Weatherwax Golub Van Loan Solutions Manual

July 3, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Weatherwax Golub Van Loan Solutions Manual...

Description

 

Additional Notes and Solution Manual For: Matrix Computations: Third Edition by Gene H. Golub and Charles F. Van Loan ∗

John L. Weatherwax February 9, 2007

Chapter 2 (Matrix Analysis): Basic Ideas from Linear Algebra P 2.1.1 (existence of a   p   rank factorization of   A) Assume   A  is   mxn  and of rank   r . The using elementary elimination matrices we can reduce A   to its row reduced echelon form   R, given by   E 1 A   =   R   or   A   =   E 1  1 R   =   E 2 R. In thi this reduction E 2  is  m xm  and  R  is  m xn. Because  R  has  n − r  zero rows we can block decompose it as follows  R ˆr n R  = 0m r n −





×

− ×

ˆ  is of  wheree we hav wher havee listed the dimen dimensions sions of the the block matrice matricess next to them. Now  R rank   r . In addition, block decomposing   E 2   as ˆm r   E  ˜m E 2  =  E 



×

m−r

×



 .

Now since   E 2   is of rank   m   the first   r   columns of   E 2   is a matrix of rank   r. Th This is b bloc lock k decomposition gives for   A  the expression A

    ˆ   =   ˆ ˆ  =   ˆ   ˜ R

E  E 

0

E R

ˆ  of ˆ  of size   r xn  each of rank  r , thus This gives the deco decompositi mposition on of   A  into  E    of size   mxr   and  R proving the decomposition. ∗

[email protected]

1

 

P 2.1.2 (the matrix product rule) This result is basically a consequence of the definition of matrix multiplication. For example the   ij -th element of the produce   A(α)B (α) is given by r



aik (α)bkj (α)

k =1

where   aik (α) is the   ik-th element of   A   and   bkj (α) is the   kj -th element of   B . From th this is we then have that d dα

r

r





aik (α)bkj (α) =

k =1

k =1

daik (α)   bkj (α) + dα

r



aik (α)

k=1

dbkj (α) dα

Which we recognize as the   ij -th element of   dA B  plus the   ij -th element of   A dB   proving the dα dα desired theorem.

P 2.1.3 (matrix inverse differentiation) To show this consider the derivative of the expression A(α)A(α)

with respect to   α.



1

d (A(α)A(α) dα

=  I  1



)=0

Using the result of P 2.1.3 we have that dA(α)   A(α) dα

dA(α) 1 + A(α)   =0 dα −

1



−1

α)   we hav havee that and solving for   dA(dα

dA(α) 1 dα   = −A(α) −

1 dA(α)

1





dα   A(α)

the desired result.

P 2.1.4 (the gradient of the matrix inner product) We desire the gradient of the function φ(x) =

  1 T  x Ax − xT b . 2

1



 

The   i-th component of the gradient is given by ∂φ   ∂  = ∂x i ∂x i

1 2







x Ax − x b  =

  1 T   1 ei   Ax + xT Aei − eiT   b 2 2

where   ei  is the   i-th elementary basis function for   Rn , i.e. it has a 1 in the   i-th position and zeros everywhere else. Now since T  T  T  T  T  (eT  i   Ax) =  x A ei   =  e i   Ax ,

the above becomes T  ∂φ =   1 eT    AT x − eT    Ax + 1  +  1 eT  i   b  =  e i ∂x i 2 i 2 i

A + AT )x − b   .

1( 2



Since multiplying by   eT  i   on the left selects the   i-th row from the expression to its right we see that the full gradient expression is given by ∇φ  =

 1 (A + AT )x − b , 2

as requested requested in the text text.. Note that this expr expressi ession on can also b bee pro prove ved d easil easily y by writin writingg eac each h term in components.

P 2.1.5 (solutions to rank one updates of   A) If   x  solves (A + uv T )x  =  b , by the Sherman-Morrison-Woodberry formula (equation 2.1.4 in the book), with   U   and   V   vectors with   n  components we have   x  given by x   = (A

1



1



−A

1

u(I  +  +  v T A



u)

1 T 



v A

1



)b

=   A 1 b − A 1 u(I  +  +  v T A 1 u) 1 v T A 1 b . −









Since  u  and  v  are vectors the expression   v T A 1 u  is a   scalar  and   and the  I  is also a scalar namely the number 1. Multiplying the above by   A  on the left the linear system that   x  must satify −

Ax  =  b − u(1 + v T A

1



u)

1 T 



1



v A

b.

In this expression, both  v T A 1 u and  v T A 1 b are scalars, thus by factoring out the only vector u  the above is equivalent to −



Ax  =  b −



  v T A 1 b (1 + v T A 1 u) −





u.

Therfore  x  is the solution to a modified system given by   Ax  =  b  + αu  with   α  given by α  =





  v T A 1 b  . 1 +  v T A 1 u −





View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF