=⇒
∂f = 0 + y + h (z) and ∂z Thus, h(z) = C 26.
and
f (x, y, z) = x2 + yz + h(z), ∂f =y ∂z
=⇒
h (z) = 0.
f (x, y, z) = x2 + yz + C.
∂f ∂f ∂g = yz =⇒ f (x, y, z) = xyz + g(y, z); = xz + = xz =⇒ f = xyz + h(z) ∂x ∂y ∂y ∂f = xy + h (z) = xy =⇒ f (x, y, z) = xyz + C ∂z
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
SECTION 16.9 27. The function is a gradient by the test stated before Exercise 25. Take
P = 2x + y,
R = y − 2z.
Q = 2y + x + z, ∂P ∂Q =1= , ∂y ∂x
Then
∂P ∂R =0= , ∂z ∂x
∂Q ∂R =1= . ∂z ∂y
∇f = P i + Qj + Rk.
Next, we find f where
∂f = 2x + y ∂x
=⇒
∂f ∂g = x+ ∂y ∂y
with
f (x, y, z) = x2 + xy + g(y, z). ∂f = 2y + x + z ∂y
=⇒
∂g = 2y + z. ∂y
Then, g(y, z) = y 2 + yz + h(z), f (x, y, z) = x2 + xy + y 2 + yz + h(z). ∂f = y + h (z) = y − 2z ∂z Thus, 28.
h(z) = −z 2 + C
h (z) = −2z.
=⇒
f (x, y, z) = x2 + xy + y 2 + yz − z 2 + C.
and
∂f = 2x sin 2y cos z =⇒ f (x, y, z) = x2 sin 2y cos z + g(y, z); ∂x ∂f ∂g = 2x2 cos 2y cos z + = 2x2 cos 2y cos z =⇒ f (x, y, z) = x2 sin 2y cos z + h(z) ∂y ∂y ∂f = −x2 sin 2y sin z + h (z) = −x2 sin 2y sin z =⇒ f (x, y, z) = x2 sin 2y cos z + C ∂z
29. The function is a gradient by the test stated before Exercise 25. Take
P = y 2 z 3 + 1,
Q = 2xyz 3 + y,
∂P ∂Q = 2yz 3 = , ∂y ∂x Next, we find f where
R = 3xy 2 z 2 + 1. ∂P ∂R = 3y 2 z 2 = , ∂z ∂x
Then ∂Q ∂R = 6xyz 2 = . ∂z ∂y
∇f = P i + Qj + Rk. ∂f = y 2 z 3 + 1, ∂x
f (x, y, z) = xy 2 z 3 + x + g(y, z). ∂f ∂g = 2xyz 3 + ∂y ∂y
with
∂f = 2xyz 3 + y ∂y
=⇒
∂g = y. ∂y
Then, g(y, z) =
1 2
y 2 + h(z),
f (x, y, z) = xy 2 z 3 + x +
1 2
y 2 + h(z).
∂f = 3xy 2 z 2 + h (z) = 3xy 2 z 2 + 1 ∂z Thus,
h(z) = z + C
and
f (x, y, z) = xy 2 z 3 + x +
1 2
=⇒
y 2 + z + C.
h (z) = 1.
855
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
856 30.
December 7, 2006
REVIEW EXERCISES y ∂f xy = − ez =⇒ f (x, y, z) = − xez + g(y, z) ∂x z z ∂f x ∂g x xy = + = + 1 =⇒ f (x, y, z) = + y − xez + h(z) ∂y z ∂y z z ∂f xy xy xy = − 2 − xez + h (z) = −xez − 2 =⇒ f (x, y, z) = − xez + y + C ∂z z z z
31. F(r) = ∇
GmM r
⎧ ⎪ ⎪ ⎨∇
32.
h(r) =
⎪ ⎪ ⎩
k n+2 , r n+2
n = 2
∇ (k ln r) ,
n = −2.
REVIEW EXERCISES 1.
∇f (x, y) = (4x − 4y)i + (3y 2 − 4x)j
2.
