Design of Cantilever Beam.xls

March 26, 2017 | Author: CONSTHURAG2012 | Category: N/A
Share Embed Donate


Short Description

Download Design of Cantilever Beam.xls...

Description

DESIGN OF CANTILEVER BEAM

1

Clear Span (opening )

2.50

mtr

2500

mm

2

Wall width

0.40

mtr

400

mm

3

Super imposed loads

12.00

kN per meter run

4

Conrete

M

cbc

5

Steel

fy

6

Nominal Cover

20 7

unit weight 25000 N/m3 m 13.3

N/mm2

415

Tensile stress

230

N/mm2

Effective Cover

30

mm

300

mm c/c

25

mm

Main Top

16

mm

3

Nos.

Anchor bars (Bottom )

10

mm

2

Nos.

Strirrups

8

mm

120

Reinforcement

400 350 2500

to

3 nos.bars

mm 

16

2 nos.bars 0

720

mm

16

1780

200 490

0

#REF!

mm

10 mm 2 nos.anchor bars

8 mm 2 ldg strirrup

###

120 mm c/c mm 2 lgd strps

8

300

mm c/c

(A) L- section

3 nos.bar of

16 mm 2 nos.bars

8

mm 2 lgd strps

300

mm c./c

16

200

10 mm 2 nos.anchor bars 490

mm 250 mm (C)Section at the end 250

mm

(B) section at support

pk_nandwana @yahoo.co.in

DESIGN OF CANTILEVER BEAM

Clear Span (opening )

2.50 m

2500 mm

Wall width

0.40 m

400 mm

Super imposed loads

12.00 kn/

Conrete

M

20

Steel

fy

415 N/mm2

cbc Nominal cover

7

Tensile stess

N/mm2

25 mm



cbc 

230

N/mm2

7

N/mm2

m*c

k=

Effective cover

N per meter

=

230 N/mm2 13.3

=

30

Cocrete M =

20

mm

wt. of concrete = 25000 N/mm2

m  13.3 13.3

= 13.3

m*c+st

12000

m =

1 Design Constants:- For HYSD Bars

st

Or

x

x

7

j=1-k/3



1

-

0.288

/

3

R=1/2xc x j x k



0.5

x

7

x

0.904

7

=

0.288

=

0.904

x 0.288 =

0.9116

+

230

2 Caculcation of B.M. :-

1. Let depth of beam at fixed end

= span /7 =

effective depth of beam at fixed end =

Let width of Beam at fixed end Assume depth of Beam at free end

= =

400

500 500

2.50

/

+ 2xcover =

/ /

2 2

= =

7

=

400 +

250 250

0.36 mt Say

400

2

x

25

= 450

Say

=

500

mm

Say say

= =

250 200

mm mm

Let width of Beam at free end =  

weight of Beam

x (

0.50

+

) x 0.25

x

2.50

x

###

0.5

+ 2.00 x 0.20 x 0.50 + 0.20 12000 x( 2.50 )2 43359 = 5469 x 1.07 + = 2.00 .= N m Shear force at edge of support = 5469 + 12000 x Acting at

Max. possible Bending moment

2

0.20

=

250

=

5469 N

2.50 = 3.00

mm

m form

1.07 fixed end

43.36 x 10 6

K N-m

2.50 = 35469 N

Design of setion :-

 Effective depth required Let us take d

= =

Rxb

43.36 x

=

= 0.912 x

D

436 mm

250

= 440 mm D =d+2xcover

### mm bar will be used. With

Assuming that

10 6

440 +

2

x

50

= 490

8 mm dia links and a nominal cover of =

=

490 25 Keep total depth at free end

=

16 8 200 mm

/

2

25

= 449 Hence ok.

