An Introduction To Frames and Riesz Bases (PDFDrive) PDF
February 11, 2023 | Author: Anonymous | Category: N/A
Short Description
Download An Introduction To Frames and Riesz Bases (PDFDrive) PDF...
Description
Applie Ap plied d and N um ume erica ricall H arm on ic A nal alys ysis is S e rie s
d ito r
John Jo hn J Be Benede nedetto tto Univer Un iversity sity o off Ma Mary ryland land
E d it o ri a l A d v i s o r y B o a r d
k ram ram ldr ldroub oubii NIH,, B iomed NIH iomediical Eng En g ineeri ineerin n g/ Instr nstrum umenta entatio tion n Ingrid D aubec Ingrid ubech hies Princceton U niver Prin niverssity
Do uglas C ochr Dou ochra an Arizona rizona St State ate Univer Universsity H ans ans G Feichtin Fe ichting ger Univ Un iversity ersity of Vien Vienn na M u rat ratKu Ku nt
Ch ristoph Chris topher er H eil G eor eorgia gia Institu nstitute te of T ec echnol hnolog ogyy
Sw iss Fe Swiss Fed deral In Inst stitute itute o f T ech echnolo nology, gy, Lausa Lausanne nne
Jam es James McC Mc Clellan Georgi Ge orgia a Instit Institut ute e o f Techno chnolo logy gy
Wim S weld welden ens s Luce ucent nt T ec echno hnolog logies ies Be Bellll Labo Labora ratories tories
M icha ichael el U nser nser NIH,, B iome NIH iomed d ical Engineer En gineering/ ing/ Instrum Ins trumen entatio tation n Victor W icker ickerh hause auserr W as ashi hington ngton U nivers niversitityy M
M artin Vette Vetterl rlii S wiss wiss Fede Federral Insti Institu tute te of Tec Techn hnolog ology, y, Laus Lausanne
nic c al H armo armoni Num m eric erical pplied and Nu
lysis is nalys na
Publish Publis h e d titles ATLAB MATLAB ntial Equations E quations with M Partial tial Differe Differential Introduction oduction to Par J. J.M M . Cooper: Intr 967 -5) 0-8176-3 76-3967 (ISBN 0-81 (ISBN an d Harmonic C.E. Theor eoryy and and (ISBN E .M. Feman Wavelet let Th DdAttellis Attell is and Femandez-Be dez-Berdaguer: rdaguer: Wave Harmonic Analysis in 3-5) 0-8176-395 0-8176 -3953-5) Sciences Sciences Ap plied plie
Strohmer: G abo r Analysis inger and nd T. Strohmer: H.G. Feicht Feichtinger 6-3959-4) -8176-3959-4) (ISBN 0 -817
nd
Algorithms Algorithms
ier Transforms a nd J.C. W illiams: Four Fo urier T.M. T.M. Peters, J.H.T. Bates, G .B. Pike, P. M unger, and J.C. 176-3941-1) -1) N 0- 8 176-3941 (ISBN Biomedicall E ngineering (ISB Biomedica s Science nces ions in the the Physical and E ngineering Scie Distribut tributions oyczynss tU U ==
L: 1u, / k ) l
2.
k=1
llglll = 1 s u c h T h e u n i t b a l l i n W is co m p a c t , so w e c a n fi nd g E W w i t h llgl that
A = ~ l(g, / k ) l
2
= i n f
{ ~ l ( f , h ) l
giv v en f ow gi is c l e a r t h a t A > 0. N ow I t is
= ~ I
k)l 2 /k l ( f , /
E W,
2
:
ll f l l
fE W ,
=
} ·
0, w e h a v e f :f. :f. 0,
l l j l l h ) l 2 l l f ll 2
~ A
ll f l l 2 ·
0
k} k '= 1 i n V i s a f r a m e f or V i f C o r o ll a r y 1 1 3 A f a m i l y o f e l e m e n t s { f k}k = V. n l y i f s p a n { fk } and o C o r o l l a r y 1 . 1 .3 sh o w s t h a t a f r a m e m i g h t c o n t a i n m o r e e l e m e n t s t h an fo r V a n d { g k } k = 1 {fk k }k '= 1 is a fr a m e for n e e d e d t o b e a ba si s . I n pa r t i c u l a r , i f {f
is fk } k'= 1 U { g k } k = 1 is is a n a rb i tr a ry fi n it e co ll e c ti o n o f v e c t o r s i n V , t h e n {fk} is s a i d to b e o v e r c o m p l e t e is n ot a ba s is is al s o a fr a m e f or V . A f r a m e w h ic h is or re d u n d a n t. C o n s i d e r no w a v e c t o r s p a c e V e q u i p p e d w i t h a f r a m e {fk} k '= 1 a n d d ef i n e a l in e a r m a p p i n g m
T:
em
7
V , T { c k } k = 1 =
L c k f k ·
(1 .4 )
k=1
o r. r. T h e r1,t ,to T is u s u a l l y ca l l e d t h e p r e - f r a m e o p e r a to r , o r th e s y n t h e s i s op e r1 a d j o i n t o p e r a t o r is g iv e n b y
T*: V
t
em, em,
T f = { ( , f k ) } ; : 1 ,
1 .5 )
an d is c a ll e d t h e a n a l y s i s op e ra to r . B y c o m p o s i n g T w i t h i t s a d j o i n t T* , w e o b t a i n t h e f r a m e o p e r a t o r m
S : V - t V , S f = T T * f
f, fk /k.k. = L f,
1 .6 )
k=1
N o t e t h a t i n t e r m s o f t h e f ra m e o p e r a t o r , m
L
k ) l 2 , f E V ; /k l ( f , / (Sf, f ) = k=1
1 .7 )
1.1 S o m e b asi c fa cts ab o u t fr a m e s
5
ered as s o m e k i n d o f " lo w er er f ra m e co n d i t ion c a n t h u s b e c o n s id ered the low lo w er b o u n d " o n the f r a m e o p e r a t o r .
i.ee., i f nition n , i. oose A = B in t he d e f i nitio we c a n ch oose }k=l is tigh t i f we A fram e { f k }k=l m
l(f, l( f, h ) l 2 = A l l f l l 2 ,
Vf E
k= l
v.
( 1.8 1. 8 )
e alled d the f r a m e (1 .8) is s i m p ly calle alu e A in (1. F o r a t i g h t f r am e , th e e x a c t v alu b ound. ound. W e n o t e t h a t (1. (1. 7) c o m b in e d w i t h L e m m a A . 6 . 6 i m m e d i a t ely l e a d s t i o n o f f E V in te r m s o f t h e f r a m e el e m e n ts: t o a r e p r e s e n t a ti ame fra f o r V w ith fr ight fra fr a m e fo ition 1 1 4 A ss u me t h a t { f k } k = l is a ttight roposition P ropos ),, a n d tity o p erato r o n V ) identity the iden b o und A . T h e n S = A I (h ere I is the 1
f
m
= A I : U , f k ) f k ,
V f E
v.
(1.9 (1 .9))
k=l
framee a n d we w a n t t o is a t i g h t fram is th a t if { k } ~ is (1 .9)) is A n i n t e r p r e t a t i o n of (1.9 fine we c a n s i m p l y d efine ;;= = l c k h , we I:;; inatii o n f = I: lineaa r c o m b inat as a line e x p r e s s f E V as presee n t a (f, g k). F o r m u l a (1.9) is s i m i l a r t o the r e pres gk = fk a n d t a k e ck = (f, is the f a c tor 1 / A in fferenc nc e is basis: s: t h e only d i ffere t i o n (1 .2 ) v i a a n o rt h o n o r m a l basi eral f ra m e s we no now w p r o v e t h a t w e still still ha v e a r e p r e s e n ta tatio n (1 . 9). F o r g e n eral for an a p p r o p r i a t e c ho ice o f :;;=ll (f, gk) h for o f e a c h f E V o f th e fo rm f = I :;;= ults ab o u t is o n e o f t h e m ost i m po r tant r e s ults { g k } k = l · T h e o b t a i n e d t h e o r e m is positii on: decomposit alled the fra m e decom is c alled (1..10 ) is fram e s , a n d (1 m 1 1 5 Let { eorem T h eore
k } ~
m e o p e ra to r S . be a f r a m e f o r V with fra me
Then l f-adjo int. rt ible a n d s e lf-adjo ( i ) S is in v e rtible d as ( i i) E v e ry f E V c a n be repres e n te d m
m
(1 .1 0 )
f = I : u , s - 1 h ) f k = I : U , f k ) s - 1 fk . k=ll k=
k=l
r e se n ta tio n f = thee re p re (iii)) I f f E V also h as th (iii
k=l,l, t h e n ck} k= nts { ck} efficients c o efficie m
I: I:;;=l ;;=l c k fk f o r
a lar s o m e sc alar
m
m
S - 1 h ) l 2 + L i c k - ( f , S - 1 fk W · l(f,S L l c k l 2 = L l(f, k=l k=ll k= k=l k=l w p ro v e now int. W e no lf-ad d jo int. is c le a r t h a t S is s e lf-a Sincee S = T T * , it is Sinc ive. L e t f E V a n d a s s u m e t h a t S f = 0. T h e n injecc t ive. t h a t S is inje
Proof
m
0 = (S f,f) = L I U ,fk W ,
k=l
6
1. 1. F r a m e s i n F initeinite-d d i m e ns n s i o n a l l I n n e r r Prod Produ u c t S p a ces
i m plyi plyin n g b y t h e f r a m e c o n d i t i o n t h a t f = 0. T h a t S is i n j ectiv ectivee a c tu a l l y im p li e s t h a t S is is s u r j e ctiv ctivee , b u t l e t u s give give a d i re c t p r o o f . T h e f r a m e c o n
d i t i o n i m plies plies by C o rolla r y 1 .1.3 .1.3 t h a t s p a n { f k } ~ = V , so so t h e p r e-fr e-fraa m e op erato eratorr T i s s urje urjecc t ive. ive. G iven iven f E V we c a n t h e r efor eforee find find g E V s u c h t h a t Tg = f ; we c a n c h o o s e g E N / = R r - , so so it follo fo llow w s t h a t R s = R r r - = V . Th u s S is is s u r j e ctiv ctivee , as c la im e d . E ac h f E V h a s th e r e p r e s e n t a ti tio n
ss- 1J
J
TT*S- 1 f m
2)s-1J,h )h ;
k=1 k=1
usin g that S is s e lf-a lf-ad d j oint oint,, w e a r r i v e at m
1
L _ u,s- 1 h ) h .
=
k=1 k=1
T h e s e c o n d r e p r e s e n tati tatio o n in i n (1.10 (1 .10)) is is o b t a i n e d i n t h e s a m e way, u s i n g t h a t f = s - 1 S f . F o r th e p r o o f o f (iii), (iii), su p p o s e that that f = I: Z '= 1 c k h · W e c a n w rite
{(f,S {(f, S - 1h) } k = 1 + { ( f , S - 1h )} k '= 1 ·
{c {ck} k}k= k=1 1 = { c k } ~ 1
B y t he c hoic hoicee o f { ck} ck } k= 1 w e h a v e m
L ( c k -
( f , S - 1 f k ) ) fk = 0,
k=1 k=1
{ ( f , S - 1fk)} fk)}k' k'= =1
i .e., { c k } ~
{ ( ,
s - 1h )
~ 1
E
Nr
={
= R ;j . ;
s ince ince
S - 1 J, h ) }k'=1 E R r · ,
we ob ta in (iii). (iii).
0
E v e r y f r am e in a f init in it e -dim e nsio nsion n al sp a c e c o n tain s a s u b f a m i l y w hic h is is a b a sis ( E x e r c i s e 1.1 1. 1 ). I f { fdk'= 1 is is a f r am e b ut n o t a b as i s, th e r e e x i s t n o n-ze n-zerr o s e qu e n c e s {dk}k dk}k'= '= 1 s u c h t h a t I: Z '= 1 d k h = 0. T h e r e f o r e f E V c a n b e w r itte n m
m
k=1
k=1
m
L. ( f , s -
k=1 sh o w ing that
h ) + dk) h ,
1
f
h a s m a n y r e p re r e s e n t a t i o n s as s u p e r p o s i tion s o f t he f r a m e 1 k) }k'= 1 h a v e e le m e n ts. T h e o r e m 1 .1. .1.5 5 sh o w s t h a t th e c o e ff i cien cients ts { ( f , m i n i m a l £2 - n o r m a m o n g all s e q u e n c e s {ck} {ck}k'= k'= 1 for fo r w h i c h f = I :Z '= 1 c k h ·
s-
1.1 Some basic facts about frames
The numbers ( , s - 1 fk),
k
= 1, ... , m
7
are called frame coefficients. Note that because S : V --+ V is bijective, the sequence { S - 1 k}k : 1 is also a frame by Corollary 1.1.3; it is called the canonical dual of { k}/:'= 1 . Theorem 1.1.5 gives some special information in case { k}/:'= 1 is a basis: k= 1 is a basis for V . Then there exists {fk} that a unique family {gk}/:'= 1 in V such
Corollary 1.1.6 Assume that
f
=
m
L U , g k ) k , 'r/f E
k=1
In terms o f the frame operator, {gk}k : 1 (fi,gk) = 8j,k·
v.
=
{1.11) { S - 1 k}/:'= 1 . Furthermore
The existence of a family {gk}/:'= 1 satisfying {1.11) follows from Theorem Theor em 1.1.5; 1.1.5; we le leav avee the t he proof of the uniqueness uniqueness to the reader. Applying {1.11) on a fixed element f i and using that { k}/:'= 1 is a basis, we obtain that (fi, 9k) = 8j,k for all k = 1, 2, · · · , m. D
Proof.
W e can give an intuitive explanation of why frames are important in signal transmission. A more detailed argument is given in [105]. Let us assume that we want to transmit the signal f belonging to a vector space V from a transmitter A t o a receiver n. I f both A and R have knowledge of a frame { k }/:'= 1 for V, this can be done if A transmits the frame coefficients { ( , s - 1 k) }/:'=1 ; based on knowledge of these numbers, the receiver n can reconstruct the signal fusing the frame decomposition. Now assume that n receives a noisy signal, meaning a perturbation { ( , s - 1 k) + ck}/:'= 1 of the correct frame coefficients. Based on the received coefficients, R will claim that the transmitted signal was m
L
(( , s - 1 k) + ck)
k=1
k
=
m
LU,
k=1
s - 1 fk)
k
+
m
L ck k
=f +
k=1
m
L ckfk;
k=1
this differs from the correct signal f by the noise : ~ = ckfk· I f { k}/:'= 1 is overcomplete, the pre-frame operator T{ck}/:'= 1 = : ~ = ckfk has a non trivial kernel, implying that parts of the noise contribution might add up t o zero and cancel. This will never happen if { k}/:'= 1 is an orthonormal basis In that case ckfkll 2 = : ~ = so each noise contribution : ~ = will make the reconstruction worse. W e have already seen that, for given f E V, the frame coefficients { ( , 1 k) }/:'=1 have minimal £2-norm among all sequences {ck}k : 1 for which f = : ~ = ckfk· W e can also choose to minimize the norm in other spaces than £2 ; we now show the existence of coefficients minimizing the £1 -norm.
s-
8
1. Frames in Finite-dimensional Inner Product Spaces
Theorem 1.1.7 Let { f k } ~ be a frame for a finite-dimensional vector space V . Given f E V , there exist coefficients {dk}k= 1 E em such that
f
=
dk/k, and
m
{ ; ldkl Proof.
Fix
f
= nf
{
m
{;hi : f
=[ ; c d k m
}
.
(1.12)
E V. I t is clear that we can choose a set of coefficients
to we can ckfk; let r :it= isE;;'= {ck}k=1 {ck}k= 1 such E;;'=1 want 1-norm hi· Since minimize also1 clear that we now the fthat f =of the coefficients, restrict our search for a minimizer to sequences {dk}k= 1 belonging to the compact set
E
M := { { d k } ~
em
: ldkl $
r, k = 1, . . . ,m}.
Now the result follows from the fact that the set
{{
d k } ~
EM I f =
is compact and that the function¢: continuous.
k f k }
em -+
IR, ¢{ddr= 1 : = E;;'= 1 ldkl is
0
There are some important differences between Theorem 1.1.5 and Theo rem 1.1. 7. In Theorem 1.1.5 we find the sequence minimizing the f 2 -norm of the coefficients in the expansion o f f explicitly; it is unique, and i t depends linearly on f. On the other hand, Theorem 1.1.7 only gives the existence of an f 1-minimizer, and it might not be unique (Exercise 1.4). Even if the minimizer is unique, it might not depend linearly on f (Exercise 1.5). An algorithm to find an f 1-minimizer {dk}k= 1 can be found in [64]. As we have seen in Proposition 1.1.2, every finite set of vectors {/k}k= 1 is a frame for its span. If span{fk}k= 1 -:f. V, the frame decomposition associated with {/k}k= 1 gives a convenient expression for the orthogonal projection onto s p n { k } ~ The or e m 1.1.8 Let {fk}k= {fk}k=1 1 be a frame for a subspace W o f the vector space V . Then the orthogonal projection o f V onto W is given by m
Pf
= Lu,s- 1 /k)fk.
(1.13)
k=1
Proof.
I t is enough to prove that if we define P by (1.13), then
Pf
=f
for f E W and P f
= 0 for
f E W .L.
The first equation follows by Theorem 1.1.5, and the second by the fact because s i s a bijection on w. 0 that the range of s - 1 equals
w
1.1 Some basic facts about frames
9
Example 1.1.9 Let {ekH=l be an orthonor or thonormal mal basis for for a two-dimensional
vector space V with inner product. Let
Then
{ f k } ~
l
is a frame for V . Using the definition of the frame operator, 3
Sf= L(f,fk)fk, k=l
we obtain that Se1
Se2
=
=
e1
+ e1
-(e1 -
+ e1 + e2 = 3el. e2) + e1 + e2 = 2e2.
- e2
Thus
Therefore the canonical dual frame is
Via Theorem 1.1.5, the representation of given by
f
f
E V in terms of the frame is
3
= 'LU, s-l k) k k=l
0
Let us for a moment consider an orthonormal basis {ek}k=l for V. I t is clear that by adding a finite collection of vectors to { ek} k=I we obtain a frame for V. Also, if we perturb the vectors { ek} k=l slightly, we still have a basis, but in general not an orthonormal basis. More precisely, if {gk}k=l is a family of vectors in V and
then also {gk}k=l is a basis for V. In fact, given a scalar sequence {ck}k=P the opposite triangle inequality followed by Cauchy-Schwarz' inequality
10
1. Frames in Finite-dimensional Inner Product Spaces
gives that
I ,c•g•ll
>
llt,c•eoll-llt,c,(g,- e,)ll
(t,1"1f'- (t,lle,-g,ll'f (t,lc·lf'
>
(1 - R)
(t, c•l
r
This shows that {gk}J:= 1 is linearly independent, and since dimV = n, we conclude that {gk}k=l is a basis. W e return to more general perturbation results for frames in Chapter 15. 0
1.2
Frame Fram e bounds bou nds and frame algorithms
The speed of convergence in numerical procedures involving a strictly posi tive definite definite matri mat rix x depends heavil heavily y on the condition number of the matrix,
which is defined as the ratio between the largest eigenvalue and the small est eigenvalue. In case of the frame operator, these eigenvalues correspond to the optimal frame bounds: The or e m 1.2.1 Let
be a frame for V . Then the following holds:
} ~
{i) {i) The opti optimal mal low lower er frame boun bound d is th thee small smallest est eigenvalue for S , and the optimal upper frame bound is the largest eigenvalue. (ii) Let {.\k}k=l denote the eigenvalues for S ; each eigenvalue appears in the list corresponding to its algebraic multiplicity. Then n
m
LAk = L:11hll
k=l
2
·
k=l
{iii) Assume that V has dimension n. I f {fk}k=l is tight and llfkll for all k, then the frame bound is A = m f n .
=1
Assume that {h}k'= 1 is a frame for V . Since the frame operator S : V - + Vis self-adjoint, Theorem A.2.1 shows that V has an orthonormal basis consisting of eigenvectors {ek}k=l for S. Denote the corresponding eigenvalues by {Ak}f:= 1 . Given f E V , we can write f = L ~ = ( J , e k ) e k . Then Proof.
Sf=
n
n
k=l
k=l
L:U, ek)Sek = L .\k(J, ek)ek,
go r i t hm s 1.2 F r a m e bo u n ds an d fram e a l gor 1.2
a nd m
n
\kl(ff , e k ) l 2 · L l ( f , f k ) l 2 = ( S f , f ) = L . \kl( k= l
k= k=ll
11 11
f ore T h e r e fore m
minllfllll 2 Aminllf
:S :S
xllflll Ama axllfl k W :S Am L l(f l(f,f ,fk
2
·
k=l k= l
So Amin is a lower lo wer fra fr a m e b o u n d , , a n d Am e b o u nd nd . T h a t Amaax is a n u p p e r f r a m e e ctor t h ey a r e th e o p t i m a l fram e b o u nds fo llows by tak i n g f t o be an e i g e n v ector x)· max)· vely Ama spectively o n d i n g to Amin ( r e specti c o r r e s p on we h a v e For th e p r o o f o f (ii), we n
n
n
.\ k l L , \ k = L .\k
k= l
k =l
e k ll 2 =
L (S ek.ek ) k= l m
n
LLI(ek,M I 2 · k= l 1 = 1
for s is for k} is an o r t h o n o r m a l b a sis e s and u sing t hat { ek} i n g th e s u m s I n t e r ch c h a n g in o ns im ply t h a t th e (iii), th e a s s u m p t i ons Fo r th e p r o o f of (iii), ( ii). For g ives (ii). V fin fi n ally gives ists of of th e f rame b o u n d A r e p e a t e d n t i m es; consists \ k } ~ = l cons ues ei genvalues s e t o f eigenval D (ii). follows from (ii). result follows t h u s the result f ra m e fo r V . T h e n the c o n d i t i o n nu m ber C o r o l l a r y 1 . 2 . 2 L e t { f k }k=l be a fr im a l u p p e r fra m e to the th e r atio be tw e e n th e o p t im f o r t h e f ra m e op e r a t o r is equ a l to b o u n d an d th e o p t i m a l lo w e r f r a m e b o u n d .
icientss coefficient off th e coeff ledge o n knowledge n t f E V b a s e d o n know elemen f i n d an eleme I f w e w a n t t o fi 1.1 .5: e m 1.1.5: T h e o r em { ( f,fk f,fk)) } k = l w e c a n use Th m
J=
L:u, h ) s - l
k
u, h ) } k = l · u,
= s - lr {
k= l
u l we need t o i n vert t h e usefu a t o b e usef his fo r m u l a r for tthis er, in o r d e r owever, H owev fram e o p e r a t o r , which which c a n b e c o m p l i cated c ated if i f the d i m e nsion n sion o f V is is large. large. io n s of f. A is t o u se an a l g o r i t h m to o b t a i n a p p r o x i m a t io A n o t h e r o p t i o n is th m : gorith t h m is know n as t h e f r a m e a l gori ical a l g o r i th classical class k}k=ll be a f ra m e f o r V w ith f r a m e bo u n d s A , B . L e m m a 1 .2.3 L e t { f k}k= } ~ in V b y G i v e n f E V , d e f ine th e s e q u e n c e {
9o = 0,
2 9k 9k = 9 k - l + A + B S ( f - 9 k - d , k 2: 1.
Th en
9kll :S I I - 9kll
A )k )k
B ( B + A
11 11 11· 11·
12 Proof.
1. Frames in Finite-dimensional Inner Product Spaces
Let I denote the identity operator on V. Using (1.7),
(1 . 14)
so via the frame condition, {(
I- A
Similarly,
2
B S
2
2A A+B
~ {
I
f , f } ~ l l f l l -
B- A - B +A
IIIII
2
2
IIIII =
B - A B+A
2
IIIII·
2
A + B S ) f , f).
The two inequalities and (A.8) together give that
III- A Bs Bslll
Using the definition of
f -
~ ~
{ g k } ~
9k
=
f -
=
(1- A
9k-1 - A
2
+ B S(f
- 9k- d
8 s)u-9k-d,
and by repeating the argument,
f - 9k
=
(1- -A +2Bs)k
f - go).
Thus, applying (A.6) and (A.7),
11(1- A Bs)'(f-90)11
ilf-g•ll
< <
III- A:A)k8W (B B+A
I I - 9oll
IIIII· 0
In particular, the vectors 9k in (1.14) converge to f as k oo. The algorithm depends on the knowledge of some frame bounds, and the guar anteed ante ed speed spe ed of conver convergence gence also depends on them. them . I f B is much larger than A (either because only bad estimates for the optimal bounds are known, or because the frame is far from being tight) the convergence might be slow.
1.2 Frame bounds and frame algorithms
13
I t is natural to apply some of the known acceleration algorithms from lin ear algebra to obtain faster convergence. Grochenig showed in [152] how to apply the Chebyshev method and the conjugate gradient method. W e begin with the Chebyshev method:
{fk}k : 1
The or e m 1.2.4 Let
and let
be a frame for V with frame boun bounds ds A , B ,
B-A
a :=
P := B + A ' Given f E V, define the sequence { A k } ~ by
= 0,
go
and Ak
=
{ g k } ~
= A
in
2
+ B Sf,
V and corresponding numbers
.A1
= 2,
2,
o r k ~
1-
91
.JB-v0f. ..fB + v0f."
, TAk-1
9k
= Ak (9k-1 -
gk-2
+ A + B S ( J - 9 k - d ) + gk-2·
Then
Th e Chebyshev algorithm guarantees The guaran tees a faster convergenc convergencee than the frame frame algorithm when B is much larger than A. Knowledge of some frame bounds is also needed in order to apply the Chebyshev algorithm. In contrast, the conjugate gradient algorithm described below works without knowledge of the frame bounds: only when we want to estimate the error I I - gkll do we need them. Following Grochenig, we formulate the result using the norm
lllflll = (J,Sf) 112 , f
E V.
W e leave i t to the reader t o check that Ill · Ill is in fact a norm on V. Remember also that all norms on a finite-dimensional vector space are equivalent; that is, there exist constants c1, c2 > 0 such that
This means that an error estimate in the norm into a n error estimate in the usual norm. The or e m 1.2.5 Let
the vectors
{ g k } ~
Udr=1
{ r k } ~
Ill · Ill can be transferred
be a frame for V . Let f E V \ {0} and define { P k } ~ _ by and numbers { A k } ~
9o = 0, ro =Po = S J, P-1 = 0
14
1.
Frames Frames i n F i n i t e - d i m e n s i o n a l In n er Pr o duct S p a c e s
a n d , f o r r k 2::: 0,
(r k , P k)
(Pk, S p k)' 9k
+ AkPk,
r k - )..kS )..kSPk, Pk, S k
( S p k , S p k) k) (Spk> S p k- 1 ) ( p k ,S , S P k ) P k - (Pk-1 (Pk-1,SPk-1 ,SPk-1)P )P k - 1 ·
Then 9k - t f as k - t oo. I f w e let A den o t e t h e s m a l l e s t e i g e n va va lu e f o r S a n d B the large large s t eigenvalu eigenval u e a n d l e t a = ~ ~ ~ t he speed o f c o n v e r g e nc nc e
be e s t i m a te c a n be t e d by
klll Ill - 9klll
2ak :S 1 + a 2 k
111 111· 111·
I n the e x p r e ssion for for Pk Pk+ + 1 , the l a s t t e r m is i n t e r p r e t e d as zero for k
1.3
F ra m e s in
= 0.
en
T he natural e x a m ples of fin fi n i t e-dimens e-dimensio io n al vector vector s paces are
lRn = { ( c1
, c2 , ... , Cn) I c;
E JR, i = 1 . . . , n}
en
) 2 ) . . ) Cn) I C;
E C, i = 1 ) . . . ) n } ;
and = { ( c1
th e latter is e q u i p p e d w it i t h th e i n n e r r p ro d u c t n
({ck}k= ({c k}k=1' 1' {dk} {dk}k= k= 1) =
I::> kdk
k=1
a n d th e a s s o c ia ia t e d n o r m n
ll{ck}k=111 =
lck lckl 2· L k=1 k=1
T h i s correspon correspon d s t o the d e f initions in i n JRn, JRn, e x c e p t that c o m pl p l e x c o n j u g at at i o n a nd m o dulus is not needed needed in in t he real real c ase. W e w ill ill describe describe t h e t h e o r y f or bases bases and frames frames in in en) b u t e a sy modifi modif i c a tions give giv e th e c o r r e sp sponding result s i n ] R n . . If, forr example, f, fo examp le, { f k } k=1 is a frame frame for for en en)) th en the 2m v e c tors tors consisti consistin n g o f the r e a l p a r t s , r e sp s p e c tively th e i m a g i n a r y p arts, of t h e f r a m e vectors vectors w ill be a fr f r a m e for JRn JRn ( Exercise 1 .6 ); in pa rtic ular, if the vectors { vectors } ~ h a v e real coor coor d i nates, th e y c o n s t i t u te t e a frame for for JRn. On t h e o t h e r r h a n d a fram fra m e for JRn is a u t o m a t ic i c a l ly a fram e for en ( E x e rcise 1 .7 ) .
1 .3 Fr a m e s i n C "
15
8k w h ere 8k nsists ts o f t he v e c tors { k } ~ = l forr en c o nsis T he c a n o n i c a l b a si s fo s e 0. W e w ill is th e v e c t o r in en h a v i n g 1 a t t h e k -th e n t r y a n d o t he r w i se asis.. this basis a t i o n i n this en with th e i r r e p r e s e n t at ctorss i n en c o n s e q u e n t l y i d en t i f y v e ctor valen n t c o nd ition s for lineaa r a l ge b r a w e kn o w m an y e qu i vale ntary y line F r o m elem e ntar imporr tant lis t the m ost impo en.. L e t us list asis fo forr en vectorr s t o c o n s t i t u t e a basis a s e t o f vecto
c h a r a c t e r i z atio n s : ectorss i n i d e r n v ector eorem m 1 3 1 C o n s id T h eore trix a n n x n ma trix
en a n d w r ite t h em as en
c o l u m n s in
le nt: uivale lo wing are e q uiva follo T h e n t h e fol basis f o r s t i t u t e a basis tors) c o n st {i} T h e c o lu m n s i n A ( i .e., th e g i v e n v e c tors) basis for s t i t u t e a basis ro w s i n A c o n st {ii} {i i} T he row
en. en.
en. en.
- z e ro. is n o n -z i n a n t o f A is { i ii) T h e d e t e r m in (iv) A is i n verti vertib b le.
en. en.. m a ppin g o n en
n e s a n injec ti v e m a ppin g o n defin (v) A defi definee s a s u rjec t i v e { vi) A defin
inearr l y ind e p e n d e nt. ar e l inea (vii) The c o l u m n s i n A are al to n. eq ual {viii)) A h a s ran k equ {viii
as the d i m e n s i o n o f its defin n e d as i x E is defi R e c a l l t h a t t he r a n k o f a m a t r ix ed i n t o turne r a n g e R e . W e al s o r e m i n d the r e a d e r t h a t a n y b a s is c a n b e turn i z a tion an o r t h o n o r m a l b a sis b y a p p lyin g t h e G r a m - S c h m i d t o r t h o g o n a l iz p ro cedu re. ently a t we c o nseq u ently en. . aNtor itex th a t i o n s w ith r e p r e s e n t at r m t h e ien en --+ em w ith th v : en em . i n e n a n d em b a ses in anonii cal ba re sp ect to the c anon re-frr a m e op e ra to r T m a p s em en,, t h e pre-f forr en is a fr a m e fo I n c as e { fk }k=l is em en and em in en en'' and i t s m at r i x w i t h r e s p e c t t o t he c a n o n ical b a s e s in o n t o en
W e n ow tu r n t o a d is c u s sion sion of fram fra m e s f or
a tors opera y oper i d e n t i f y
is
I
( 1 .1 5 )
h
I
colum m ns. ctorss ]k a s colu i. i.ee ., t h e n x m m atrix h a v i n g the v e ctor
16
l In ne r Pr o d u ct S p a c e s - d i m e n s i o n a l 1. Fr a m es in F i n i t e -d
ily essarily s pace, we n e c essar i onal space, i m e n s ional ors can ca n a t m o s t s p a n an m - d im vectors S ince m vect T h a s a t l e a s t trix fo r en, i.e., t h e m a trix fra me for {fk}k k = l is a frame h a v e e m 2:: n w h e n {fk} rows. s as rows. a s m a n y c o l u m n s
en.. en
tors fk c a n be th e v e c tors T h e n the m 1 3 2 L e t { f k } k=l be a f r a m e f o r eorem T h eore i t u tin g natess o f s o m e v e c t o r s gk in em c o n s t it rst n c o o r d i nate
nsidee r e d as th e f i c o nsid
em.
is a ti g h t fra m e , t h e n th e v e c t o r s k a re th e f i rs t I f { k } ~ n c oo r dina te s o f s o m e v ec to r s gk i n em c o n s t i t u t i n g a n o r t h o g o n a l b as is fo r si s f o r a b asis
em .
f rame for rary P r o o f L e t { fk } k=l b e an a rb it rary the m a p p i n g
en.. T he n m en
2::
n . C onsid e r
en-+ em em,, F x = { ( x , /k)}k ' = 1 · F : en-+ forr F w ith ratorr T a n d th e m a tr ix fo F is the a d j o i n t of t he p r e-fram e o pe rato matrii x w h e r e th e k - t h row is ba ses is the m x n matr i cal bases r e s p e c t t o th e c a n o n ical fk , i.e., e of fk, e x c o n j u g a t e of th e c o m p l ex
F=
h
(
fm
0
l
=en, =en
it l f k } k = l 11Fxlll 2 = :Z ::::;'= 1 I(x, fk ) l 2 . S ince s p a n { fk I f F x = 0, th e n 0 = 11Fx nd r efore e x t e nd ping. W e c a n t h e refore ective m a p ping. so F is an in j ective w s th a t x = 0, so follow follo m ple, still le t t i n g { b k }k = l b e forr e x a mple, em:: fo bije ction F o f em o n t o em F t o a bijection fo r the o r t h o g o n a l bas is for em, let { ¢ k } k = n + l be a b a sis for t he c a nonica l basis
¢k> k = n t of R p in em a nd e x t e n d F by t he d e f initio n F b k : = ¢k> c o m p l e m e nt fi rst n h ose first i x , w hose for P is a n m x m m a t r ix 2, ... , m . T h e ma t rix for n + 1, n + 2, F: fr o m F: colum n s a r e t he colum ns fro
of th e ro ws eq uals s s p a n em. T he r a nk of Since P is Since is surjec tive, t he c o l u m n s s m, a nd t he y a r e als o th e ro w s in P sp a n em, , so als t he r an k o f th e c o l u m n s , bas is for em. st i t u t e a basis s, t h e y c o n st . T h u s, n d e n t . line arly in d e p e nd {bk}}k'= 1 still n d A a n d {bk frame b o u nd for en w i t h frame r a m e for I f {fk {f k }k'= 1 is a t i g h t f ra s hows t h a t 1 .1.4 shows i t i o n 1.1.4 P r o p o s it basi s for d e n o t e s t h e c a nonica l basis
en,
A b 'j,l, j , l = l , ... , n . f o r T T * , so this in th e m at r i x r e p r e s e n t a t i o n fo t , bj) is t h e j , l -th e n t r y in ( T T * b ' t, ( 1.15) for in the m at r ix r e p r e s e n t a t i o n (1.15) sho w s t h a t t h e n ro ws in c a l culati on show we vectors in em. B y a d d i n g m - n rows we as vectors co nsider ed as t h o g o n al, consider T a r e o r th
1.3 Frames in C"
17
can extend the matrix for T to an m x m matrix in which the rows are orthogonal. Therefore the columns columns are orthogonal. 0 Geometrically, Theorem 1.3.2 means that if Udr=l is a frame for C", there exist vectors {hk}r=l in em-n such that the columns in the matrix
(1.16)
+) m
I
constitute a basis for em. For a given m x n matrix A the following proposition gives a condition for the rows constituting a frame for C". Proposition 1.3.3 For an m x n matrix
Au A= (
A ~ the following are equivalent: (i) There There exists a constant cons tant A
>0
such that
n
A L ickl 2
IIA{ck}k'=III 2
k=l
,
'v'{ck}k=l
EC" ·
(ii) The The columns columns in A constitute a basis for their span in
em.
(iii} The rows rows in A constitute a frame for C".
Denote the columns in A by g 1 , . . . , gn; they are vectors in By definition, (i) means that for all {ck}k=l E C", Proof.
em.
(1.17) which is equivalent to {gk}k=l being a basis for its span in em (use an argument such as in the proof of Proposition 1.1.2). On the other hand, denoting the rows in A by ft, ... .. . , fm, (i) can also be written as n
A L
i c k i k=l
n
~
k=l
0
which is equivalent t o (iii).
18 18
ct S p a ces Product Innerr Produ ona l Inne t e - d i m e n s i onal in F i ni te 1. 1. F r a m es in
.3 .3 , c o n s ider t h e m a trix A s a n i l l u s tr a t i o n o f P r o p o s itio n 1 .3.3
A=o n,
i t is cle a r t h a t th e ro w s (
) , (
) , (
forr ( (/l. ) c on st i tu t e a f r am e fo
T h e c o l u m n s (
~
)
""is foe t h e i c s pa n in C ', b u t o ns t it u te a b""is
, (
)
io n a l s u b s p a c e o f C3 . i m e n s io the sp a n is o n l y a tw o - d im e of the p r o o f o f P r o p o s i t i o n 1.3.3 w e h a v e As a n i m m e d i a t e c o nseq u e n c e t he fo l lo w in g u s e f u l f a c t: lary 1 3 4 Le t A be a n m x n C o r o l lary 9 1 , . . . , g n a n d the r o w s b y
co n st i tu t e a f r a m e f o r
en en
m atrix .
note t h e D e note
rs { f k } b 1 0 , the v e c t o rs w i t h b ound s A, B i f an d o n l y i f
h , . .. , fm ·
G i v e n A , B
>
lc•l', V { . } ~ = '•9•1•11'1' oO B ~ lc•l', '•9
A ~ h i ' oO
c o l u m n s by
E C"
E x a m p l e 1 3 5 C o n s i d e r th e v ecto r s
(
in C 3
.
~
. x . ) . 0
0
)
(
(
0
)
f i ) ( - f i )
(1 .1 8 )
ider th e m a trix C o r r e s p o n d i n g t o t he s e v e c t ors w e c o n s ider 0 0
A =
0
fi
-fi
If I f - I1 f I f 0
0 0
If If
that t he c o lu m n s { g k } ~ T he r e a d e r c a n c h ec k that a ll ha v e l e n g t h
ji.
l a re o r t h o g o n a l in CS
and
T herefore
efinee d r s d efin t h e v e c to rs that 1.3.4 w e c o n clud e that fo r a ll c 1 , c 2 , c 3 E C. B y C or o llar y 1.3.4 for C3 w i t h f ra m e b o un d T h e f r a m e r a m e for titutt e a t i g h t f ra 8 ) co ns titu (1.18 b y (1.1 0 is n o r m aliz e d .
1.4 The discrete Fourier transform
19
For later use we state a special case of Corollary 1.3.4 (Exercise 1.8): Corollary 1.3.6 Let
equivalent: {i) A* A
= I,
A be an m x n matrix. Then the following are
the n x n identity matrix.
{ii) The column columnss g1 ,
... ,
gn in A constitute an orthonormal system in em.
{iii) The rows It, ... , f m in A constitute a tight frame for bound equal to 1.
1.4
en
with frame
The discrete Fourier transform
When working with frames and bases in en one has to be particularly careful with the meaning of the notation. For example, we have used /k and g k to denote vectors in en, while Ck in general is the k-th COOrdinate of a sequence {ck}r=l E en, i.e., ck is a scalar. In order to avoid confusion we will change the notation slightly in this section. The key to the new notation is the observation that to have a sequence in en is equivalent to having a function f : {1, . . . ,n}-+ C;
the j-th entry in the sequence corresponds to the j-th function value f(j). Our purpose is to consider a special orthonormal basis for en. Given f E en we denote the coordinates of f with respect to the canonical or thonormal basis {8k}r=l by { (j)}j=t· For k = 1, ... , n we define vectors e k E en by ') -
1
ek (J - V n e
21ri(j-l)
k;_-1
, J• -- 1, . . . , n,.
(1.19)
that is
1 e2,.ik;_-• e4,.ik;_-•
The or e m 1.4.1 The
orthonormal basis for
(1.20)
, k = 1 , ... n.
defined by (1.19) constitute an
vectors {ek}k=l
en .
Since {ek}k=l are n vectors in an n-dimensional vector space, it is enough to prove that they constitute an orthonormal system. I t is clear Proof.
20 20
that
1. F r a m es in in Finite - d i m en e n s i o n a l In n e r Prod Product uct S p aces
lllle ekll
= 1 for al alll k . N ow, g iven k =f.£ =f.£,,
(e k , ee ) = -1 L n n
e
. . k-l 2 rrt(J-1 )n
e
.
.
t
l
-2 rrt(J-1 )n
j=1
U si n g th e f o r m ula ( 1 - x )(1
+ x + · · · + x n - 1 )
1
=- n
1
··
k- t
e 2 1 r t )n -
.
j=O
= 1 - xn w i t h x = e 2
i k ; ; - t
we g e t 0
T h e b a s i s { ek ek}k= }k= 1 is c a l le d t h e d i s c r e t e F o u r i e r tran transform sform b a si s . Usin Using g this basis basis,, ever every y s e qu e nce f E en h a s a r e pr e s e n t a tion
W r i t t e n o u t i n co ordin ordinaa tes, t h i s m e ans that
f (j)
=
n
t t
f ( £ ) e - 2 r r i ( l - 1 ) k; k;;;-
1 e 2 r r i ( j - 1 ) k;;: 1
k = 1 l= 1
t t
f ( £ )e2r )e2rrr i( j-l)
k ;;:l
j = 1, . . . , n.
k =1 l=1
A p p lica licatt i o n s o f te n as a s k for for ti g h t fr a m e s beca u s e th e c u m b e rs om o m e inve inv e rsio rsion n o f th e fr a me opera operator tor is a void voidee d in th is case ca se , see see ( 1. 9) . I t is is i n t e r es e s ting that
o v e r c o m p l ete ti t i g h t f ra mes c a n b e o b t a i n e d i n en en b y pro j e c tin g t h e d iscre t e F o u rier t r a n s f o r m b a sis in i n a ny e m , m > n , onto en en::
P r o p o s itio ition n 1 4 2 Let m
> n
en by
a n d d e f i n e th e v ec t o r s {f {fk k } k'= 1 i n
k
T he n {
} ~
to on e , an d
= 1 ,2 , . . . , m .
i s a t i gh t o ve r c o m p l e t e f r a m e f o r
llfkllll llfk
~ f o r a ll k.
en
w i t h f ra m e b o u n d e q u a l
m sform r i e r tr a n sfor scretee F o u ri 1.4 1. 4 T he d i scret
for onicaa l b a si s for j} j = 1 b e the c a n onic P r o o f L e t {8 or em i.e., f o r m b as is f or iscree t e F o u r ier t r a n s fo d iscr
;tl (k;;;tl e 2 , . i ( n - 1 ) (k;;
en, en,
21 21
k} k=l b e the a n d l e t { ek}
e 2 , .i(m - 1 ) (k;;;Il
I d e n tify i n g en w i t h a s u bs p a c e o off em em,, t h e o rt h o g o n a l p ro j e c t i o n o f e k o n t o 0 1.9. ercise se 1.9. follow s f ro m E x erci w t h e r e su l t follow now en is Pek = /k; no noticc e t h a t all t he v e c to r s fk in P r o p o s i t i o n 1 . 4.2 h a v e t o noti mportt ant to I t is i mpor erefo o r e n o r m a li z e t he m w h il e k e e p in g t he s a m e n o r m . I f n e e d e d , w e c a n t h eref ngly.. ccord d i ngly a t i g h t f r a m e ; w e o n ly h av e t o a d j u s t t h e f r a m e b o u n d accor n, C o r ol la r y 1 4 3 F o r a n y m vector s . g o f m n o r m a lize d vector c o n sistin s istin g
th ere
e xists
a tigh t fra m e
in
en
ists o f t h e scrett e F o ur i e r t r a nsfo r m b asi s i n C4 c o n s ists E x a m ple 1 4 4 Th e d i scre ctorss v e ctor 1
1
2 (
1)
1
,2
i ( 1 )
~
, 1
-1
1
~ 1
, 2
( 1 )
-i ( 1 )
~ 1
ectorr s 1.4.2, 2, t h e vecto V i a P r o p o s itio n 1.4.