∇f (x, y) =
y 3 − x2 y x3 − xy 2 i + j (x2 + y 2 )2 (x2 + y 2 )2
3. ∇f (x, y) = (yexy tan 2x + 2exy sec2 2x) i + xexy tan 2x j 4. ∇f =
1 (x i + y j + z k) x2 + y 2 + z 2
5. ∇f (x, y) = 2xe−yz sec z i, −zx2 e−yz sec zj − (x2 ye−yz sec z − x2 e−yz sec z tan z)k 6. ∇f (x, y) = ye−3z cos xy i + e−3z (x cos xy + sin y) j, −3e−3z (sin xy − cos y) k 7. ∇f (x, y) = (2x − 2y) i − 2x j,
∇f (1, −2) = 6 i − 2 j;
1 2 ua = √ i + √ j; 5 5
2 fu a (1, −2) = ∇f (1, −2) · ua = √ . 5 8. ∇f (x, y) = (e
xy
xy
2 xy
+ xye ) i + x e
fu a (2, 0) = ∇f (2, 0) · ua =
j,
∇f (2, 0) = i + 4j;
√ 1 + 2 3. 2
9. ∇f (x, y, z) = (y 2 + 6xz) i + (2xy + 2z) j + (2y + 3x2 ) k, ua =
√ 3 1 ua = i + j 2 2
∇f (1, −2, 3) = 22 i + 2 j − k;
1 16 2 2 i − j + k; fu a (1, −2, 3) = ∇f (1, −2, 3) · ua = . 3 3 3 3
10. ∇f (x, y, z) =
x2
2x 2y 2z i+ 2 j+ 2 k, 2 2 2 2 +y +z x +y +z x + y2 + z2
1 1 1 ua = √ i − √ j + √ k; 3 3 3
∇f (1, 2, 3) =
2 fu a (1, 2, 3) = ∇f (1, 2, 3) · ua = √ . 7 3
1 (i + 2 j + 3 k); 7
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
REVIEW EXERCISES 11. ∇f (x, y) = (6x − 2y 2 ) i − 4xy j,
857
∇f (3, −2) = 10 i + 24 j;
a = (0, 0) − (3, −2) = (−3, 2) = −3 i + 2 j,
2 −3 ua = √ i + √ j; 13 13
18 fu a (3, −2) = ∇f (3, −2) · ua = √ . 13 12. ∇f (x, y, z) = (y 2 z − 3yz) i + (2xyz − 3xz) j + (xy 2 − 3xy) k, r (t) = i − π sin πt j + 2et−1 k,
a = r (1) = i + 2k,
∇f (1, −1, 2) = 8 i − 10 j + 4 k;
1 2 ua = √ i + √ k; 5 5
16 fu a (1, −1, 2) = ∇f (1, −1, 2) · ua = √ . 5 13. ∇f (x, y, z) =
1 x2 + y 2 + z 2
(x i + y j + z k),
1 ∇f (3, −1, 4) = √ (3 i − j + 4 k); 26
1 ua = ± √ (4 i − 3 j + k); 26
a = ±(4 i − 3 j + k),
fu a (3, −1, 4) = ∇f (3, −1, 4) · ua = ±
14. ∇f (x, y) = 2e2x (cos y − sin y) i − e2x (sin y + cos y) j, ∇f √ maximum directional derivative: ∇f 12 , − 12 π = e 5. 15. ∇f (x, y, z) = cos xyz(yz i + xz j + xy k),
1
1 2, −2π
√ √ π 3 π 3 6 i+ 4 √ 2 +3 − 39π 12
∇f ( 12 , 13 , π) =
minimum directional derivative: fu = −∇f ( 12 , 13 , π) =
19 . 26
= 2e i + e j;
√
3 12
j+
k;
16. Let r(t) = x(t) i + y(t) j be the path of the particle. ∇I(x, y) = −2x i − 6y j. Then x (t) = −2x(t),
y (t) = −6y(t)
=⇒
x(t) = C1 e−2t ,
r(0) = (4, 3)
=⇒
C1 = 4,
y(t) = C2 e−6t .
C2 = 3.
Therefore the path of the particle is: r(t) = 4e−2t i + 3e−6t j, t ≥ 0,
or,
y=
00
result saddle loc. min.
f (6, 6) = −216 42. ∇f (x, y) = (3x2 − 12x) i + (2y + 1) j = 0 at (0, − 12 ), (4, − 12 ). fxx = 6x − 12, fxy = 0, fyy = 2.
f (4, − 12 ) = − 145 4
point
A
B
C
D
result
(0, − 12 ) (4, − 12 )
−12
0
2
−24
saddle
12
0
2
24
loc. min.
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
REVIEW EXERCISES
861
43. ∇f (x, y) = (1 − 2xy + y 2 ) i + (−1 − x2 + 2xy) j = 0 at (1, 1), (−1, −1). fxx = −2y, fxy = −2x + 2y, fyy = 2x.