4 Steel Reiforcement :BM

Ast =

43.36

=

st x jx D

230 x

using ### mm bars

A

x

10 6

0.904 x 3.14xdia2

=

=

464.48

449 3.14 x

=

16

x

= 201 4

464 /

201 =

2.31

x say

100 =

Hence Provided

3

bars of

16 mm bar,

Also provide

2

x

10

mm anchore bars at bottom

=

3

having, Ast

16

= 4 x100

Nomber of Bars = Ast/A

mm2

x

201 =

3

No.

603 mm2

[email protected]

Since the bending moment decreases to zero at end, let us curtail few bars. Let Let 1 Bars be curtailed at a distance x from the free end. Assuming the B.M.D.to parabolic, the B.M. at this section may be approximately taken to eual to x 2 x 43.36 x 10 6 = 6.938 x 106 x2 2.50

N-mm

Area of rest bars=

2

x

201

=

6.938 

402

=

230

x

200

+

mm2

402 x

10 6 x2

490 Total depth of section

=

dx

0.904 x -

Where dx effective depth at that section

----------- (1)

200 x

x

+

8

2.50 dx

=

200

+

dx

=

159

+

Subsituting in (1),

402

=

290 2.50

x

116 x 230

x

x

-

25

+

8

------------------------------------ (2) 6.938 x 10 6 x2 0.904 x( 159 +

116 x) =

or or 402

6.938 x 6937500 than divide by 17261 17261 divide by 17261 than 1

10 6 x2 = 402 x( 230 x 0.904 2 = 402 x( 208 x( 159 x x2 = 33057 + 24117 2 x - 24117 x 33057 1.40 x 1.9152 x2

x( 159 + + 116 x) x = 0 = 0

116

= 1.397 +  1.95 -4x 1.00 x -1.9152 x 2 1 or a = 1.397 +( 1.95 - -7.660667439 )1/2 2 or a = 1.397 +( 9.6129153 )1/2 2 x 1 or a = 1.397 + 3.100 2 or a = 4.498 / 2 2.30 or a = 2.249 m say mtr Minimum embedded requirement beyond this = 12. = 12 x 16 = 192 or equal to dx = 159 + 116 x 2.30 = 426 mm which ever more  Bars may be curtail at= 2.50 - 2.30 + 0.426 = 0.63 mtr

a =

or

b +b2-4.a.c 2 a

a

from the edge of the support. This should be grater than 45 x 16 = 720 mm Ld=45 = Hence bar can be curtailed at = 720 mm from the support. 5 Check for shear and design of shear reinforcement :-

V

v

v For M ###

=

35469 N V

=

M

M tan d bxd

35469 =

grade concrete and

Hence from Table permissible shear (tc)for M

tan  =

where

43.36 x 449 250 x 100Ast = bd 20

= 43.36 x 10 6

10 6

N-mm

490 - 200 = 0.116 2500

x 0.116

449 100 x 250 x

concrete, for

0.216 603 449

=

N-mm2

0.54 %

0.54 % steel

=

0.3 N/mm2

tv

here

tc

[email protected]

Hence only nominal reinforcement is required. Given by the relation. Sv =

2.175 x Asv x fy

2.175

x

Asv

x

415 =

3.61 Asv

8

x

8

x

100

= b Using

250

8 mm 2-ldg. Strirrups Ast

=

2

x

3.14 x 4

Sv

=

3.61 x

100.5 =

Subject to maximum of 0.75d or b which ever is less.=

Hence provide the

8

this graually to

6

mm

x

0.75

=

100.5

mm2

363 mm 440

=

330

< 363

strirrups @ 300 mm c/c at supports and reduce

0.75 x ( 200

-

25

-

8

-

8

)= 120 mm

Embedment of reinforcement in the supports :In order develop full tensile strenth at the face of support, each of must be embedded into support by a length equal to Ld =45 F

=

45

3 x

bars

16 = 720

This could be best achieved by providing one bend of 90 0 where anchorage value of bend is = 8 x

7

=

8

x

16

=

anchorage in beam

=

490

-

anchorage in wall

= wall width - cover =

thus total anchorage value

=

128

908

>

720

Details of reinforcement:-

Shown in drawing

+

128 mm 2

430

Hence O.K.

x

+

30 400 350

=

430

-

2

=

x

908 mm

25 = 350

[email protected]

mm mm

m form fixed end K N-m

mm

mm Hence ok.

mm2

.D.to parabolic,

ere dx effective h at that section

x)

mm mm which ever more

mm

mm

wall width 400

2500 3 -

16 mm bars 720

2 -

16 mm bars 1780

120 300

200

300

490

8 mm 2 ldge. Strirrups 8 mm 2 ldge. Strirrups 2 -

10 mm bars

Holding bars

@ 210 mm c/c

@ 120 mm c/c

250 250

3 -

16 mm  main bars

mm 25 mm 8 mm  2 Lgd strirrups @ 120 mm c/c

` 8 mm  2 Lgd strirrups

200

@ 300 mm c/c

2 -

450 mm

10 mm  anchor bars

25 mm

Section at end 2 -

10 mm  anchor bars

section at support

[email protected]

Pe

VALUES OF DESIGN CONSTANTS Grade of concrete

M-15

M-20

M-25

M-30

M-35

M-40

Grade of concrete

Modular Ratio

18.67

13.33

10.98

9.33

8.11

7.18

bd (N / mm2)

cbc N/mm2

5

7

8.5

10

11.5

13

m cbc

93.33

93.33

93.33

93.33

93.33

93.33

kc

0.4

0.4

0.4

0.4

0.4

0.4

jc

0.867

0.867

0.867

0.867

0.867

0.867

Rc

0.867

1.214

1.474

1.734

1.994

2.254

Pc (%)

0.714

1

1.214

1.429

1.643

1.857

kc

0.329

0.329

0.329

0.329

0.329

0.329

M 15

jc

0.89

0.89

0.89

0.89

0.89

0.89

M 20

Rc

0.732

1.025

1.244

1.464

1.684

1.903

M 25

Pc (%)

0.433

0.606

0.736

0.866

0.997

1.127

M 30

kc

0.289

0.289

0.289

0.289

0.289

0.289

M 35

jc

0.904

0.904

0.904

0.904

0.904

0.904

M 40

Rc

0.653

0.914

1.11

1.306

1.502

1.698

M 45

Pc (%)

0.314

0.44

0.534

0.628

0.722

0.816

M 50

kc

0.253

0.253

0.253

0.253

0.253

0.253

jc

0.916

0.916

0.916

0.914

0.916

0.916

Rc

0.579

0.811

0.985

1.159

1.332

1.506

Pc (%)

0.23

0.322

0.391

0.46

0.53

0.599

(a) st = 140 N/mm2 (Fe 250)

(b) st = 190 N/mm2

(c ) st = 230 N/mm2 (Fe 415)

(d) st = 275 N/mm2 (Fe 500)

Permissible shear stress Table  v in concrete (IS : 456-2000)

Grade of concrete

100As bd

P

Permissible shear stress in concrete tv N/mm2 M-15

M-20

M-25

M-30

M-35

M-40

< 0.15

0.18

0.18

0.19

0.2

0.2

0.2

0.25

0.22

0.22

0.23

0.23

0.23

0.23

0.50

0.29

0.30

0.31

0.31

0.31

0.32

M 10

0.75

0.34

0.35

0.36

0.37

0.37

0.38

M 15

1.00

0.37

0.39

0.40

0.41

0.42

0.42

M 20

1.25

0.40

0.42

0.44

0.45

0.45

0.46

M 25

1.50

0.42

0.45

0.46

0.48

0.49

0.49

M 30

1.75

0.44

0.47

0.49

0.50

0.52

0.52

M 35

2.00

0.44

0.49

0.51

0.53

0.54

0.55

M 40

2.25

0.44

0.51

0.53

0.55

0.56

0.57

M 45

2.50

0.44

0.51

0.55

0.57

0.58

0.60

M 50

2.75

0.44

0.51

0.56

0.58

0.60

0.62

3.00 and above

0.44

0.51

0.57

0.6

0.62

0.63

Maximum shear stress c.max in concrete (IS : 456-2000)