0
c o n s t i t u t e a t i g h t fram e in ((/l.
asis is is t h a t lete fr a m e c o m p a r e d to a basis O n e a d v a n t a g e o f an o v e rcom p lete t h e fram e p ro p e r t y m i g h t b e k e p t i f a an n e l e m e n t is is re m o v e d . H o w ev er, e v e n for ainin n g s et is n o lo n g e r a fr a m e , for fo r fr a m e s it c a n h a p p e n t h a t the r e m aini le g o nal t o t h e rest o f t he f r a m e ele e x a m p l e i f th e r e m o ved e l e m e n t is o r t h o go m e n ts. U n f o r t u nate l y t h is c a n b e th e c ase n o m a t t er h ow l ar g e th e n u m b e r is I f w e h a v e e., no n o m a t t e r ho w r e d u n d a n t t h e f ra m e is is, i. i.e., o f f r a m e e l e m e n t s is, fr a m e b o u n d a n d t h e n o r m o f the f r a m e e l e m e n t s lo w er fra inforr m atio n o n the low info re m o ve : how w m a n y el e m e n t s w e c a n ( at l e a s t) rem forr ho riterii o n fo w e c a n p r ov i d e a criter er ositio o n 1 4 5 L et { h } k = l be a n o r m a lize d fra m e for e n with lo w er Prop ositi III < A , {1, . . . , m } w ith III e x s e t I C {1, f o r a n y i n d ex nd A > 1. T h en, fo f r a m e b o u nd I. IJI. d A - IJ en w ith lo w e r b o u n d fr a m e fo r en i s a fra ly { f k } k ~ t h e f a m i ly
22 P roof .
1. F r a m e s in Finite-di Finite-di m e n s i o n a l I nn e r Product S paces
G i ven
f
E C",
kEf
kEf
Thus
krf_ff krf_
IU, hW
~
A
-111)1 -111)111 11 2 ·
D
T h e o r e m 1.2.1 show show s that i f { f k } ~ then is a t i g h t n o r m alized fram e , then app l i es if II IIII < I[t. C o n s i dering an a rb itrary f r a m e P r o p o s i t i o n 1.4.5 appl one ca n h o p e t o remove Udk"= 1 for C " , th e m a x i m a l n u m b e r o f e llee ments one ove w h i le keeping t he f r a m e p r o p e r t y i s m - n . I f w e w a n t t o be a b l e to r e m ov is a nor m - n a rb i t ra ry e l e ments it is n o t e n o u g h to a s s u m e that { f k } ~ n this . 3 .5 ; iin frame,, a s d e m o n s t r ate d by th e frame in E x a m p l e 1 .3 malized tight frame (1.18 ) d o no t co n stitute vecto r s in (1.18) th e t h r e e first vecto e x a m p l e m - n = 2, but the e m oval of v e c tors, the a fram e for C 3 . C o ncerning t he stability a g a i n s t r em itrary e l e m e n t s well:: m - n ar b itrary 1.4.2 4.2 b e h a v e well o s i tion 1. f r a m e s o b t a i n e d i n P r o p os e m o ved: c a n b e r em 6 C o n s i d e r the fra m e { f k } ~ o n 1.4. 1.4.6 P r opositi opositio
for C " d e fine d i n P r o p o
l e a s t n elem elemen en ts o f this f r a m e fo r m s sitio n 1 . 4.2. A n y s u b s e t c o n t a i n i n g a t le sition a f r a m e for C .
Proof. C o nsider an a rbitrary s u b s et { k 1 , k 2 , . . . , kn}
1. Then there 0 and orthonormal bases {uk}k=l for R E and
{vk}k= 1 for RE· such that (1.24) Proof. Observe that E* E is a self-adjoint n x n matrix; by Theorem A.2.1 this implies that there exists an orthonormal basis {vk}k=l for en consisting of eigenvectors for E* E. Let {Ak}k=l denote the corresponding eigenvalues. Note that for each k, >.k
The rank of
= >..kllvkll 2 = (E*Evk,vk) = IIEvkW
0.
E is given by r = dimRE = dimRE·;
since n ~
= NE·, we have R E · = RE· E = span{E* Evk}k=l = span{..\kvk}k=l·
(1.25)
Thus, the rank is equal t o the numb er of non-ze non-zero ro ei eigenv genvalu alues, es, cou counted nted with multiplicity. We can assume that the eigenvectors {vk} k=l are ordered such that {vk}k=l corresponds t o the non-zero eigenvalues. Then (1.25) shows that {vk}k=l is a n orthonormal basis for RE·. Note that f o r k > r, we have
IIEvkll 2 = (E*Evk,vk) = 0, i.e.,
Evk = 0, k > r.
(1.26)
Defining Uk : =
1
~ E v k
v >.k
k = 1, . . . ,r,
we therefore obtain that {uk}k=l spans R E i and it is a n orthonormal basis for R E because for all k, l = 1, . . . , r we have
26
1.
F r a m e s in Fin Fin i t e - d i m e n s i o n a l In ner P roduct S p a c es es
T h us, t h e c o n d itio n s in L emma 1.5. 1.5.3 3 are fulfille d with ak =
v->::,, k = v->::
1, ... ,r.
0
L e mma 1.5.3 le a d s to th the e singular va value lue decompo decomp o sition of E :
T h eorem eorem 1 5 4 E v e r y m d e c o mp os o s ition
x n
matrix E
with
rank
r
>
1
has
a
E -u -u((D
o ) v · , 0
0
( 1.27)
where U i s a u n i t a r y m x m ma t r i x , V is a unita r y n x n m a t r i x , a n d
(
~
)
is an m x n block m a t r i x i n w hich D is is an r x r d iagonal
matrix w ith positive positive e n t r i e s a 1 ,
...
,
a r in th thee diagonal.
Proof W e u s e the p r oof of Lemm Lemma a 1.5.3. L et { vdr= vdr=ll be the o rt h o n ormal b a s i s f or o r en c o n s i d e r e d t h e r e , or dered s u c h t h a t { v k}k= k}k=ll is a n o rthonormal rtho normal b a s is f o r R E · . Let V b e t h e n x n matrix h a v i n g the v e c t o r s {v {vdr= dr=ll a s c o l u m n s . Extend Extend the the orthon orthono o rmal b a s is i s {uk}J.:= 1 f o r RE to an o an orthonorm rthonorma al b a s is { } ~ for em a n d le t U be t h e m X m m a trix h a v i n g these v e c t o r s a s c o l u m n s . F i n a l l y , le t D b e t h e r x r d i a g o n a l m a t rix h aving aving a1, . . . , G'r in t h e d i a g o n a l. Via ( 1.24) and ( 1 .26),
EV
= ( a1 u1
arur
u ( ~ ~
0
0 )
. 0
M u l t i p l y i n g with V* f r o m t h e r ig h t g ive iv e s t h e r e s u lt lt.
The n um b ers a 1 , . . . , G ' r ar e c a l l e d singular values fo r E ; t h e pr o o f of Lemma 1 . 5 . 3 s h o w s t h a t t h e y are t he square ro ots o f the p o s itiv e e ig e n v a lu e s Lemma
fo r E * E. C o rollary 1 5 5 With the th e n o t a t i o n i n T h e o r e m 1.5.4, the p s e u d o - i n v er erse o f E is given by by
E t-
w here (
~
)
ma tr i x having having 1 / a 1 ,
v ( n-1 0
o ) u· ,
(1.28)
is is an n x m b lock matri matrix x in which ...
,
n- 1
is the r x r
1 /ar in the diagonal. d iagonal.
u e d e co m p o s i t i on valu l a r val -inverr s e s an d the s i n g u la 1.5 P seud o -inve
Proof
27
sfiess t h e .28) s a ti sfie ined by (1 .28) W e c h e ck t hat the m a t r i x E t d e f ined
.27),, s t , via (1 .27) l(ii).. F i r st r e q u irem e nts i n P r o p osit i o n 1 . 5 . l(ii)
=
U ( U (
~
~ I
V*V (
0) U* ,
n-1 n-1 0
0 0
jointt is elf-aa d join oint.. Th e p r o o f t h a t E t E is s elflf-ad d j oint is se self-a w h ic h sh o w s t h a t E E t is or E E t , presss i o n for s i m i l a r . F u r t h e r m o r e , u s i n g t h e d e ri v e d e x pres
EEt E
=
U (
=
E .
) U *U (
~
) V*
0
that E t E E t = Et. erify y that S im il a rl y , o n e c a n verif
en w i t h pr e or en } ~ is a f r a m e f or us re t urn t o the s e tting w h e r e { L e t us fficien en ts Th e c a l c u l a t i o n o f t h e f r a m e c o e ffici f r a m e o p e r a t o r T : em -+ a m o u n t s to fi n d in g r t :
en.. en
'= 1 be a f r a m e for {fk}k }k'= T heor e m 1 5 6 L e t {fk T a n d f r a m e o p er a t o r S . Th en
en,
w i t h p r e- f r a m e o p e r a t o r
(1.29) (1.2 9)
en.
E x p r e s s e d in te r m s o f th e p r e - f r a m e o pe r at or T , t h e Proof L e t f E followss esultt n ow follow = f . Th e r esul ~ c kfk m e a n s t h a t { k } ~ e q u a t i o n f = 0 1.5.2.. .5 a n d T he o r e m 1.5.2 .1.5 b y co m b i n in g T h e o r e m 1 .1 6 is t hat w h en {fk}k'= 1 is a fr a m e for 1.5. 5.6 i o n o f T h e o r e m 1. O n e i n t e r p r e t a t io e off t h e is o b t a i n e d by p l a c in g the c o m p le x c o n j u g a t e o or r t is t he m a trix f or in the c a n o n i c a l d u a l f r am e { S - 1 f d k '= 1 a s r ow s i n a n m x n m a t r i x : v e c to rs in
en,
1
11-ll .
-S - 1 S - fz-
rt
=
( - S - 1 f m -
.29 9) m e a n s t h a t (1.2 I n o p e r a t o r t e r m s , (1
r t = T * ( T T*)- 1 , o-inv v e rse o f a n pseud d o-in or t h e pseu eneraa l l y for a form u l a t h a t is k n o w n to h old g ener jectii v e o p e r a t o r T . rary s u r ject arbitrary arbit co effi ob t ain coeffi ay to obt aturall w ay giv ves es a n atura sitio o n gi Th e s i n g u l a r v a l u e d e c o m p o siti verco o m p le te '= 1 b e a n o verc {fk}k }k'= 2:::;;= ::;;= 1 c kfk· L e t {fk }k'= 1 s u c h t hat f = 2: {ck}k'= c i e n t s {ck
28 28
ces ite-dii m e n s i o na l I n n e r Pr oduct S pa ce 1. F r a m e s in Fi n ite-d
en.. en
is s u r j e c t i ve, i t s r a n k e qu a l s n , and ince T is en a nd l e t f E S ince fo r en f r a m e for ositii o n o f T is singu u lar v a lue d e c o m p osit th e sing T = U ( D
0 ) V * .
is now a n n x m m a trix ; N o t e th a t s in c e T i s a n n x m m a t r ix, ( D 0 ) is is an m x m m atrix . G iv e n a ny ( m - n ) x n i x , a n d V is U is a n n x n m a t r ix m at r ix F, we h a v e
TV ( D ;
1
)
U * f
=
U ( D
0 ) V*V ( D ;
1
)
U* f
U IU*f
= f.
ents effici cients usee t he co effi T h i s m e a n s t h a t we c a n us
oice .1.5 the ch oice for fo r th e reco n s t r u c t i o n o f f . A s n o t e d a lr e a d y in T h e o r e m 1.1.5 ents is effici ci ents sensee t h a t th e e2 - n o r m of the co effi F = 0 is o p t i m a l i n th e sens eferaa b le. The ices m i g h t b e p r efer r pu r p o s e s o t h e r c ho ices imizee d , b ut for o t h e r m in imiz m a t rix
~ t ) U *
v
d i n v er erse ofT . lized is is f r eq u e n t l y c a lle d a g e n e r a lize
1 .6
F i n ite- d i m e n s i o n a l f u n c t i o n s pa c e s
ite-dim im e n s io n a l vecto r fram am e s in i n fin ite-d d e a l w i t h fr Th e r e s t o f t h e b o o k w ill de lik e L 2 ( - 1 T , 1r) a n d ction n s p a c e s like tionss in f u n ctio nstru u c tion aces,, with conc r e t e c o nstr s p aces fo r the m o m e n t 2, a n d for iven in C h a p t e r 2, ition n will b e g iven L 2 (1 (1R); R); t h e i r e x a c t d e f in itio or w hic h siderr L 2 ( I), ~ lR s im p l y as t h e s et o f f u n c ti o n s for we c o n side
~ l f ( x ) j 2 dx < oo. porta a nt to to noti noticc e th a t in e v ery re al-l al-lif if e a pp l icat icatii o n w h e r e t h ese I t is i m port fine to f i n i t e - d i m e n s i o n a l s p a c e s a p p e a r , o n e will a t s o m e poin t h a v e to co n fine we c o n c lu d e t h i s c h a p ter w i t h a sh o r t d e s c r i p tion s u b s p a c es. F o r t h i s r e as o n we spacee s . ction n spac fu n ctio of fra fr a m e s in f i ni te -dim e nsio n al fun G i v e n a, b E lR w i t h a < b, l e t C [ a, b] d e note the s e t o f c o n t i n u o u s nctio o n s f : [a, b] --t C. W e e q uip C[a, b] w i t h the s u p r e m u m s - n o r m , f u ncti
oo = s u p llfll llflloo
x E [a,b]
f(x)ii . i f(x)
ation n T h e o r e m sa y s t h a t e v e r y f E C [ a, b] c a n roxim m atio Th e W e i e r s t r a s s ' Ap p roxi b e a p p r o x i m a t e d a r bitr a r i l y w ell b y a p o ly n o m ia l:
1.6 Finite-dimensional function spaces T heorem 1.6.1 Let f E
P(x) = L ~
O
C(a, b]. Given
f
ckxk such that
II/- Plloo
>
29
0, there exists a polynomial
~ f
I t is essential for the conclusion that [a, b] is a finite and closed interval (Exercise 1.12). Also, we note that the order of the approximating poly nomial depends as well on the chosen f as the given function f and the
interval [a, b]. The polynomials {l,x,x 2 , . . . }
=
x k } ~
are linearly independent and
do spanspace a finite-dimensional subspace of C[a, b]. But for a given n EN, vector thenot
v : = span{1, x, . . . 'xn} is a finite-dimensional subspace of C[a, b] with the polynomials { xk}k=O as basis. norm m I f we equip V with the 11·11 0 0 -norm, we do not have the benefit of a nor arising from a n inner product. But all norms on a finite-dimensional vector space are equivalent (see page 13), and V can also be equipped with the norm
11 11 =
(
) 1/2
b
11f(xWdx
arising from the inner product (1.30)
( , g ) = 1 b f(x)g(x)dx.