44. ∇f (x, y) = e−(x
2
+y 2 )/2
fxx = e−(x
2
point
A
B
C
D
result
(1, 1)
−2
0
2
−4
saddle
(−1, −1)
2
0
−2
−4
saddle
√ 2 (y − x2 y 2 ) i + (2xy − xy 3 ) j = 0 at (±1, ± 2), (x, 0), x any real number. +y 2 )/2
(−3xy 2 + x3 y 2 ), fyy = e−(x
2
fxy = e−(x
2
+y 2 )/2
point A B √ (1, 2) −4e−3/2 0 √ (1, − 2) −4e−3/2 0 √ (−1, 2) 4e−3/2 0 √ (−1, − 2) 4e−3/2 0 √ √ local maxima: f (1, 2) = f (1, − 2) = 2e−3/2 ;
+y 2 )/2
(2y − y 3 − 2x2 y + x2 y 3 ),
(2x − 5xy 2 + xy 4 ). C
D
result
−4e−3/2
16e−3
loc. max
−4e−3/2
16e−3
loc. max
4e−3/2
16e−3
loc. min
4e−3/2
16e−3
loc. min
√ √ local minima: f (−1, 2) = f (−1, − 2) = −2e−3/2 .
At (x, 0), D = 0 and f (x, 0) ≡ 0. For x < 0, f (x, y) < f (x, 0) for all y = 0; for x > 0, f (x, y) > f (x, 0) for all y > 0; (0, 0) is a saddle point. Here is a graph of the surface.
45. ∇f = (2x − 2) i + (2y + 2) j = 0 at (1, −1) in D; Next we consider the boundary of D. C : r(t) = 2 cos t i + 2 sin t j,
f (1, −1) = 0
We parametrize the circle by:
t ∈ [ 0, 2π ]
The values of f on the boundary are given by the function F (t) = f (r(t)) = 6 − 4 cos t + 4 sin t, F (t) = 4 sin t + 4 cos t :
F (t) = 0
=⇒
t ∈ [ 0, 2π ]
sin t = − cos t
=⇒
t=
7 3 π, π 4 4
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
862
December 7, 2006
REVIEW EXERCISES Evaluating F at the endpoints and critical numbers, we have:
√ √ √ F (0) = F (2π) = f (2, 0) = 2; F 34 π = f − 2, 2 = 6 + 4 2;
√ √ √ 7 π = f 2, − 2 = 6 − 4 2. 4 √ √ √ f takes on its absolute maximum of 6 + 4 2 at − 2, 2 ; f takes on its absolute minimum of 0 at F
(1, −1). 46. ∇f (x, y) = (4x − 4) i + (2y − 4) j = 0 at (1, 2) on the boundry of D; no critical points in D. Next we consider the boundary of D. We
y 3
parametrize each side of the triangle: C1 : r1 (t) = t i + 2t j,
t ∈ [ 0, 1 ]
C2 : r2 (t) = (1 − t) i + 2 j, C3 : r3 (t) = (2 − t) j,
2
t ∈ [ 0, 1 ]
t ∈ [ 0, 2 ]
1
Now, f1 (t) = f (r1 (t)) = 6t2 − 8t + 3, f2 (t) = f (r2 (t)) = 2t2 − 3+, f3 (t) = f (r3 (t)) = t2 − 1,
t ∈ [ 0, 1 ];
t ∈ [ 0, 1 ];
t ∈ [ 0, 2 ];
critical number: t =
1
2 3
2
3
x
critical number critical number
Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f1 (0) = f3 (2) = f (0, 0) = 3;
f1 (2/3) = f (2/3, 4/3) = − 73 ;
f1 (1) = f2 (0) = f (1, 2) = −3;
f2 (1) = f3 (0) = f (0, 2) = −1. f takes on its absolute maximum of 3 at (0, 0) and its absolute minimum of −3 at (1, 2). 47. ∇f (x, y) = (8x − y) i + (−x + 2y + 1) j = 0 at (−1/15, −8/15) in D;
f (−1/15, −8/15) = −4/15.
On the boundary of D : x = cos t, y = 2 sin t. Set F (t) = f (cos t, 2 sin t) = 4 + 2 sin t − 2 sin t cos t,
0 ≤ t ≤ 2π.
Then F (t) = 2 cos t − 4 cos2 t + 2 = −2(2 cos t + 1)(cos t − 1);
F (t) = 0
=⇒
t=
2π 4π , . 3 3
Evaluating F at the endpoints of the interval and at the critical points, we get √ √ 3 3 F (0) = F (2π) = f (1, 0) = 4, F (2π/3) = f (−1/2, 3) = 4 + , 2 √ √ 4 3 3 F (4π/3) = f (−1/2, − 3) = 4 − >− 2 15 f takes on its absolute maximum of 2 at (0, 1); (−1/15, −8/15).
f takes on its absolute minimum of −4/15 at
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
REVIEW EXERCISES 48. ∇f (x, y) = 4x3 i + 6y 2 j = 0 at (0, 0) in D;
863
f (0, 0) = 0.