Grade of concrete

M-15

M-20

M-25

M-30

M-35

M-40

c.max

1.6

1.8

1.9

2.2

2.3

2.5

Grade of concrete

Shear stress tc

Reiforcement %

100As

100As M-20

M-20

0.15

0.18

0.18

0.15

0.16

0.18

0.19

0.18

0.17

0.18

0.2

0.21

0.18

0.19

0.21

0.24

0.19

0.19

0.22

0.27

0.2

0.19

0.23

0.3

0.21

0.2

0.24

0.32

0.22

0.2

0.25

0.35

0.23

0.2

0.26

0.38

0.24

0.21

0.27

0.41

0.25

0.21

0.28

0.44

0.26

0.21

0.29

0.47

0.27

0.22

0.30

0.5

0.28

0.22

0.31

0.55

0.29

0.22

0.32

0.6

0.3

0.23

0.31

0.23

0.32

0.24

0.35

0.75

0.33

0.24

0.36

0.82

0.34

0.24

0.37

0.88

bd

0.33 0.34

bd

0.65 0.7

0.35

0.25

0.38

0.94

0.36

0.25

0.39

1.00

0.37

0.25

0.38

0.26

0.39

0.26

0.42

1.25

0.4

0.26

0.43

1.33

0.41

0.27

0.44

1.41

0.42

0.27

0.45

1.50

0.43

0.27

0.46

1.63

0.44

0.28

0.46

1.64

0.45

0.28

0.47

1.75

0.46

0.28

0.48

1.88

0.47

0.29

0.49

2.00

0.48

0.29

0.50

2.13

0.49

0.29

0.51

2.25

0.5

0.30

0.51

0.30

0.52

0.30

0.53

0.30

0.54

0.30

0.55

0.31

0.56

0.31

0.57

0.31

0.4 0.41

1.08 1.16

0.58

0.31

0.59

0.31

0.6

0.32

0.61

0.32

0.62

0.32

0.63

0.32

0.64

0.32

0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74

0.33 0.33 0.33 0.33 0.33 0.34 0.34 0.34 0.34 0.34

0.75

0.35

0.76

0.35

0.77

0.35

0.78

0.35

0.79

0.35

0.8

0.35

0.81

0.35

0.82

0.36

0.83

0.36

0.84

0.36

0.85

0.36

0.86

0.36

0.87

0.36

0.88

0.37

0.89

0.37

0.9

0.37

0.91

0.37

0.92

0.37

0.93

0.37

0.94

0.38

0.95

0.38

0.96

0.38

0.97

0.38

0.98

0.38

0.99

0.38

1.00

0.39

1.01

0.39

1.02

0.39

1.03

0.39

1.04

0.39

1.05

0.39

1.06

0.39

1.07

0.39

1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

1.25

0.42

1.26

0.42

1.27

0.42

1.28

0.42

1.29

0.42

1.30

0.42

1.31

0.42

1.32

0.42

1.33

0.43

1.34

0.43

1.35

0.43

1.36

0.43

1.37

0.43

1.38

0.43

1.39

0.43

1.40

0.43

1.41

0.44

1.42

0.44

1.43

0.44

1.44

0.44

1.45

0.44

1.46

0.44

1.47

0.44

1.48

0.44

1.49

0.44

1.50

0.45

1.51

0.45

1.52

0.45

1.53

0.45

1.54

0.45

1.55

0.45

1.56

0.45

1.57

0.45

1.58

0.45

1.59

0.45

1.60

0.45

1.61

0.45

1.62

0.45

1.63

0.46

1.64

0.46

1.65

0.46

1.66

0.46

1.67

0.46

1.68

0.46

1.69

0.46

1.70

0.46

1.71

0.46

1.72

0.46

1.73

0.46

1.74

0.46

1.75

0.47

1.76

0.47