Via the Gram-Schmidt orthogonalization procedure one can construct a n orthonorm orth onormal al basis fo forr (V, 11·11) (Exercise 1.14). In classical Fourier analysis one expands functions in £ 2 (0, 1) in terms of the complex exponential functions { e2 1rikx h E Z · In Chapter 7 we will obtain more general results with {e 2 1rikx hez replaced by { ei>.kx hez for some real sequence {Ak} kEZ satisfying certain density conditions. Let us for the mome moment nt consider a finite colle collection ction of exponential expone ntial functions {ei>.kx} k=l, where {Ak}k=l is a sequence of real numbers. Unless {Ak}k=l contains repetitions, such a family of exponentials is always linearly independent: L emma 1.6.2 Let {Ak}k=l be a sequence o f real numbers, and assume that .Xk =f. Aj for k =f. j . Let I lR be an arbitrary non-empty interval, and consider the complex exponentials {ei>.kx} k=l as functions on I . Then the
functions {ei>.kx}k=l are linearly independent.
I t is enough to prove that the functions { ei>.kx h E Z are linearly independent as functions on any bounded interval]a, b[, where a, b E IR, Proof.
30
a
< b.
1. Frames in Finite-dimensional Inner Product Spaces
Assume that for some coefficients {ck}
=
L ckei>.kx = 0, Vx E]a, b[. n
k=1
When x runs through the interval ] a2b, b;a [, the variable x + through ]a, b[; i t follows that '
n
k=1
' c k e i > . k ( x + ~ )
=0, V E ]a -b b - a [ X
2
'
2
.
runs
~ d k e
·>.
kx
= 0,
k=1
a -b b-a Vx E ] 2 - , - 2- [ .
By differentiating differentiating this equation j times, j . .. dk(i>-.k)Je' kx k=1
Putting x
= 0,
= 0, 1, · · · , we
a-b b-a
Vx E ] 2- - , - - [ , j 2
obtain that
= 0, 1, · · · .
= 0 and writing the corresponding equations for j = 0, ... , n - 1
as a matrix equation gives
)..n-1 2
)..n-1 n
The system matrix is a Vandermonde matrix with determinant n
ll=
II
> - . k - A j ) ~ O ;
k,j=1,k#j
therefore d1 = Thus {ei>.kx} =
d2
= · · · = d n = 0, which implies that c1 = · · · = are linearly independent. independ ent.
Cn
= 0. D
In words, Lemma 1.6.2 means that complex exponentials do not give A j for natural examples of frames in finite-dimensional spaces: if Ak ~
k ~ j , then the complex exponentials { e i > . k x } ~ = form a basis for their span in L 2 (I) for any interval I of finite length, and not an overcomplete system. W e can not n ot obtain overcom overcomplet pletenes enesss by adding extra exponentials (except by repeating repeat ing som somee of th thee >-.-values) - this will just enlarge the space. In Exercise 1.15 the similar problem for sines and cosines is considered.
1.6 Finite-dimensional function spaces
As an important special case we now consider the case where >..k A function f which is a finite linear combination of the type N2
f(x)
=L
c k e 21rikx
for some
Ck
E C, Nl> N2 E Z , N2?: N1
31
= 2rrk. (1.31)
k=N1
is called a trigonometric poly polynomi nomial. al. Trigonomet Trigonometric ric polynomials correspond correspon d to partial sums in Fourier series, a topic to which we return in Section 3. 7. A trigonometric polynomial f can also be written as a linear combination of functions sin(2rrkx), cos(2rrkx), in general with complex coefficients. I t that if f is real-valued and the coefficients Ck in will beare useful (1.31) real,later thentof note is a linear combination offunc of functio tions ns cos(2rrkx cos(2rrkx)) alone: alone:
L emma 1.6.3 Assume that the trigonometric polynomial f i n
real-valued and that the coefficients f(x)
Ck
E It Then
N2
=
L
Ck
cos(2rrkx).
(1.31) is
(1.32)
k=N1
W e le leav avee the short proof to the reader. Note that we need the assumption that Ck E JR: for example, the function f(x)
= 21i e n. x -
1 . i e n x 2
= sin(x),
is real-valued, but does not have the form (1.31). Again for later use we mention that a positive-valued positive-valued trigonometric trigonome tric poly poly nomial has a square root (in the sense of (1.35) below), which is again a trigonometric trigonome tric polynomia polynomial: l: L emma 1.6.4 Let f be a positive-valued trigonometric polynomial o f the form N
f(x)
= L Ck cos(2rrkx),
Ck
E JR.
(1.33)
E JR,
(1.34)
k=O
Then there exists a trigonometric polynomial N
g(x)
= L d k e 21rikx
with
dk
k=O
such that
lg(xW
= f(x),
(1.35)
Vx E JR.
A constructive proof can be found in (106]. Note that by definition, the function g in (1.34) is complex-valued, unless f is constant; that the com plex terms in g do not cancel follows from Exercise 1.15. Actually, despite
32
1. Frames in Finite-dimensional Inner Product Spaces
the fact that
f
is assumed t o be positive, there might not exist a positive trigonometric polynomial g satisfying (1.35). The complex exponentials do not belong t o L 2 (IR), but by multiplying them with a function g E L 2 (JR) we obtain a class of functions in L 2 (1R). In Chapters 8-10 we will work with systems offunctions in L 2 (1R) of the form {EmbTna9}m,nEZ : = {e 2 11'imbxg(x-
na)}m,nEZi
here g is a given function in L 2 (JR), and the parameters a, bare positive real numbers. number s. Such a family of functions is called a Gabor system. I t was proved by Linnell (214] in 1997 that if g ::1 0, then an arbitrary finite subfamily 2
2
{e 11'imbxg(x-na)}(m,n)EF• :F Z , is linearly independent. At the moment it is not known what happenscif we replace the numbers {(na, mb)}m,nEZ
by arbitrary distinct points in JR2 • To be more precise, Heil, Ramanathan and Topiwala [170] formulated the following conjecture in 1995: Conjecture: Given any finite collection of distinct points {(JLk, Ak)}keF in IR2 and a function g ::j; 0, the Gabor system { e 2 ,.i>.kx g(x - JLk) he.r is
linearly independent.
Considerable effort has been invested in the conjecture, but it is still open. W e return t o this conjecture in its right context on page 229. Also, in Section 10.3 we will construct frames in en having the Gabor-structure. Wavelets is another important class of functions in L 2 (1R); we consider of them detail in Chapters 11-14. A wavelet system consists functions of the in form
'l/Jj,k(x) = 2 j / 2 '1j;(2jx- k), j , k E Z ,
where 'ljJ E L 2 (IR) is a given function. Linearly dependent wavelet systems exist. For example, by letting 'ljJ : = X(o,l(• one has 'l/Jo,o
=
1 J2('l/J1,o
+ l/J1,I).
I f a finite wavelet system, { l / J j , k } I J J , I k i ~ N for some N E N, happens to be linearly independent, one could ask for the minimal number m N of independent sets i t can be split into. One could expect m N t o grow with N; however, in case 'ljJ has compact support and l'l/JI > 0 on some interval of positive length, it is proved in (83] that one can find a number m E N such that { l / J j , k } l j l , l k i ~ N can be split into m linearly independent sets, regardless r egardless of how large N is. I t is not known whether the result holds if 'ljJ is not assumed to have compact support.
1. 7 1.1
Exercises Show that every frame {h}f=1 for a finite-dimensional vector space V contains a subset which is a basis for V.
1. 7 E xercises xercises
33
1 2 C an a f r am e e in a finite-d finite- d imensiona imensionall s pace conta cont a in infinitely infinitel y m a n y
elements? 1.3 L e t {f kh E I b e a frame for for a finite-di finite-di m ensional v ector space space V and as s um e that llh ll h ll is bounded below. Prov e that I is f inite. (w.l.o (w.l. o .g. you m ay as s um e e that V = lRn lRn a n d that 11/k 11/kllll = 1, V k; expl ai n why if if you w ant to use this fac fa c t ) 1 . 4 C o n s truct a fram fra m e { f k } for Cl for w hich there exists f E C l s u c h t h a t the c oefficients { dk}r=l in T h e o r e m 1.1 1 .1 .7 are not u nique. 1 . 5 L et { e1, e2} b e the c a n o nical ortho n or m a l ba bass is for
Cl
an d consider
the f r a m e {fk}L 1 = { e1, e1, e2, e2, e1 + e2}.
(i) F ind the c o e fficients w i t h m i ni m al al €2 - n o r m a m ong all seq sequ u ences { c k } ~ = l
for which e1 = L ~ l
c kf k ·
(ii) (i i) F i n d the c oefficients { ci 1 ) H = 1 a n d { c i2 ) H = 1 w hich minim mini m ize the €1 -norm in t he r epr es e n t at i on of e 1 a n d e 2 , re s pectively. (iii) (i ii) Clearly Clearly,, e1 + e 2 = ~ + c i2 ))fki bu t is { c i1 ) + c i2 ) H = 1 m inimizing t he €1 - nor m among all all sequences r e pr es ent i ng ng e1 + e2? 1 6 Assume t h a t { } ~ is a frame fo forr en. P r ove ov e that that the 2 m vect or orss consisting consistin g o f the r e a l par t s , r esp esp ectively t h e i m agi nar y pa rts, o f t he frame v ectors con s titute a fram fra m e for JRn. 1
Show t h a t a frame ffo o r lRn is als also o a frame fo forr en en..
1 . 8 P r ove C or ol la l a ry 1.3.6. 1 9 L et {
b e a frame for V w i t h bou n d s A, B an d let P d e n ot e the orth o gonal pr o j e ction of V ont o a s ub s pace W. P r o v e t h a t { P k } r= l is a frame for W with fram fra m e b o u n d s A , B. } ~
1 1 0 L e t {fk}r=l b e a normali normalizz ed t i ght f ra r a me. Prove t hat the f r a m e b o u n d A is a t leas t 1, a n d that that A = 1 if an d only if { fk}r=l is a n o r t h o n o r m a l basis. 1 11 L e t {fk}r= l be a frame frame for ann-di m e n s i o n a l v ector space space V , and let B d e n o t e t he opt im i m a l u p p e r b o und. P r ove ov e that that m
B ~
L
k=l
llfkll 2
~ nB.
34
in F i ni te t e - d i m en e n sion a l I n n er er Produ Product ct S p aces 1. 1. F r a m es in
cl o se d and b o u n d e d i n te r val ils if i f t h e clo fails 1 1 2 P r o v e t h a t T h e o r e m 1.6.1 fa nterv v a l o r an u n b o u n d e d i n t e r v a l. b] is is r e p l a c e d by a n o p e n inter [a, b]
1, x , . . . , x n } a r e 1 1 3 P r o v e t h a t for a n y n E N, t h e p o ly n o m i a l s { 1, li n e a rly i n d e p e n d e n t in C (O, 1) . as f un c t i o n s o n th e i n t e r v a l 1 1 4 C o n s i der the p o l y n o m i als { 1, x , x 2 } as [0, 1], 1], a n d l e t V = s p a n { 1 , x , x 2 } . E q u i p V w i t h th e i n n e r p r o d u c t fo r V . fi n d a n o r t h o n o r m a l b a s i s for .30) and fin (1 .30) 1 1 5 L e t { A k} k}k k =l b e a sequ sequee n c e o f r e al n u m b e rs.
x} k= 1 a r e l i ne a rly i n d e p e n d e n t i n C ( - 1 , 1) if ( ) P r o v e t h a t {c o s Ak x}
forr k =f j . l-\k I =f l-\j l-\j I fo a n d o n l y if l-\k if e p e n d e n t in C( - 1 , 1) if early y i n d ep n-\kx x } k = l ar e l i n earl (ii) P r o v e th a t { s i n-\k l-\jll f o r k = f j . l-\kll =f l-\j n-zerr o an d l-\k if all Ak a r e n o n-ze and o n ly if
k} k =l, {Jlk Jlk}} k = l a r e the (iii) iii ) U n d e r w h ich c o n d i t i o n s o n s e qu e n c e s { Ak} ction ns f u n ctio os-\k k x } k = l U { s i n { c os-\
k X } ~
early y inde p e n d e n t in C ( - 1 , 1 )? l i n earl (iv) (i v) R e plac placee th e inte interr val] val]-- 1 , 1[ b y a n a r b i t r a r y n on - e m p t y i n t e r v a l (iii).. (i),(i (i i ) a n d (iii) ralizee (i), a n d g en e raliz tive t ri g o n o m e t r i c p o l y n o m i a l f ( x ) = 1 + c o s ( x). 1 1 6 C o n s i der the p o s i tive ials F i nd b y d ir e c t c a l c u l a t i o n a ll trig o n o m e t r i c p o l y n o m ials
g ( x ) = d o + d 1 eix, d o , d 1 E for w h ich lg (x)l 2 = f ( x ) .
2 I n f in ite - d im e n s io n a l V e c to r S p a c e s a n d Se q u e n c e s
A f ter t h e i n t r o d u c t i o n t o f r a m e s in f ini in i t e-di e-dim m ensi ensio o n a l v e c t o r r sp a c e s i n C h apte apterr 1, t h e r e s t o f th e b o o k will d eal w ith e x p a n s i o n s in in inf in f i nite d i m e n s i o n a l v ecto r spac spacee s . H e r e g r e a t c a r e is n e e d e d : we n e e d t o r e p l a c e finite fini te s e q u e n c e s {fk}k {fk}k== ==ll b y infi infin n i te s e q uenc uencee s {fk}); {f k});"== "== 1 , an d s u d d e n l y t he q u e s t i o n o f c o n v e rgen rgencc e p r o p e r t i e s b ec o m e s a c e n t ral is sue. sue. T he v ecto r s p a c e itsel itsel f m ig h t a l s o c a us e p r ob l e m s , e.g. e.g.,, i n th e s e n s e that C a u c h y s e q u e n ces m i g h t n o t be c o n v e r g e n t . W e e x p e c t th e r e a d e r to have have a b a s i c k n o w le d g e a b o u t t h e s e p r o blem s and th e w a y t o circ u m v e n t t h e m , b u t f or c o m p l e t e ness ness w e r e p e a t th e c e n tral t h e m e s in S e c tion tionss 2. 1-2 1- 2 . 2 . I n S e c t i o n s 2 . 3 - 2 . 5 w e d i s c uss t h e H i l b e r t sp a c e e L 2 (IR (IR)) c o n s i stin g o f t he s q u a r e i n t e g r a b l e f u n c t i o n s o n IR an d t h r e e c la sses sses of o p e r a t o rs r s here o n , a s w ell ell a s the F o u r i e r t r a n s f o r m . T h e m a t e r i a l in t h o s e s e c tion tionss is no t n e e d e d fo r th e st ud y o f f frra m e s a nd b ases ases on a bs tract H i l b e r t s p a c e s i n Ch ap t er s 3- 6, b u t
i t f o r m s t h e basi basiss for a ll t h e c o n s t r u ctio n s in in C h a p t e r s 7 - 1 4 .