On the boundary of D : x = cos t, y = sin t. Set 0 ≤ t ≤ 2π.
F (t) = f (cos t, sin t) = cos4 t + 2 sin3 t, Then
F (t) = 4 cos3 t sin t + 6 sin2 t cos t = 2 sin t cos t(2 sin t − 1)(sin t + 2); F (t) = 0
=⇒
t = π/6, π/2, 5π/6, π, 3π/2
Evaluating F at the endpoints of the interval and at the critical points, we get √ F (0) = F (2π) = f (1, 0) = 1, F (π/6) = f ( 3/2, 1/2) = 13/16, F (π/2) = f (0, 1) = 2, √ F (5π/6) = f (− 3/2, 1/2) = 13/16, F (π) = f (−1, 0) = 1, F (3π/2) = f (0, −1) = −2. f takes on its absolute maximum of 2 at (0, 1); f takes on its absolute minimum of −2 at (0, −1). 49. Set f (x, y, z) = D2 = (x − 1)2 + (y + 2)2 + (z − 3)2 , ∇f = 2(x − 1) i + 2(y + 2) j + 2(z − 3) k,
g(x, y) = 3x + 2y − z − 5.
∇g = 3 i + 2 j − k.
Set ∇f = λ∇g : 2(x − 1) = 3λ
=⇒
x = 32 λ + 1,
2(y + 2) = 2λ
=⇒
y = λ − 2,
2(z − 3) = −λ
=⇒
z = − 12 λ + 3.
9 41 5 33 =⇒ x = , y=− , z= . 7 14 7 14 The point on the plane that is closest to (1, −2, 3) is (41/14, −5/7, 33/14). The distance from the 9 point to the plane is √ . 14
Substituting these values in 3x + 2y − z = 5 gives λ =
50. Set f (x, y, z) = 3x − 2y + z, ∇f = 3 i − 2 j + k,
g(x, y, z) = x2 + y 2 + z 2 − 14,
∇g = 2x i + 2y j + 2z k.
Set ∇f = λ∇g : 3 = 2λx
=⇒
x = 3/2λ,
−2 = 2λy
=⇒
y = −1/λ,
Substituting these values in x2 + y 2 + z 2 = 14 gives λ = ± 12
1 = 2λz
=⇒
z = 1/2λ.
x = 3, y = −2, z = 1 or
=⇒
x = −3, y = 2, z = −1. Evaluating f : f (3, −2, 1) = 14, f (−3, 2, −1) = −14. The maximum value of f on the sphere is 14. 51. Set f (x, y, z) = x + y − z, ∇f = i + j − k,
g(x, y, z) = x2 + y 2 + 4z 2 − 4,
∇g = 2x i + 2y j + 8z k.
Set ∇f = λ∇g : 1 = 2λx
=⇒
x = 1/2λ,
1 = 2λy
=⇒
y = 1/2λ,
−1 = 8λz
=⇒
Substituting these values in x2 + y 2 + 4z 2 = 4 gives λ = ± 38
=⇒
or x = −4/3, y = −4/3, z = 1/3. Evaluating f :
f (− 43 , − 43 , 13 )
value of f is 3, the minimum value is −3.
f ( 43 , 43 , − 13 )
= 3,
z = −1/8λ.