1.77

0.47

1.78

0.47

1.79

0.47

1.80

0.47

1.81

0.47

1.82

0.47

1.83

0.47

1.84

0.47

1.85

0.47

1.86

0.47

1.87

0.47

1.88

0.48

1.89

0.48

1.90

0.48

1.91

0.48

1.92

0.48

1.93

0.48

1.94

0.48

1.95

0.48

1.96

0.48

1.97

0.48

1.98

0.48

1.99

0.48

2.00

0.49

2.01

0.49

2.02

0.49

2.03

0.49

2.04

0.49

2.05

0.49

2.06

0.49

2.07

0.49

2.08

0.49

2.09

0.49

2.10

0.49

2.11

0.49

2.12

0.49

2.13

0.50

2.14

0.50

2.15

0.50

2.16

0.50

2.17

0.50

2.18

0.50

2.19

0.50

2.20

0.50

2.21

0.50

2.22

0.50

2.23

0.50

2.24

0.50

2.25

0.51

2.26

0.51

2.27

0.51

2.28

0.51

2.29

0.51

2.30

0.51

2.31

0.51

2.32

0.51

2.33

0.51

2.34

0.51

2.35

0.51

2.36

0.51

2.37

0.51

2.38

0.51

2.39

0.51

2.40

0.51

2.41

0.51

2.42

0.51

2.43

0.51

2.44

0.51

2.45

0.51

2.46

0.51

2.47

0.51

2.48

0.51

2.49

0.51

2.50

0.51

2.51

0.51

2.52

0.51

2.53

0.51

2.54

0.51

2.55

0.51

2.56

0.51

2.57

0.51

2.58

0.51

2.59

0.51

2.60

0.51

2.61

0.51

2.62

0.51

2.63

0.51

2.64

0.51

2.65

0.51

2.66

0.51

2.67

0.51

2.68

0.51

2.69

0.51

2.70

0.51

2.71

0.51

2.72

0.51

2.73

0.51

2.74

0.51

2.75

0.51

2.76

0.51

2.77

0.51

2.78

0.51

2.79

0.51

2.80

0.51

2.81

0.51

2.82

0.51

2.83

0.51

2.84

0.51

2.85

0.51

2.86

0.51

2.87

0.51

2.88

0.51

2.89

0.51

2.90

0.51

2.91

0.51

2.92

0.51

2.93

0.51

2.94

0.51

2.95

0.51

2.96

0.51

2.97

0.51

2.98

0.51

2.99

0.51

3.00

0.51

3.01

0.51

3.02

0.51

3.03

0.51

3.04

0.51

3.05

0.51

3.06

0.51

3.07

0.51

3.08

0.51

3.09

0.51

3.10

0.51

3.11

0.51

3.12

0.51

3.13

0.51

3.14

0.51

3.15

0.51

Permissible Bond stress Table  bd in concrete (IS : 456-2000) M-10

M-15

M-20

M-25

M-30

M-35

M-40

M-45

M-50

--

0.6

0.8

0.9

1

1.1

1.2

1.3

1.4

Development Length in tension

Plain M.S. Bars

H.Y.S.D. Bars

bd (N / mm2)

kd = Ld 

bd (N / mm2)

kd = Ld 

0.6

58

0.96

60

0.8

44

1.28

45

0.9

39

1.44

40

1

35

1.6

36

1.1

32

1.76

33

1.2

29

1.92

30

1.3

27

2.08

28

1.4

25

2.24

26

2.0

Modification factore

1.4

1.2

0.8

0.4

Modific

0.4

Permissible stress in concrete (IS : 456-2000) Permission stress in compression (N/mm2) Bending cbc

(N/mm2)

Kg/m2

Direct (cc) (N/mm2)

Kg/m2

Permissible stress in bond (Average) for plain bars in tention (N/mm2)