2.1
S e quen ces
A c e n t r a l t h e m e i n this b o o k k is t o find find co n d i t i o n s on a se q u e n c e {fk} {f k} i n a v e c t o r sp a c e e X s u c h t h a t e v e r y f E X h a s a r e p r e s e n t a t i o n as a s u p e r p o s i tion of the v e c t o r s h . I n m o s t space pacess a p p e a r i n g i n f u n ctio n a l analy anal y s is, th t h i s c a n not b e d on e w it h a fin fin i te seq se q u e n c e { f k } . W e a r e t h e r e f o r e fo rced rced t o w o r k w i t h i n fi n ite se s e q u e n c e s, say, sa y, {fk}j;" {fk}j;"== == 1 , a n d the the r e p r e s e n t a t i o n o f f in t e r m s o f { } ~ w ill b e via an i n f i n ite se ries. ries. Fo r t h i s r e a s o n t h e
36
2. I n f i n i t e - d i m e n s i o n a l V e c t o r S p a c e s and S e q u e n c e s
starting p o i n t m u s t b e a d i scuss scussion ion of conv convergenc ergencee of infinite infinite series. series. We We collect coll ect t h e basi basicc d e finition finitionss here her e t o g e t h e r w i t h s om o m e c onvent onventions. ions. T hr oughout oughout th e sectio section we let X b e a n o r m ed n we ed v e ctor sp ace, w i t h n o r m
d e n o t e d b y 11·11- W e s a y that a sequence seq uence {xdz {xdze' e'= = 1 in X (i) co converg nvergee s t o x E X if
l l x - xkll xkll-+ -+ 0 fork - + oo; (ii) is is a C a u c h y se s e q u e n c e if f or each each
l l x k - x1ll ~
f
> 0 t h e r e exist exist s
N E N s u c h that
w h e never n ever k, l 2: N .
A c o n v ergen ergentt sequence seque nce is auto m a t i c a l l y a a C a uc h y s equen e quence, ce, but th e o p posite is n ot true in g eneral. Th e r e are, howe however, ver, no r m e d v e c t o r spaces spa ces in which whic h a sequen sequence ce is is convergent convergent if and
o n l y if it is is a C a u c h y s e quence; a s p ace X w i t h t hi s property is called a Ba n ach s pace. All spaces spa ces conside red in th i s b o o k a r e Banach s p a ces. Imitatii n g t h e f i n ite-dim ensio nal se tting Imitat tting,, we w a n t to study s e quence quencess { k } ~ in X w i t h t h e property that e a c h f E X h a s a r e p r e s e n ta tation f = ~ c k ] k for som e c o efficien efficients ts Ck Ck E C. I n o r d e r to d o so, we have to explain e x ac t l y what w e m e a n by conver convergenc gencee of an infin ite series, seri es, a nd t here here are, in fact, fact, a t leas t th r e e differ different ent o ptions. ptions. F i r st st , the notat notatii o n { h }ze = 1 i n d icates that w e h a v e chosen cho sen som e o r d e r i n g g o f t h e vect vectors ors h ,
h ' h, h, . .. , h , h + l , . . . . W e say that that a n i n f i n i t e se s e ri e s
~ =
if
c k h is c o n vergent v ergent w i t h h sum f E X
W he n t h i s c o n d i ti t i o n is s atisf atisfied ied we write 00
f = L c k h ·
(2.1)
k=1 k=1
T h u s , th e defin definition ition of a conve convergent rgent infinit in finitee series serie s cor corrr e s p o n d s e x a c t l y to our d e finition finition o f a convergent convergent sequenc sequenc e w ith X n = ckfk· 1. A h ove w e insis insisted ted on a fixed fix ed o rdering o f th e sequ sequence ence { h } I t is very importa import a nt to notic noticee t h a t conv ergenc ergencee p r o p e r t i es e s of ck]k not o n l y d e p e n d s o n the sequenc sequencee { f dze'= 1 and t he co effici efficients ents { ck}ze'= 1 , but also also o n the o rdering rdering.. E v en if } ~ is a s e quence in in t h e s i m p lest possibl possiblee B anach space space,, n a m e l y IR, IR, it ca n ha ppen that that f k is c onverg ent, but that f " ( k ) is d i v erge ergent nt for a a c e rt a i n pe rm u tation a o f the natural natura l n u m b e r s . Th i s o b s e rvatio r vatio n leads leads t o a second secon d d e finition o f converg ence ence.. I f f " ( k ) is c o n v ergen e rgentt for all a ll pe rmutation rmutationss a, we s a y t hat f k is u n c o n d i t i o n a l l y c o n v e rgent. rg ent. I n t h a t case case,, the l i mit is the s a m e r egardle s s o f the o r d e r o f s u m m a t i o n .
2.1 Se q u e n c e s 2.1
37
ie sz b a s e s i t will b e c o m e c l ea r defin n e d f r a m e s a n d R iesz soon as w e h a v e defi A s soon
ergen n t e x pa n s i o n s . F o r onalll y c o nv erge lead t o u n c o n d i t i onal that t h e y a u t o m a t ical l y lead rges convee rges eriess conv iven serie t h i s r e a son w e n e v e r n e e d to p ro v e b y h a nd t h a t a given tailee d a n al y sis o f fo r a m ore d e tail 210]] a n d (260] for unco n ditio n ally . W e re f er t o (210 ol l ow i ng l e m m a . ence and t h e p r o o f o f the f oll feren n t t y pe s o f c o n v e rg ence the d if fere be a se quen que n c e in a Ba n ac h s p a c e X , an d l e t L e m m a 2 1 1 Le t { f k } ~ f E X . Th en th e f ollow i n g a re e q u i v alen t: (ii)
L::%"= 1 f k
c o n v e r g e s u n c o n d i t i o n a l l y to f E X .
{ i i) F o r ev e r y € > 0 t h e r e e x i s t s a f i n i t e set F s u c h t ha t
n i t e s e t s I C N c o n t ai n i n g F . fin f o r all fi
seri ri es infin n i te se F i n a l l y , a n infi
L::::% %: 1 fk is
ol u t ely c o n v e r g e n t if s a i d t o b e a bs olu
00
llfkllll < 0 0 . :L llfk :L
k =1
ence o f A b s o l u t e c o n v e r g ence
:%:: 1 fk fk L: L::%
lies t h a t t h e im p lies
eriess s erie
co n v e rg e s
u n c o ndit nditii o nall nally y ( E x e r c ise 2 . 3), b ut t h e o p p o s ite d o es n o t h o ld i n in fini finite te two o t y p e s o f c o n v e r finite te - d im e n s io n a l s p a c e s t h e tw sionaa l sp ac e s. I n fini d i m e n sion nticaa l . g e n c e ar e i d e ntic f or e a c h X ( c o u n t a b l e o r n o t ) is s a i d to b e d e ns e in X i f fo A su b s e t Z f E X a nd e a c h € > 0 t h e r e e x i s ts g E Z s u c h t h a t
I I - 911
~
€.
this m e a n s t h a t e l e m e n t s i n X c a n b e a p p r o x i m a t e d a r b i t r a r i l y ords,, this I n w ords by ele m e n ts i n Z . w ell by d e n ote the v e c t o r in X we l e t s p n { f k } ~ iven se q u e n c e { f k } ~ F o r a given v e c t ors f k . T h e d e f i n i tion c on s i s t i n g o f all f i ni t e l i n e a r c o m b i n a tion s o f ve s p a c e co rgencc e sh ow s t h a t if e a c h f E X h a s a r e p r e s e n t a t i o n o f t h e t ype o f c o n v e rgen in no r m by a n w e ll in r a r i l y we E X c a n b e a p p r o x i m a t e d a r b i t ra 2.1), then i.e., i.e., n {f f k } ~ p t i n es ach e( 2.1) l e m ,e nthen (2 .2) (2.2) is s a i d t o b e c o m p l e t e o r h a v i n g t h e p r o p e r t y (2.2) se q u e n c e { f k } ~ A seq to t al. W e n o t e that t h e r e e xist n o r m e d s p ac e s w h e re n o s e qu e n c e { f k } ~ is c o m p l e t e . A n o r m e d v e ct o r s p a c e in wh ic h a c ou n t a b l e a nd d e n s e f a m i ly is said t o b e se p a ra b le . e x i s ts is W h e n w e s p e a k a b out a f i n i t e s e q u e n c e , we m e a n a se q u e n c e w h e r e a t entrii e s a r e n o n - z e ro. itely m a n y entr m o s t f in itely
38
2. Infinite-dimensional Vector Spaces and Sequences
2.2 2. 2
Bana Ba nach ch space spacess and Hilbert spaces spaces
All normed vector spaces considered in this book are Banach spaces, and very often convergence of a sequence will be verified by checking that it is a Cauchy sequence. An important class of Banach spaces is the £P-spaces, 1 oo. p L 0 0 ( R) is the space of essentiall essentially y bounded bou nded measurable functions f : IR-+ C, equipped with the supremums-norm. For 1 p < oo, LP(IR) is the space of functions f for which 1/IP is integrable with respect t o the Lebesgue measure: LP(IR) : = { f : IR-+ C I f is measurable and ; _ : lf(x)IPdx
The norm on LP (IR) is
< oo}
.
II/II=
roo ) 1/p ( 1-oo lf(x)IPdx
To be more precise, £P(JR) consists of equivalence classes of functions which are equal almost everywhere, and for which a representative (and hence all) for the equivalence class satisfies the integrability condition. However, we adopt the standard terminology and speak about functions in LP(IR). A vector space X with an inner product (·, ·} can be equipped with the norm
llxll
: = J( x,x}, x EX ,
and Cauchy-Schwarz' inequality states that
l(x,y}l
llxiiiiYII,
Vx,y EX .
W e will always choose the inner product linear in the first entry. A vector space with inner product, which is a Banach space with respect t o the induced norm, is called a Hilbert space. W e reserve the letter 11. for these spaces. The standard examples are the spaces L 2 (1R) and t 2 (N) discussed in the next section.
L 2 (IR) is defined as the space of complex-valued functions, defined on lR, which are square integrable with respect to Lebesgue measure: L 2 (1R) : = { f : 1R-+ C I f is measurable and / _ : lf(xWdx
< oo}.
L 2 (1R) is a Hilbert space with respect t o the inner product
( ,g)=/_: f(x)g(x)dx,
J,g E
L 2 (1R).
The spaces L 2 (0), where 0 is a n open subset of 1R are defined similarly. According t o the general definition, a sequence of functions {9k} : , 1 in L 2 (0) converges t o g E L 2 (0) if
119- 9kll
=
(
In
~
lg( x) - 9k(xWdx
~
0
s k ~ oo.
Convergence in L 2 is very different from pointwise convergence. As a positive result we have Ri Ries esz' z' Su Subsequ bsequence ence Theorem Theorem::
The or e m 2.3.1 Let
0
~
IR be an open set, and let {gk} be a sequence
in L 2 (0) which converges to g E L 2 (0). Then {gk} has a subsequence {9nk }f:: 1 such that g(x)
for almost every
X
=
lim 9nk (x) ~ o o
E 0.
The result holds no matter how we choose the representatives for the
equivalence classes. This is typical for for th this is book, where w e rarel rarely y dea deall with a specifi spec ificc repr represen esentativ tativee ffor or a give given n cla class. ss. T The here re are are,, howeve however, r, a few important exceptions. When we speak about a continuous function, it is clear that we have chosen a specific representative, and the same is the case when we discuss Lebesgue points. By definition, a point y E IR is a Lebesgue point for a function f if
.Y+ • l f ( y ) -
1 lim-
f(x)ldx
y- •
f
• ~
= 0.
I f f is continuous in y, then y is a Lebesgue point (Exercise 2.1). More generally, one can prove that if f E L 1 (IR), then almost every y E IR is a Lebesgue point. from the definition that different representatives for the same I t is clear equivalence class will have different Lebesgue points: for example, every y E IR is a Lebesgue point for the function f = 0; changing the definition of f in a single point y will not change the equivalence class, but y will no longer be a Lebesgue point. See Exercise 2.1 for some related observations. In L 2 (1R), Cauchy-Schwarz' inequality states that for all J,g E L 2 (1R),
rX)
1-oo lf(x)g(x)ldx
~
(1-oo roo ) lf(x)l dx 2
1/2 (
) 1-oo lg(xWdx roo
1/2
40
2. Infinite-dimensional Vector Spaces and Sequences
The discrete analogue of L 2 (JR) is £2 ( / ) , the space of square summable scalar sequences with a countable index set I :
f2 (/)
:=
{{xk}kEI
C
I L lxkl 2 < oo} kEI
·
f 2 ( / ) is a Hilbert space with respect to the inner product ({xk}, {yk}) =
L
kEI
XkYk;
in this case Cauchy-Schwarz' inequality gives that
I
LXk Yk l kEI
2
L kEI
lxkl 2 L 1Ykl 2 , {xk}kEI, {yk}kEI kEl
E f 2 (J).
2.4
The Four Fourier ier transform transfo rm
L:
For f E L 1 (JR), the Fourie Fourierr transform
j('y)
:=
j
is defined by
(x)e-21fix"'fdx,
"'E
JR.
Frequently we will also denote the Fourier transform of f by F f. I f (£ 1 n L 2 )(JR) is equipped with the L 2 (JR)-norm, the Fourier transform is an isometry from ( £ 1 n L 2 )(JR) into L 2 (JR). I f f E L 2 (JR) and { h } f : 1 is a sequence of functions in ( £ 1 n L 2 )(JR) which converges t o f in £ 2 -sense, then the sequence {A}f: 1 is also convergent in L 2 (JR), with a limit which is independent of the choice of {fk}f: 1 . Defining
J=
lim
k-+oo
Jk
we can extend the Fourier transform to a unitary mapping of £ 2 (JR) onto L 2 (JR). W e will use the same notation to denote this extension. In particular we have Plancherel's equation
( ] , g ) = ( ,g), Vf,g E L 2 (JR), and
llfll = llfll·
(2.3)
J
I f f E L 1 (JR), then j is continuous. I f the function f as well as belong to £1 (JR), the inversion formula formula describes how to come back to f from the
function values j('y):
L:
The or e m 2.4.1 Assume that f , f
f(x)
=
E L 1 (JR). Then
('y)e 2trix"'fd"f, a.e. x E
(2.4)
JR.