x = 4/3, y = 4/3, z = −1/3 = −3. The maximum
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
864
December 7, 2006
REVIEW EXERCISES
52. Let the length, width and height be x, y, z respectively. Then the total cost is f (x, y, z) =
1 2
xy +
1 2
xz +
1 2
yz +
1 10
xy =
3 5
xy +
1 2
xz +
1 2
yz
with the condition g(x, y, z) = xyz − 16 = 0. xyz = 16 =⇒ x = 0, y = 0 z = 0. ∇f = 35 y + 12 z i + 35 x + 12 z j + 12 y + 12 x k,
Note first that
∇f = λ ∇g
=⇒
3 5
y+
1 2
z = λyz,
3 5
x+
1 2
∇g = yz i + xz j + xy k
z = λxz,
1 2
x+
1 2
y = λxy
Multiply the first equation by x, the second equation by y and subtract. This gives: 1 2 (xz
− yz) = 0
=⇒
z(x − y) = 0
=⇒
Substituting y = x in the third equation yields x = λx2 =⇒ 1 6 Substituting x = y = in the first equation yields z = . λ 5λ
x=
y=x 1 . λ
√ 3 3 Finally, substituting these values for x, y and z into the equation xyz = 16, we get λ = √ . 3 2 5 √ 3 2 5 10 ∼ 6 12 ∼ Therefore, x = y = √ = √ = 2.37 and z = x = √ = 2.85. 3 3 3 5 3 75 75
53. df = (9x2 − 10xy 2 + 2) dx + (−10x2 y − 1) dy 54. df = (2xy sec2 x2 − 2y 2 ) dx + (tan x2 − 4xy) dy 55. df =
y2 z + z2 y xz 2 + zx2 x2 y + y 2 x dx + dy + dz (x + y + z)2 (x + y + z)2 (x + y + z)2
z 2y x yz yz 56. df = − 2 dx + ze − 2 dy + ye − 2 dz y + xz y + xz y + xz 57. Set f (x, y, z) = ex
y + z 3 . Then df = ex
ex ex 3z 2 1 y + z 3 Δx + Δy + Δz. 2 y + z3 2 y + z3
With x = 0, y = 15, z = 1, Δx = 0.02, Δy = 0.2, Δz = 0.01, df = 4 Δx + √ Therefore, e0.02 15.2 + (1.01)3 ∼ = e0 15 + 1 + 0.1088 = 4.1088.
1 8
Δy +
3 8
Δz ∼ = 0.1088.
58. Set f (x, y) = x1/3 cos2 y. Then df =
1 3
x−2/3 cos2 y Δx − 2x1/3 cos y sin y Δy.
√ 1 π , df = Δx − 2 3 Δy ∼ = 0.1287. 90 64 Therefore, (64.5)1/3 cos2 (28◦ ) ∼ = 641/3 cos2 (30◦ ) + 0.1287 = 3.1287.
With x = 64, y = 30◦ = π/6, Δx = 0.5, Δy = −2◦ = −
16:36
P1: PBU/OVY JWDD027-16
P2: PBU/OVY
QC: PBU/OVY
T1: PBU
JWDD027-Salas-v1
December 7, 2006
REVIEW EXERCISES 59. V = πr2 h;
r = 5 ft.,
h = 22 ft.,
Δr = 0.01 in. =
1 1200
ft.,
Δh = 0.01 =
865
1 1200
dV = 2πrh Δr + πr2 Δh Using the values given above, dV = 2π(5)(22)
1 1 ∼ + π(25) = 0.6414 cu. ft. ∼ = 1108.35 cu. in.; 1200 1200
1108.35 ∼ = 4.80. 231
Approximately 4.80 gallons will be needed. 60.
∂P ∂Q = 12x2 y − 8x = ; the vector function is a gradient. ∂y ∂x ∂f = 6x2 y 2 − 8xy + 2x, ∂x
f (x, y) = 2x3 y 2 − 4x2 y + x2 + φ(y),
∂f = 4x3 y − 4x2 + φ (y) = 4x3 y − 4x2 − 8. ∂y Thus, 61.
φ (y) = −8, φ(y) = −8y + C,
f (x, y) = 2x3 y 2 − 4x2 y + x2 − 8y + C.
and
∂P ∂Q = 2x − sin x = ; the vector function is a gradient. ∂y ∂x ∂f = 2xy + 3 − y sin x, ∂x
f (x, y) = x2 y + 3x + y cos x + φ(y),
∂f = x2 + cos x + φ (y) = x2 + 2y + 1 + cos x. ∂y Thus, 62.
63.
φ (y) = 2y + 1, φ(y) = y 2 + y + C,
∂P = 2xy + 4y; ∂y
∂Q = −2xy + 2; ∂x
and
∂P ∂Q = ; ∂y ∂x
f (x, y) = x2 y + 3x + y cos x + y 2 + y + C. the vector function is not a gradient.
∂P ∂P ∂Q ∂Q ∂R ∂R = ey sin z = , = ey cos z = , = xey cos z = ; ∂y ∂x ∂z ∂x ∂z ∂y the vector function is a gradient. f (x, y, z) = (ey sin z + 2x) dx = xey sin z + x2 + φ(y, z), ∂φ ∂φ 1 = xey sin z − y 2 =⇒ = −y 2 =⇒ φ = − y 3 + ψ(z), ∂y ∂y 3 1 f (x, y, z) = xey sin z + x2 − y 3 + ψ(z), fz = xey cos z + ψ (z) = xey cos z =⇒ ψ (x) = 0 =⇒ 3 ψ(x) = C
fy = xey sin z +
Therefore f (x, y, z) = xey sin z + x2 − 13 y 3 + C.
16:36
View more...
Comments