(N/mm2)

in kg/m2

--

--

3.0

300

2.5

250

5.0

500

4.0

400

0.6

60

7.0

700

5.0

500

0.8

80

8.5

850

6.0

600

0.9

90

10.0

1000

8.0

800

1.0

100

11.5

1150

9.0

900

1.1

110

13.0

1300

10.0

1000

1.2

120

14.5

1450

11.0

1100

1.3

130

16.0

1600

12.0

1200

1.4

140

0.0

0.4

0.8

Percentage of tension reinforcement

1.2

1.6

2

2

2.4

2.8

Perm

VALUES OF DESIGN CONSTANTS Grade of concrete

M-15

M-20

M-25

M-30

M-35

M-40

Grade of concrete

Modular Ratio

18.67

13.33

10.98

9.33

8.11

7.18

bd (N / mm2)

cbc N/mm2

5

7

8.5

10

11.5

13

m cbc

93.33

93.33

93.33

93.33

93.33

93.33

kc

0.4

0.4

0.4

0.4

0.4

0.4

jc

0.867

0.867

0.867

0.867

0.867

0.867

Rc

0.867

1.214

1.474

1.734

1.994

2.254

Pc (%)

0.714

1

1.214

1.429

1.643

1.857

kc

0.329

0.329

0.329

0.329

0.329

0.329

M 15

jc

0.89

0.89

0.89

0.89

0.89

0.89

M 20

Rc

0.732

1.025

1.244

1.464

1.684

1.903

M 25

Pc (%)

0.433

0.606

0.736

0.866

0.997

1.127

M 30

kc

0.289

0.289

0.289

0.289

0.289

0.289

M 35

jc

0.904

0.904

0.904

0.904

0.904

0.904

M 40

Rc

0.653

0.914

1.11

1.306

1.502

1.698

M 45

Pc (%)

0.314

0.44

0.534

0.628

0.722

0.816

M 50

kc

0.253

0.253

0.253

0.253

0.253

0.253

jc

0.916

0.916

0.916

0.914

0.916

0.916

Rc

0.579

0.811

0.985

1.159

1.332

1.506

Pc (%)

0.23

0.322

0.391

0.46

0.53

0.599

(a) st = 140 N/mm2 (Fe 250)

(b) st = 190 N/mm2

(c ) st = 230 N/mm2 (Fe 415)

(d) st = 275 N/mm2 (Fe 500)

Grade of concrete

Permissible shear stress Table  v in concrete (IS : 456-2000) 100As bd

Pe

Permissible shear stress in concrete tv N/mm2 M-15

M-20

M-25

M-30

M-35

M-40 Grade of concrete

Grade of concrete

< 0.15

0.18

0.18

0.19

0.2

0.2

0.2

0.25

0.22

0.22

0.23

0.23

0.23

0.23

0.50

0.29

0.30

0.31

0.31

0.31

0.32

M 10

0.75

0.34

0.35

0.36

0.37

0.37

0.38

M 15

1.00

0.37

0.39

0.40

0.41

0.42

0.42

M 20

1.25

0.40

0.42

0.44

0.45

0.45

0.46

M 25

1.50

0.42

0.45

0.46

0.48

0.49

0.49

M 30

1.75

0.44

0.47

0.49

0.50

0.52

0.52

M 35

2.00

0.44

0.49

0.51

0.53

0.54

0.55

M 40

2.25

0.44

0.51

0.53

0.55

0.56

0.57

M 45

2.50

0.44

0.51

0.55

0.57

0.58

0.60

M 50

2.75

0.44

0.51

0.56

0.58

0.60

0.62

3.00 and above

0.44

0.51

0.57

0.6

0.62

0.63

Maximum shear stress c.max in concrete (IS : 456-2000)