The pointwise formula (2.4) holds a t least for all Lebesgue points for
cf. [10).
f,
2.5 Operators on L 2 (R)
2.5
41
Opera Op erator torss on L 2 (JR)
In this Section we consider three classes of operators on L 2 {1R) which will play a key role in our analysis of Gabor frames and wavelets. Their definitions are as follows: Translation by a E lR, Ta: L 2 (JR) -+ L 2 (JR), (Taf)(x) Modulation by b E IR, Eb: L 2 (1R) -+ L 2 (1R), (Ebf)(x) Dilation by a
' I 0,
Da:
L 2 (1R) -+ L 2 (1R), ( D af) ( x)
=
= f(x-
=
a);
e 2 ,.ibx f(x);
} o f ( ~ ) .
vial
a
(2.5) (2.6) (2.7)
A comment comment abo ut notation: we will usually skip the brackets and simply write Taf( x) , and similarly for the other operators. Frequently we will also let Eb denote the function x t-+ e2 ,.ibx. W e collect some of the most important properties for the operators in (2.5)-(2. 7):
Lemma 2.5.1 The translation operators satisfy the following:
(i) Ta is unitary for all a E JR. (ii) For each f E L 2 (1R), y t-+ T y f is continuous from lR to L 2 (1R). Similar statements hold for Eb, b E lR and Da, a
Proof.
' I 0.
Let us prove that the operators Ta are unitary. Since E L 2 (1R),
(Taf,g) = ( , T - a g } , V f , g
we see that T ; = T - a. On the other hand, Ta is clearly a n invertible operator with T; ; 1 T_a, so we conclude that T;; T; ; 1 T;. To prove the continuity of the mapping y t-+ T y f we first assume that f is continuous and has compact support, say, contained in the bounded interval [c, d]. For notational convenience we prove the continuity in Yo = 0. he function First, Firs t, fo forr y E ] -
=
=
H
¢(x)
= T y f ( x ) - Ty
0
f(x)
= f(x-
y ) - f(x)
has support in the interval [ - + c, d + ]. Since we can for any given f > 0 find 8 > 0 such that
f
is uniformly continuous,
for all x E lR whenever JyJ with this choice of 8 we thus obtain that l f ( x - y ) - f(x)l
f
(I:::
<
if(x-
y)-
8;
f(x)i'dx) 'i'
Vd-c+l.
This proves the continuity in the considered special case. The cas casee of an arbitrary arbit rary functi function on f E L 2 (JR) follows by an approximation argument, using
42
2. Infinite-dimensional Vector Spaces and Sequences
that the continuous functions with compact support are dense in £ ~ ) (Exercise 2.4). The proofs of the statements for Eb and Da are left t o the
reader rea der (Exercise 2.5). 2.5).
0
Chapters 8-14 will deal with Gabor systems and wavelet systems in £ ~ ) ; both classes consist of functions in £ ~ ) which are defined by compositions compos itions of some some of the operators Ta, Eb and Da. For this reason the following commutator relations are important: e-21riba EbTaf(x)
TaEbf(x)
=
= e2,.ib(x-a) f ( x -
X 1 Jjajf(
n D a f (x)
=
DaTb;af(x)
DaEbf(x)
=
_1_e211"ixbfa f(:._) J j aj a
b ~ ) ,
= EJLDaf(x). a
a),
(2.8) (2.9) (2.10)
In wavelet analysis the dilation operator D 1; 2 plays a special role, and we simply write D f(x)
:=
21 / 2 f(2x).
With this notation, the commutator relation (2.9) in particular implies that
(2.11)
W e will often use the Fourier transformation in connection with Gabor systems and wavelet systems. In this context we need the commutator relations
2. 6
Exercises
2.1 Here we ask the reader to prove some results concerning Lebesgue points. (i) Assume that f : a Lebesgue point.
(ii) Prove that x (iii) Let
f =
- +
C is continuous. Prove that every y E
~ i s
= 0 is not a Lebesgue point for the function X[O,l]·
XQ· Prove that every y f/_
Q is a Lebesgue point, and
that the rational numbers are not Lebesgue points.
of real numbers for which 2 : : ~ 2.2 Find a sequence { k } ~ convergent, but not unconditionally convergent.
ak
is
2.6 Exercises
43
2.3 Let { k}f: 1 be a sequence in a Banach space. Prove that absolute
convergence converge nce of
2::::, 1 fk
implies unconditional convergence.
2.4 Complete the proof of Lemma 2.5.1 by showing the continuity of y t-t Ty/ for f E L 2 (JR). 2.5 Prove the statements about Eb and Da in Lemma 2.5.1. 2.6 Prove the commutator relations (2.12).
3 Bases
Bases play a prominent role in the analysis of vector spaces, as well in the finite-dimensional as in the infinite-dimensional case. The idea is the same in both cases, namely to consider a family of elements such that all vectors in the considered space can be expressed in a unique way way as a linear combination combinati on of these elements. elements. In th thee infinite-dimensional infinite-dimensional case the situation is complicated: we are forced to work with infinite series, and different concepts of a basis are possible, depending on how we want the series to converge. For example, are we asking for for the th e series series to t o converge with respect to a fixed order of the elements (conditional convergence) or do we want it to converge regardless of how the elements are ordered (unconditional convergence)? W e define the relevant types of bases in general Banach spaces in Section 3.1, but besides this we mainly consider Hilbert spaces. In Section 3.4 we discuss the most important properties of orthonormal bases in Hilbert spaces; we expect th thee reader to have some some basic knowled knowledge ge thiss subject subject.. A slight (but (bu t useful) useful) modification leads t o the definition about thi of Rie sz bases, base s, which whic h arethe tre t reat ated ed in detail in Section Secti on 3.6. 3.6. which O Orth rthono onorma l bases andRiesz Riesz bases satisfy so-called Bessel inequality, is rmal the key to the observation that they deliver unconditionally convergent expansions and can be ordered in an arbitrary way. Sequences satisfying the Bessel inequality are therefore discussed already in Section 3.2. Concret Con cretee examples of bases in function spaces are given in Sections 3. 7 and 3.8, where the basic theory for Fourier series is revisited (again this subject is expected to be known) and Gabor bases as well as wavelet bases for L 2 (1R) are introduced. These sections form the background for Chapters 7-14.
46
3. Bases
In the entire chapter, X denotes a Banach space, and 1£ is a Hilbert space with the inner product ( , ·) linear in the first entry. W e will assume that the spaces are separable and infinite-dimensional, and we leave the modifications in the finite-dimensional case t o the reader.
3.1
Bases in Banach spaces
The most fundamental concept of a basis was introduced by Schauder [253] in 1927. It takes place in a Banach space X , and captures the basic idea of having a family of vectors with the property that each f E X has a unique expansion in terms of the given vectors. All bases considered in this book are Schauder bases. Before giving the formal definition, we emphasize once more that a sequence {ek}f=1 in X is an ordered set, i.e., {
k } ~
= {e1,e2, ... }.
Definition 3.1.1 Let X be a Banach space. A sequence o f vectors { k } ~ belonging to X is a (Schauder) basis for X if, for each f E X , there exist unique scalar coefficients {ck(f)}f= 1 such that
f =L 00
k=1
(3.1)
ck(f)ek.
Sometimes we refer to (3.1) as the expansion o f f in the basis { k } ~ Equation (3.1) merely means that the series f = L:r= 1 ck(f)ek converges with respect to th thee chosen chosen order of the th e elem elements ents.. I f the series (3.1) converges unconditionally for each f E X , we say that {ek} is an unconditional is an unconditional basis if and only if basis. One can prove that { k } ~ { eu(k) is a basis for every permutation a of N, cf. [260]. In other words, if {ek} is a basis which is not unconditional, there exists a permutation a for which {eu(k) is not a basis. I t is known that every Banach space which has a basis also has a conditional basis, cf. [233]. Besides the existence of an expansion of each f E X , Definition 3.1.1 asks for uniqueness. This is usually obtained by requiring { ek}r: 1 to be independent independ ent in an approp a ppropriat riatee sens sense. e. In infinite-dimensional infinite-dimensional Banach Bana ch spaces, spaces, different concepts of independence exist: Definition 3.1.2 Let {
k } ~
be a sequence in X . We say that
(i) { k } ~ is linearly independent i f every finite subset o f { linearly independent;
k } ~
is
(ii} { k } ~ is w-independent i f whenever the series L:r= 1 ckfk is con vergent and equal to zero for some scalar coefficients {ck}f=P then necessarily Ck 0 for all k E N.
=
3.1 Bases in Banach spaces
{iii) {fk}f: 1 is minimal i f
fJ ¢ span{ k}k;ej, Vj
47
EN .
The relationship between the definitions is as follows: Le mma 3.1.3 Let {fk}k-'= 1 be a sequence i n X . Then the following holds:
{i) I f {fk}k-'= 1 is minimal, then {fk}k-'= 1 is w-independent. (ii) I f { k}k-'= 1 is w-independent, then {fk}f: 1 is linearly independent. The opposite implications i n (i) and (ii) are not valid. Proof.
For the proof of (i), assume that {fk}k-'= 1 is not w-independent.
Cj j , such that Choose scalar coefficients {ck} f : 1 with f= 0 that for some ~ ckfk = 0; then fJ = L k # j =f; fk, implying / j E span{fkh#j· That is, {fk}k-'= 1 is not minimal. The statement (ii) is obvious, and the fact that the opposite implications are not valid is demonstrated by examples in Exercise 3.4. 0
A Banach Bana ch space having a basis is necessarily separable. separabl e. Most of o f the th e known separable Banach spaces have a basis; the first example of a separable Banach space not having a basis was constructed by Enfl.o [122] in 1972. I t is clear that a basis for X is complete and consists of non non-zero -zero vectors. Adding an extra condition leads to a characterization of bases: The or e m 3.1.4 A complete family o f non-zero vectors {ek}f: i n X is 1 t for al a basis for X i f and only i f there exists a cons constant tant K such tha that alll m , n E N with m n,
(3.2) for all scalar-valued sequences {ck}f: 1.
Suppose that {ek}f: 1 is a basis. Then each Ckek, and expansion f = ~ Proof.
f
E X has a unique
Note that if lllflll = 0, then : : ~ = ckekll = 0 for all n E N; it follows that ck = 0 for all k E N, and f = 0. One can check (Exercise 3.1) that Ill · Ill satisfies the other conditions for a norm on X , and that X is a Banach space with respect to this norm. By definition of Ill · Ill, we have II/II lllflll, V f E X , meaning that the identity operator is a continuous and injective mapping of (X, Ill ·Ill) onto (X, II · II). By Theorem A.5.2 i t follows that this operator has a continuous inverse, i.e., that there exists a constant K > 0 such that lllflll K llfll for all f E X . In particular, fixing
48
Basess 3. Base
3.2).. F o r tain ( 3.2) Ckek,, we o b tain ering g f = ~ = l Ckek trary n E N a n d co n s id erin a n ar b i trary of no n - z e r o il y { k } ~ catio o n , a s s u m e t h a t a co m p l ete fa m ily th e o t h e r i m p l i cati (3.2). ). Let A d e n o t e th e v e c t o r s p ac e c o n s istin g o f all f E X sfiess (3.2 v e c t o r s s a ti sfie fficie ie n ts { k } ~ fo r s o m e c o e ffic ckek for ckek w h i c h c an b e e x p a n d e d a s f = : ~ assum m e d t o b e c o m p l e t e we is assu sincee { e k } ~ irst we p r o v e t h a t A = X ; sinc F irst is cl o se d . L e t densee in X , so i t is e n o u g h t o p ro v e t h a t A is kn o w t h a t A is dens oo . C A su c h t h a t f j -+ f a s j - + oo. f E X , a n d c h o o se a s e q u e n c e { j ~
ij ) } ~ ficien n t s { c ij) ek for or a p p r o p r i a t e co ef ficie fJ = l ~ W r i t e fJ or all j , l E N t h a t e a c h i E N a n d a ll n ~ m ~ i , we h a v e for
lclj) - c)'lllllll•·ll •·ll
<
K
0, c h o o se N
K
(11 -ftll+llfz-~ciL)ekll)·
2
E N s u c h t h a t
~
II ~ I I - IJ IJII
for j ~
N .
follow low s f ro m t h e a b ov e e st i m a t e t h a t oo, it fol i n g n -+ oo, B y l e t t in ( 3 .4 )
(3.3), ), a n d , v i a th e i n term e d i a t e s t e p (3.3
F o r e a c h i E N , the s e q u e n c e by (3.4 ) , say, is c o n v e r g e n t by oo in ( 3 .4 ) a n d (3.5 ) , we o b t a i n that letti n g l - + oo a s l - + oo. B y letti l c ~ j
c i l l l e ill ~
E
Ci
3.6) ( 3.6)
fo forr a ll i E N , j ~ N ,
and
~ ~ ~
c ~ ) -
C k ) ekll
~
E
fo forr all m E N , j
~
N.
(3 .7 )
in B a n a c h s p a c e s 3.1 B a ses in
49
al l j E N, N ow , for g iv en m E N an d all
II - ~ c , e • l l II II ·HI, III,- ~ c ~ e · I H ~ c ~ ) - c·HI, J,lll J,l
0 w e c a n ch o o se N E N so t h a t (3.7 we c a n ::; E; a f t e r t h at, we JII ::; or j > N we o b t a i n t h a t I I - IJII l a r g e v a l u e for o b t a i n t hat
II
/ j - 2:::::;;'= 1
ek ek
II ::;
E
icien n tl y l a r g e . osing g m E N s u f f icie b y c h o osin
largee . W e c o n c l u d e t hat ently y larg suffici ci entl forr m suffi T hu s I I - 2:::::;;'= 1 c k e k l l ::; 3€ fo is a b a s i s To pr o v e t h a t { e k } ~ esiree d . To as desir i.e.,, f E A as c k e k , i.e. f = ll k E N. or a ll c k ek = 0, th e n Ck = 0 for show t h a t i f we o n ly n e e d t o show ck e k = 0 , t h e n for e a c h i E N a nd fo llow lo w s f ro m ( 3 .2): if : : : : : T h i s a g ai n fol all n 2:: i ,
-+ oo. oo. fr o m h ere we o b t a i n th e r e s u l t b y l ettin g n -+
0
fo r a n asis co n s t a n t , w h ich for si n g t h e b asis often n f o rm u l a t e d u sin .1.4 is ofte T h e o r e m 3.1.4 ar b itrary itrary se q u e n c e { e k }
{ I I ~
K : =sup
is d e fi ned by c k e kll
: m ::; n ,
I I ~ c k e k ll
= 1}.
(3 .8)
t that c a n b e us e d alless t c o n s t a n t early y t h e s m alle is c l earl is is a b a s is, t h i s is initee , th e n { e k } ~ ot he r h a n d , i f the b a sis c o n s t a n t is in f init 3.2).. O n the othe in (3.2) defin ned k}f= = 1 th e b a s i s c o n s t a n t is defi sequee n c e { ek}f initee sequ asis. Fo r a f init is n ot a b asis. ::;; N . a s a b o v e , w i t h t h e a d d i t i o n t h a t w e c o n s id e r n ::
If
e k } ~
c a n b e a b a s i s Th e b a s is c o n s t a n t K te l ls w h e t h e r t h e s eq u e n c e { e k } spectt t o t h e c h o s e n o r der o f th e e le m e n ts. W e n o t e t h a t a s i m i l a r w ith r e spec sequee nce 60]: ]: a c o m p l e t e sequ [260 ition n a l b a s e s e x i s ts, c f. [2 c t e riza t i o n o f u n c o n d itio c h a r a ct tionaa l b a si s if a n d o n l y ents is is a n u n c o n d i tion n-zerr o el em ents off n o n-ze sistin n g o c o n sisti { ek}
if i t s u n c o n d i t i o n a l ba sis c o n s t a n t sup
kekll = 1 L:::C C kekll ckee kl klll : II L::: 2:::0·k :0·kck {112:: {11
an d
a k = ±1 ,
'v'k} 'v'k}
inite. e. is f init in ientss { c k / } ~ fi c ient ek}k"= = 1 i t is c l e a r t h a t t he c o ef fic G iv e n a b a sis {ek}k" early y o n f . Th e m a p p i n g s f - + c k ( f ) a r e c a l l e d c o e ffic i e n t (3 .1) d e pe n d l i n earl As a c o ns e q u e n c e o f T h e o r e m 3 .1 .4 t h e y a r e c o nt i n u o u s : f u n c t io n a l s . As
3. B a s e s
50
asso ciated to a basis oeffic ient fu n c tio n a ls { k } ~ C o r o l la r y 3 1 5 The ccoeffic me n t s in red as as e l e me nsidered s be c o nside a n th u s f o r X are co n tin u o u s, a n d c an { ek } alll the du d u a l X * . I f t here e xists a c o n s t a n t C > 0 s u c h t h a t llekll 2: C for al u nded. a re un i f o r m ly b o unded. k E N , t h e n the no r ms o f { k } ~
ther e . G iv e n .1.4 a n d the n o t a t i o n intr o d u c e d there W e u se T h e o r e m 3.1.4 2: j , forr an y j E N a nd a ll n 2: k . T h e n , fo c k(f)e k(f)ek ~ f E X , w r ite f =
Proof
that L e t t i n g n --+ oo we o b t a i n that 0
elow . is is n o t n o r m - b o u n d e d b elow here { e k } ~ for t h e ca se w here rcisee 3 .2 for Se e E x e rcis i n X * a r e s a i d to b e i n X a n d a s eq u e n c e { g k } ~ sequee n c e { k } ~ A sequ
thogo n a l if biorthogo bior
. =8
(fj) g k (fj)
.
·= { 1
k,j k,j .
0
= j , f. j .
k k
( 3 .9 )
sis fo r X . T h e n { k } ~ is a ba basis
C o r o ll ary 3 1 6 S u p p ose th a t { k } ~ ffi cient f u n c t io io n a l s { t h e c o e ffi
if if
and
c o n stitu te a b iortho iorthogonal gonal s y s t e m .
} ~
(Exerc rc ise 3 . 3). F o r c o m p l e t e n e s s we W e l ea v e t h e p r o o f to the r e a d e r (Exe
ction n a ls; t h e y a r e nt f u n ctio efficie ient bout t h e c o effic low w ing in g r es u lts a bout ollo m e n t i o n the f ol 79]. [279]. [210], [2 p r o v e d i n e.g., [210], T h e o r e m 3 1 7 Le t { e k } ~
be a ba sis for X
an d l e t {
k } ~
be th e
n ls. T h e n tio n a ls. fficient fu n c tio ciated c o e fficient asso ciated losed sp a n in X * , a n d i t s assoc iated is for for its cclosed basis (i) { ck}k"= 1 i s a bas as e l e m e n t s in x · · . sidere d as (considere dk"=ll (con em is { e dk"= system onal syst orthogonal b i orthog exive, t h e n { reflexive, (ii) I f X is refl
3 .2
B essel se q u e n c es
k } ~
basiss fo r X * . is a basi
in H i l b e r t
spaces
(s ee o u r co n lbertt s p a c e s (se T he r e s t o f t h i s c h a p t e r c o n c e r n s s e q u e n c e s in H i lber al l s eq u e n c e s b y th e ntion n s st a ted o n p a g e 4 6). F o r c o n v en ie n ce w e i n d e x all v e ntio re s u lts a c t u a l l y that a ll res seee that so o n se ion. W e s h a ll soo na t u ral n u m b e r s i n t h i s se c t ion. ntabll e i n de x s et s . rbitra a ry c o u ntab h o ld w ith a rbitr
3.2 Bessel sequences in Hilbert spaces Le mma 3.2.1 Let { k}f: 1 be a sequence i n 1£, and suppose that is convergent for all {ck}f: 1 E f 2 (N). Then
51 ckfk
00
T : f 2 (N) - t 1£, T{ck}f=1 : = "L,.ck/k
(3.10)
k=l
defines a bounded linear operator. The adjoint operator is given by
(3.11) Furthermore, 00
L k=l Proof.
1{ , hW
IITII 2 11/11 2 , 'Vf E 1£.
Consider the sequence of bounded linear operators n
Tn: f 2 (N) - t 1£, Tn{ck}f:,l : =
k=l
Ckfk·
(3.12)
Clearly T n - t T pointwise as n - t oo, s o T is bounded by Theorem A.5.1. In order to find the expression forT*, let f E 1£, {ck}f: 1 E f 2 (N). Then
={ ,L 00
{ , T{ck}f:l)H
k=l
00
ckfk)H
= L,u, /k)ck.
(3.13)
k=l
W e mention two ways to find T* f from here. {ck}f:, 1 E f 2 (N) 1) The convergence of the series E':= 1{ , /k)ck for all {ck}f:, implies that { { , /k) } f : 1 E f 2 (N); see for example [174], page 145. Thus we can write
=
{ , T{ck}f:, 1)H
({ { , /k)}, {ck})e2(N)
and conclude that T* f
= { { , /k)}f:I·
2 Alternatively, when T : f 2 (N) - t 1l is bounded we already know that T* is a bounded operator from 1 l to £2 (N). Therefore the k-th coordinate function is bounded from 1 l to C; by Riesz' representation theorem, T* therefore has the form T* I =
{ , gk)}f:1
for some {gk}':= 1 in 1£. By definition ofT*, (3.13) now shows that 00
00
"L,.{f,gk)ck = "L,.{f,/k)ck, 'V{ck}f:, 1 E f 2 (N), f E 1£. k=l k=l I t follows from here that 9k
= fk.
52
3. Bases
The adjoint of a bounded operator T is itsel itselff bounded, bounded, and Under the assumption in Lemma 3.2.1, we therefore have
liT* f l l 2
IITII 2 llfll 2,
IITII
= liT* II·
V f E 1l,
0
which leads to (3.12).
Sequences { f k } ~ for which an inequality of the type (3.12) holds will play a crucial role in the sequel. i n 1l is called a Bessel sequence i f A sequence { f k } ~ there exists a constant B > 0 such that
Definition 3.2.2
00
Ll(f,h)l2 k=1
B llfll 2, V f E 1{.
(3.14)
Every number B satisfying (3.14) is called a Bessel bound for {fk}f= 1. Theorem 3.2.3 Let { h } ~
be a sequence i n 1l. Then { h } ~ sequence with Bessel bound B i f and only i f
is a Bessel
00
T: {
Lckfk
k } ~
k=1
is a well-defined bounded operator from f 2(N) into 1l and
IITII
~
VB.
Proof. First assume that { h } ~
is a Bessel sequence with Bessel bound B . Let {ck}f= {ck}f=1 1 E f 2(N). First we want to show that { c k } ~ is well defined, i.e., that ~ ckfk is convergent. Consider n, m E N, n > m . Then
llt.c·f·- t.c·J.II
~
c.J·II
II.I~ = <
sup
11911=1
I(
t
ckfk,g)l
k=m+l
n
L
sup
11911=1 k = m + l
t
<
(
<
.jjj
k=m+l
lck(fk,g)l
lckl 2)
112
t
sup ( l(fk,g)l 2) 11911= 1 k=m+1
Cf+, hi'),,,
112
Since { k } ~ E f 2(N), we know that {L:Z= 1 ckl 2} : = 1 is a Cauchy se quence in C. The above calculation now shows that {l::Z= 1ckfk} : = 1 is a
3.2 Bessel sequences in Hilbert spaces
53
Cauchy sequence in 1£, and therefore convergent. Thus T{ck}r: 1 is well defined. Clearly Tis linea linear; r; since si nce liT {ck}f= 1 ll = sup\\g\\= 1 I(T{ ck}f= 1 , g)l, a calculation as above shows that Tis bounded and that IITII :::; ,fii. For the opposite implication, suppose that T is well-defined and that IITII :::; ,fii. Then (3.12) shows that {h }f = 1 is a Bessel sequence with Bessel bound B . D Lemma 3.2.1 shows that if we only need to know that {fk}r: 1 is a Bessel sequence sequ ence and the value for the Bessel bound is irrelevant, we can just check that the operator T is well defined: is a sequence in 1£ and ~ c k h is convergent for all {ck}r: 1 E t' 2 (N), then {fk}f= 1 is a Bessel sequence.
Corollary 3.2.4 I f {fk}r: 1
The Besse Bessell condition (3.14) remains the t he same, regardless of how how the ele ments { h } r : 1 are numbered. This leads to a very important consequence of Theorem 3.2.3: is a Bessel sequence in 1£, then converges unconditionally for all {ck} r : E t'2 (N).
Corollary 3.2.5 I f {fk}r: 1
~
ckh
1
Thus a reordering of the elements in {fk}r: 1 will not affect the series 2::%"= 1 c k h when {ck}f= {ck}f= 1 is reordered the same way: the series will converge towards the same element as before. For this reason we can choose an arbitrary indexing of the elements in the Bessel sequence; in particular i t is not a restriction that we present all results with the natural numbers as index set. As we will see in the sequel, all orthonormal bases, Riesz bases, and frames are Bessel sequences. I t is enough t o check the Bessel condition (3.14) on a dense subset of 1£: Lemma 3.2.6 Suppose that { k}f= 1 is a sequence o f elements i n 1£ and
that there exists a constant B
>0
L l(f,
such that
00
k=1
k)l 2
:::;
B llfll 2
for all f i n a dense subset V of1l. Then {fk}f= 1 is a Bessel sequence with bound B .
W e have to prove that the Bessel condition is satisfied for all elements in 1£. Let g E 1£, and suppose by contradiction that Proof.
00
L
l(g, k)l 2
> B 11911 2 •
k=l
Then there exists a finite set F C N such that
L
l(g,fk)l 2
> B 11911 2 ·
kEF
54
3. Base Basess
l i e s t h a t t he r e e x i s t s h E V s u c h t h a t se in 1 { , th is i m p li Sinc e V i s d e n se
hll 2 , ,fkW kW > B llllh (h,f (h kEF
e t hat c t i o n . W e c o n c l u d e b u t th is is a c o n t r a d i ct 00
k=1
:; fkW::; l(g,,fkW: l(g
B
llgW,
0
Vg E 1 { .
spirit . same S ee E x ercis e 3. 7 f or a r e sult i n th e same
3 .3 B a s e s a n d b i o r t h o g o n a l s ys t e m s
n 1 l
3 .1. T h e f i r s t e f ined i n S e c t i o n 3.1. f the c o n c e p t s d ef W e n o w r e t urn to s o m e o f ffices to ll y hold holdss in B an ac h spac es, b u t for ou r p ur p os e i t s u ffices ctuall le m m a a ctua se q u e n c e { k } ~ 1£; t h u s , if a se e 1 { . N o t e t h a t 1 { * = 1£; t s p a c e c o n s i d er a H i l b e r t ce is a se q u e n ce {gk} "= 1 , th en a l s o {gk} t h o g o n a l s e q u e n c e {gk} ;:;:"= i n 1 { has a b i o r th in H .
be be a s e q u e n c e in 1 { . T he n
L e m m a 3 3 1 L et { k } ~ (i) { k } ~
h a s a bi o rtho g o n a l s eq u e n c e { g k } ~
i f a n d o nl y i f {
k } ~
is m i n i m a l . ( i i ) I f a b io r thog o n a l s e q u e n c e f o r { e x ists, ists, i t is is u n i q u e l y d e t e r k } ~ te i n H . k '= 1 is c o m pl e te {fk}k m ined i f a nd o n l y i f {fk}
{ g k } ~ stem ha s a bio r t h o g o n a l sy stem
S u p p o s e t hat { k } ~ Proof fo r a ny g iven j E N,
= 1 a n d
(IJ,gj)
(/k,gj)
= 0
fork
=f.
T h en ,
j.
a l. Fo r the o t h e r is m i n i m al. T h e r e f o r e i J f/: s p a n { h h j , i. e ., { k } ~ is m i ni m a l , a nd l e t (i), a s s u m e t h a t { k } ~ i m p l i c a t i o n i n (i),
Ho : = s Ho
p
n {
k } ~
on of 1 i o n to ection proj ecti o gona gonall proj ortho E N, l e t P j d en o te the orth G iv en j followss Ho.. T h e n it follow on Ho rator ntity y op e rator j , a n d l e t 0 b e the i de ntit {fk}k span{fk}k span
j)IJ =f. t h a t ( / o - P j)IJ f. 0, a nd
(fj, ( Io - P j)fj)
= (P j i J + U o -
F o r k =f. j clea rly ( /k , (
P ;) IJ , ( I o - P ; ) IJ )
= II II(( Io - P j)fjll 2 =f.
0.
definii n g P j) f j ) = 0 B y defin
0 -
9] : =
( I o - P j)fj
j)IJII IJII 2 ' II( II ( Io - Pj)
j EN
"= 1 is a b i o r t h o g o n a l sy s te m fo r { h } k= 1 . {gkk} ;:;:"= w e o b t ain t h a t {g
3.3 Bases and biorthogonal systems in 1i
55
For the proof of (ii), assume that {fk}f:: 1 has a biorthogonal system {gk} I f {/k}f::1 is not complete we can replace {gk} by {gk + hk}f:: 1 for some hk E 1/.c} \ {0} and hereby obtain a new biorthogonal system for { k}f:: 1. On the other hand, we leave it to the reader to verify that if {fk}f:: 1 is complete, then the biorthogonality condition can a t most be satisfied for one family {gk} 0 Theorem 3.3.2 Assume that {ek}f:: 1 is a basis for the Hilbert space 11.. Then there exists a unique family
{gk}
i n 11. for which
00
f {
} ~
L(f,gk)ek, = k=1
'
View more...
Comments