Grade of concrete

M-15

M-20

M-25

M-30

M-35

M-40

c.max

1.6

1.8

1.9

2.2

2.3

2.5

Shear stress tc

Reiforcement %

100As

100As M-20

M-20

0.15

0.18

0.18

0.15

0.16

0.18

0.19

0.18

0.17

0.18

0.2

0.21

bd

bd

0.18

0.19

0.21

0.24

0.19

0.19

0.22

0.27

0.2

0.19

0.23

0.3

0.21

0.2

0.24

0.32

0.22

0.2

0.25

0.35

0.23

0.2

0.26

0.38

0.24

0.21

0.27

0.41

0.25

0.21

0.28

0.44

0.26

0.21

0.29

0.47

0.27

0.22

0.30

0.5

0.28

0.22

0.31

0.55

0.29

0.22

0.32

0.6

0.3

0.23

0.31

0.23

0.32

0.24

0.35

0.75

0.33

0.24

0.36

0.82

0.34

0.24

0.37

0.88

0.35

0.25

0.38

0.94

0.36

0.25

0.39

1.00

0.37

0.25

0.38

0.26

0.39

0.26

0.42

1.25

0.4

0.26

0.43

1.33

0.41

0.27

0.44

1.41

0.42

0.27

0.45

1.50

0.33 0.34

0.4 0.41

0.65 0.7

1.08 1.16

0.43

0.27

0.46

1.63

0.44

0.28

0.46

1.64

0.45

0.28

0.47

1.75

0.46

0.28

0.48

1.88

0.47

0.29

0.49

2.00

0.48

0.29

0.50

2.13

0.49

0.29

0.51

2.25

0.5

0.30

0.51

0.30

0.52

0.30

0.53

0.30

0.54

0.30

0.55

0.31

0.56

0.31

0.57

0.31

0.58

0.31

0.59

0.31

0.6

0.32

0.61

0.32

0.62

0.32

0.63

0.32

0.64

0.32

0.65 0.66 0.67

0.33 0.33 0.33

0.68 0.69 0.7 0.71 0.72 0.73 0.74

0.33 0.33 0.34 0.34 0.34 0.34 0.34

0.75

0.35

0.76

0.35

0.77

0.35

0.78

0.35

0.79

0.35

0.8

0.35

0.81

0.35

0.82

0.36

0.83

0.36

0.84

0.36

0.85

0.36

0.86

0.36

0.87

0.36

0.88

0.37

0.89

0.37

0.9

0.37

0.91

0.37

0.92

0.37

0.93

0.37

0.94

0.38

0.95

0.38

0.96

0.38

0.97

0.38

0.98

0.38

0.99

0.38

1.00

0.39

1.01

0.39

1.02

0.39

1.03

0.39

1.04

0.39

1.05

0.39

1.06

0.39

1.07

0.39

1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.41 0.41

1.18 1.19 1.20 1.21 1.22 1.23 1.24

0.41 0.41 0.41 0.41 0.41 0.41 0.41

1.25

0.42

1.26

0.42

1.27

0.42

1.28

0.42

1.29

0.42

1.30

0.42

1.31

0.42

1.32

0.42

1.33

0.43

1.34

0.43

1.35

0.43

1.36

0.43

1.37

0.43

1.38

0.43

1.39

0.43

1.40

0.43

1.41

0.44

1.42

0.44

1.43

0.44

1.44

0.44

1.45

0.44

1.46

0.44

1.47

0.44

1.48

0.44

1.49

0.44

1.50

0.45

1.51

0.45

1.52

0.45

1.53

0.45

1.54

0.45

1.55

0.45

1.56

0.45

1.57

0.45

1.58

0.45

1.59

0.45

1.60

0.45

1.61

0.45

1.62

0.45

1.63

0.46

1.64

0.46

1.65

0.46

1.66

0.46

1.67

0.46

1.68

0.46

1.69

0.46

1.70

0.46

1.71

0.46

1.72

0.46

1.73

0.46

1.74

0.46

1.75

0.47

1.76

0.47

1.77

0.47

1.78

0.47

1.79

0.47

1.80

0.47

1.81

0.47

1.82

0.47

1.83

0.47

1.84

0.47

1.85

0.47

1.86

0.47

1.87

0.47

1.88

0.48

1.89

0.48

1.90

0.48

1.91

0.48

1.92

0.48

1.93

0.48

1.94

0.48

1.95

0.48

1.96

0.48

1.97

0.48

1.98

0.48

1.99

0.48

2.00

0.49

2.01

0.49

2.02

0.49

2.03

0.49

2.04

0.49

2.05

0.49

2.06

0.49

2.07

0.49

2.08

0.49

2.09

0.49

2.10

0.49

2.11

0.49

2.12

0.49

2.13

0.50

2.14

0.50

2.15

0.50

2.16

0.50

2.17

0.50

2.18

0.50

2.19

0.50

2.20

0.50

2.21

0.50

2.22

0.50

2.23

0.50

2.24

0.50

2.25

0.51

2.26

0.51

2.27

0.51

2.28

0.51

2.29

0.51

2.30

0.51

2.31

0.51

2.32

0.51

2.33

0.51

2.34

0.51

2.35

0.51

2.36

0.51

2.37

0.51

2.38

0.51

2.39

0.51

2.40

0.51

2.41

0.51

2.42

0.51

2.43

0.51

2.44

0.51

2.45

0.51

2.46

0.51

2.47

0.51

2.48

0.51

2.49

0.51

2.50

0.51

2.51

0.51

2.52

0.51

2.53

0.51

2.54

0.51

2.55

0.51

2.56

0.51

2.57

0.51

2.58

0.51

2.59

0.51

2.60

0.51

2.61

0.51

2.62

0.51

2.63

0.51

2.64

0.51

2.65

0.51

2.66

0.51

2.67

0.51

2.68

0.51

2.69

0.51

2.70

0.51

2.71

0.51

2.72

0.51

2.73

0.51

2.74

0.51

2.75

0.51

2.76

0.51

2.77

0.51

2.78

0.51

2.79

0.51

2.80

0.51

2.81

0.51

2.82

0.51

2.83

0.51

2.84

0.51

2.85

0.51

2.86

0.51

2.87

0.51

2.88

0.51

2.89

0.51

2.90

0.51

2.91

0.51

2.92

0.51

2.93

0.51

2.94

0.51

2.95

0.51

2.96

0.51

2.97

0.51

2.98

0.51

2.99

0.51

3.00

0.51

3.01

0.51

3.02

0.51

3.03

0.51

3.04

0.51

3.05

0.51

3.06

0.51

3.07

0.51

3.08

0.51

3.09

0.51

3.10

0.51

3.11

0.51

3.12

0.51

3.13

0.51

3.14

0.51

3.15

0.51

Permissible Bond stress Table  bd in concrete (IS : 456-2000) M-10

M-15

M-20

M-25

M-30

M-35

M-40

M-45

M-50

--

0.6

0.8

0.9

1

1.1

1.2

1.3

1.4

Development Length in tension

Plain M.S. Bars

H.Y.S.D. Bars

bd (N / mm2)

kd = Ld 

bd (N / mm2)

kd = Ld 

0.6

58

0.96

60

0.8

44

1.28

45

0.9

39

1.44

40

1

35

1.6

36

1.1

32

1.76

33

1.2

29

1.92

30

1.3

27

2.08

28

1.4

25

2.24

26

Permissible stress in concrete (IS : 456-2000) Permission stress in compression (N/mm2)

Permissible stress in bond (Average) for plain bars in tention (N/mm2)

Bending cbc

(N/mm2)

Kg/m2

Direct (cc) (N/mm2)

Kg/m2

Permissible stress in bond (Average) for plain bars in tention (N/mm2)

(N/mm2)

in kg/m2

--

--

3.0

300

2.5

250

5.0

500

4.0

400

0.6

60

7.0

700

5.0

500

0.8

80

8.5

850

6.0

600

0.9

90

10.0

1000

8.0

800

1.0

100

11.5

1150

9.0

900

1.1

110

13.0

1300

10.0

1000

1.2

120

14.5

1450

11.0

1100

1.3

130

16.0

1600

12.0

1200

1.4

140

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF